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A previous publication in Phys. Rev. D, (Part A of this paper) pointed out that vacuum energy
�uctuations implied mass �uctuations which implied curvature �uctuations which then implied
�uctuations of the metric tensor. The metric �uctuations were then taken as fundamental and a
stochastic space-time was theorized. A number of results from quantum mechanics were derived.
This paper (Part B), in addressing some of the di�culties of Part A, required an extension of the
model: In so far as the �uctuations are not in space-time but of space-time, a granular model was
deemed necessary. For Lorentz invariance, the grains have constant 4-volume. Further, as we wish
to treat time and space similarly, we propose �uctuations in time. In order that a particle not
appear at di�erent points in space at the same time, we �nd it necessary to introduce a new model
for time where time as we know it is emergent from an analogous coordinate, tau-time, τ, where
'τ -Time Leaves No Tracks' (that is to say, in the sub-quantum domain, there is no 'history'). The
model provides a 'meaning' of curvature as well as a (loose) derivation of the Schwartzschild metric
without need for the General Relativity �eld equations.
The purpose is to fold the seemingly incomprehensible behaviors of quantum mechanics into the

(one hopes) less incomprehensible properties of space-time.

I. INTRODUCTION

Although it is a remarkably reliable schema for de-
scribing phenomena in the small, quantum mechanics
has conceptual problems; e.g. How can entanglement
send information faster than light (without violating rel-
ativity)? What is happening in the two-slit experiment?
How can it be that the wave function can instantaneously
collapse? In what medium does the Ψ wave travel? Is
the E=hf wave (the Compton wave) the same as the Ψ
wave? What is the wave function? What explains su-
perposition? Can the two-slit experiment (at least in
theory) be performed with macroscopic masses? Is 'The
Cat' alive or dead? (One should say at the outset that
this stochastic space-time theory is a DeBroglie-Bohm
rather than a Copenhagen model so Schrödinger's cat is
not an issue; Waves interfere. Particles do not.)
The mathematics of quantum mechanics works ex-

ceedingly well. What we attempt in this paper (in a
continuation of the previous Part A[1] and an updated
version[2]) is to provide a conceptual framework for the
quantum phenomena described by the mathematical for-
malism. Addressing logical problems in Part-A required
introducing a granular model for space-time and also a
re-interpretation of the concept of time in the quantum
domain.
Granular space-time theories often su�er from the

problem that if the grains have a speci�c size, then the
theory cannot be Lorentz invariant. Our grains though
(which we call 'venues' to distinguish them from point-
like 'events'), have constant 4-volumes (rather than con-
stant dimensions) and 4-volumes are Lorentz invariant.
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In empty space, with venues in a (average) rest frame, the
venues have dimensions of Planck length times Planck
length times Planck length times Planck time times c.
And the stochasticity is exhibited by venues migrating
in discrete intervals of one Planck length. We required
granularity since the (stochastic) space-time must tessel-
late the manifold. But point-like events have no volume
which is to say that multiple events can migrate to the
same 'point' in the manifold.

Another problem is stochasticity in time. For covari-
ance one would like to treat time and space similarly.
To do that, we then let the stochasticity apply to both
space and time. This leads to an obvious problem: If
a venue contains mass, then migrations can position the
mass so it appears at multiple positions in space at the
same time. E.g. A venue containing mass could migrate
one unit backward in time, then one unit forward in, say,
x, then one unit forward in time, resulting in the mass
being at both (x,y,z,t) and (x+1,y,z,t). Preventing this
necessitates a change in how we view time.

First, let's consider the idea of the 'world-line'. Mov-
ing forward from the present, we are predicting the fu-
ture. And with quantum uncertainties (as well as with
the intervention of outside forces) that future cannot be
certain. And if there is no completely deterministic tra-
jectory going forward, neither is there one going back-
ward in time. The world-line then, seems to have limited
utility in quantum mechanics. Instead of a world-line, we
consider a 'world-tube', the diameter of which increases
as one moves forward or backward from the present.

We suggest that for the quantum world, t is not the
forth dimension, and that t is an emergent quantity, if
not merely a human construct. t is a de�ned quantity in
the laboratory frame whereas we suggest (below) another
quantity, τ (tau-time) is appropriate in the quantum do-
main.



2

We'd like to treat the time dimension, t, in the same
way as we treat spacial dimensions. But there is a big
di�erence between a space and time coordinate: Consider
the graphic below:

A particle (the black disk) starts at x=0, then moves
to x=1, then 2, then 3. (We are considering space-time
to be granular, hence the coordinate boxes.) There is a
single instance of the particle.

But time is di�erent:

A particle at rest is at t=0, then moves to t=1, etc.
But when it goes from t=0 to t=1, it also remains at
t=0. There are now two instances of the particle, etc. In
other words, a particle at a particular time is still there as
time advances, and the particle is at the advanced time
as well.

We de�ne then, a new quantity, τ (tau-time), that acts
much like the usual time, but in accord with the �rst
graphic, above. I.e. when the particle advances in time,
it erases the previous instance. That is to say, 'τ -time
Leaves No Tracks'. Aside from �xing the problem of the
same mass appearing at an enormous number of di�erent
locations at the same time, in the section on 'Migrations
in Space and Time', τ will be seen to provide a solution
to the collapse of the wave-function problem.

The approach taken here considers a granular space-
time undergoing Brownian Motion in both space and
time. A Wiener Process is our starting point in mod-
eling a granular, indeterminate space-time.

II. WIENER (AND WIENER-LIKE)
PROCESSES

First, we consider Wiener migrations in space.

A Wiener Process W is an idealization of Brownian
motion. It is a random walk of n steps where n ap-
proaches in�nity. (But, as we regard venues not to be
point-like but granular, we will not be taking the process
to in�nity.)

The ith step is de�ned as

Wi = Wi − 1 + X√
i

where X is a binary random variable (+ or - 1). As
n gets large, the distribution of Wi tends towards the
unit normal distribution. As can readily be seen, as i
goes to in�nity, the W graph is everywhere continuous
but nowhere di�erentiable. The graph is fractal (in that
it is scale independent). The graph is a 'space �lling'
curve with fractal dimension 1.5. Traversing between any
two points along the curve requires covering an in�nite
distance. However, in any �nite time interval, there are
found all �nite values of x. So in the case where a venue

can move, it can move to all values of x in an arbitrarily
small time interval (e.g. faster than light).
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Here is something of a textbook example of a 100 point
Wiener Process curve with measure=0.5. Note: 'mea-
sure' refers to the probability of a 'coin �ip' being heads.
E.g. a measure of 0.75 means there is a 75% probability
of the coin being heads (or left vs. right, or up vs, down).
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And here is another example (di�ering in the sequence of
[pseudo]random numbers). Although the two curves look
di�erent, they are fundamentally the same (100 points,
0.5 measure).
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And above is a 40000 point example.

Extended to in�nity, the variable i becomes a continu-
ous variable, generally represented as t (time). The above
is for a 2-dimensional process (t vs x). To extend that to
t, x and y, two coins are �ipped, one for x migration and
the other for y.
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An x measure greater than .5 causes a tendency to drift
up. Less than .5 tends downward

III. MIGRATIONS IN BOTH SPACE AND
TIME; TIME IN QUANTUM MECHANICS;

WORLD-TUBES

For reasons of covariance, we would like to treat time
and space similarly. And so we will consider di�usion in
space as well as in time.
Consider Graph 'A' (of 1000 points) below. (The ver-

tical and horizontal lines are artifacts of the graphing
software.) The graph represents the path of a a single
venue migrating in x with a measure of 0.5, and also for
a migration in t where the measure of t is 0.501 (mean-
ing that t will slightly tend upward). We can regard the
graph as showing migration in x and also t, where the
coordinate axes are laboratory x and laboratory t.

Graph 'A'

There is an immediate problem:
Consider what this graph signi�es: At any given

laboratory-time t, the same venue will (simultaneously)
be at a very large number of x coordinates. If there were
mass/energy at the venue, this would be very problematic
as causality and conservation of mass would be violated.

This problem has been addressed (in the introduction)
by introducing τ (tau-time), and the 'τ-Time Leaves no
Tracks' idea.

We can still consider Graph 'A', but we'll interpret it
di�erently: If we take any (horizontal) time (τ) as a 'now',
A venue (containing a mass) stochastically �its forward
and back in time and space. So that at 'now' there is
one and only one particle. But where it is cannot be
predicted. However, the likelihood of the particle being
at a particular x (+/- dx) position is determined by the
relative number of times the particle is at that position.
In the case of Graph 'A', if we take as 'now' the τ -time
slice at -0.2, for example, we �nd (by examining the data)
the following probability curve:

This is analogous to Ψ*
Ψ. But the graph is a construct.

It represents, but is not actually, the particle. When the
particle is measured, it freezes (no longer moves stochas-
tically). It no longer �its through time and space so the
graph 'collapses' to the measured position. (that position
is only determinable by the measurement.) This is analo-
gous to the collapse of the wave function, but here (as the
graph was merely a mathematical construct) there is no
collapse problem. Again, the particle has always existed
at only a single venue, but the venue migrations happen
roughly at the rate of the Planck time, making the par-
ticle appear (in some sense) to be at multiple positions
at a particular time. Further, (because of the properties
of Wiener Processes) the particle appears to spread.

Note: The jagged lines in the graph (as opposed to a
smooth curve) is an artifact of the binning algorithm in
the software.

By Statement 1.4, the particle location becomes less
stochastic as mass increases. There is a point where the
stochasticity ceases. At that point, (since it is not mi-
grating back and forth through τ-time), one can use the
usual t-time. So, we consider t-time (and also causality)
to be an emergent quantity. In the rest of this paper,
when we do not reference history, we will simply use t
instead of τ.

Now we can (brie�y) revisit Statement 3: The metric
probability postulate, P (x, t) = −kg. A particle, by its
mass, generates a local contribution to the metric tensor
at the observer's 'now'. The particle will �it forward or
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backward in time. The local metric contribution, being
an extended �eld, will not �it with it, and, for the same
reason, will not instantaneously decay. When the par-
ticle �its back to the observer's now, it will be subject
to that extended metric �eld. (This is somewhat akin to
quantum �eld theory where a particle interacts with the
electromagnetic �eld created by its own charge. Here,
the particle interacts with the gravitational �eld created
by its own mass.) So P (x, t) = −kg. can fully apply.
As the probability density is not stochastic while the

metric components are, that puts constraints on the met-
ric tensor, i.e. the determinant of the metric tensor
is constant while the metric components are not. So
(stochastic) changes in one or more components are com-
pensated by opposite changes in the others. This implies
that a venue is in constant �ux, its dimensions continu-
ously and unpredictably changing while the venue main-
tains a constant volume. This also implies that the met-
ric stochasticity is due to a single (and the same) random
variable in each non-zero metric component (That vari-
able will then drop out in the determinant.)

IV. VENUE MIGRATIONS IN EMPTY SPACE

Mach's Principle posits that the local properties of
space-time depend on the mass distribution in the uni-
verse. We'll adapt the principle to our model. And we'll
introduce another variable: 'Indeterminacy', the proba-
bility that migrations will actually happen. Indetermi-
nacy then, is likely related to the concept of inertia.
As with Measure, indeterminacy is implemented with a

'coin �ip'. And we'll suggest that outside of a mass, the
indeterminacy decreases with decreasing distance from
the mass/energy (i.e. space becomes more determinate
as one approaches a mass). It will be seen that Measure
mainly in�uences quantum e�ects while Indeterminacy
in�uences relativistic e�ects.
The space-time Indeterminacy decreases as one ap-

proaches a mass. But this is underspeci�ed; masses can
have di�erent densities, so we wouldn't expect the Inde-
terminacy to necessarily vanish at the surface of a mass.
Yet we do not want masses to be pulled apart by the
space-time so we'll say that migrations cease at the sur-
face of a mass. But venues can still migrate away from
the surface.
We'd expect that at some distance, Rs, from the center

of the mass, the venues, if they could migrate to there,
would be trapped, i.e. unable to migrate away. And if
Rs were outside the mass radius, the venues could mi-
grate to Rs where they would be trapped. This is highly
suggestive of the event horizon of the Schwarzschild so-
lution. We'll assume Rs (the Indeterminacy radius) and
the Schwartzschild radius are the same.
The concept of Indeterminacy decreasing with close-

ness to mass has an interesting consequence relating to
measurement: A measurement requires an exchange of
energy between what is being measured and the mea-

surer (an energy that can't be transformed away). But
energy of this form (e.g. photons), being equivalent to
mass, forces determinacy.
So, for example, if one were to place a measuring ap-

paratus at one slit in the two-slit experiment, activity
at that slit (at the time it is measuring if a particle went
through it) would be deterministic (because the measure-
ment, via of photons, forces determinacy). And there-
fore, the interference pattern would not happen.
Insofar as measurements are accompanied by ex-

changes of photons, it's tempting to consider that pho-
tons are the carriers of causality.
Up to this point, we've considered the migration of just

a single venue. The model though, assumes space-time is
completely 'tiled' by venues, i.e. there are no regions of
space-time that are not fully covered by venues. While
we can justify the migration of a single venue, migra-
tions of venues in a completely tiled space-time is more
problematic, especially as the space-time is subject to dy-
namic, indeterminate curvature �uctuations (due to the
vacuum energy �uctuations). One might even doubt that
there can be any migrations at all in a fully-tiled space-
time. We are modeling the stochasticity of space-time
as a Wiener-like process on venues (grains). We assume
that the space-time completely tessellates the space-time
(i.e. there are no holes in the space-time). How then can
migrations occur in a fully tiled space-time?
The migration can proceed in one or two ways: The

�rst is like the circulation in a perfect �uid. The 'di�u-
sion' in that case, is via closed loops in the space-time.
The second way is the squishing-interchange of venues,

as shown below: The diagrams represent an idealized pair
of venues. The black and white venues continuously move
to interchange their positions while keeping their volumes
constant.

While our model is of a discrete, granular space-time,
the discreetness is expressed in the venue volumes. So
local continuous processes (between adjacent venues) as
the above are not disallowed.
The migration problem persists though, as can be seen

in Indeterminacy: Assume a spherical mass in an other-
wise empty space. Indeterminacy is assumed to decrease
as a venue migrates towards a mass. Even with Measures
= 0.5, a venue will at some point approach arbitrarily
close to the mass. But (letting R be the radial distance
to the mass) as Indeterminacy is the probability that the
venue will not migrate at the next coin �ip, the venue
will spend increasing amounts of 'time' as R decreases.
In the case of multiple venues, there will be proportion-
ally more of them in a volume element closer to the mass.
This results in the 'piling up' of venues as one gets closer
to the mass. How can this be? We don't want to re-
sort to venues 'pushing' against other venues since that
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would imply that the venues are overlaid onto space-time
instead of them being space-time. Nor do we (yet) want
to employ higher dimensions. An answer (perhaps the
only answer) is curvature. But what is curvature? 't
Hooft has theorized[3] that curvature is an artifact of the
fact that we live in four dimensions but space-time is ac-
tually �ve dimensional (e.g. a two dimensional being on
a sphere can measure curvature, but with the sphere em-
bedded in a �at three dimensions, there is no curvature.)
We will take a di�erent approach: Venues are assumed to
have constant volume but not constant dimensions. Cur-
vature will be described, below, as the thinning of space
dimensions, while the time dimension thickens.
As for the translatory motion of the particle (as op-

posed to the rotational), the particle doesn't become
'fuzzy', but its location does begin to blur as the mass
decreases below the Planck mass. This results in an ef-
fectively larger grain size.
Two e�ects: like a smaller pollen grain in Brownian

motion: the smaller the grain, the more it stochastically
moves. But as the e�ective grain radius increases, the
movement decreases as there is a larger circumference
over which the movements can average.
Note then that the e�ective radius rate of increase de-

creases as the e�ective radius increases. To reiterate, this
is because, as the particle grows in e�ective size the av-
erage e�ect of the venue migrations against the particle
surface begin to average out (analogous to the case of
Brownian motion where the jitter of a large pollen grain
is less than that of a smaller grain).
We maintain that all physics that uses the radius

should use the e�ective radius. radius= rest-radius +
Radius Quantum Correction: r = rc+rqc. For an exam-
ple of the e�ective radius, see the Schwarzschild metric
derivation below.
One might consider the 'actual' radius as the covariant

(and hence unobservable radius) whereas the e�ective ra-
dius is the contravariant (in principle, observable) radius.
We explore now whether the model might indeed re-

produce the Schwarzschild metric.
A mass generates curvature, that is to say, a deforma-

tion of venues. While to a distant observer the venues are
deformed to be spatially concentrated around the mass,
to the venues near the mass there is no observable ev-
idence of such concentration as the space-time itself is
'deformed' (by way of the venues) so any 'observer' in a
venue would be unaware of the deformation.
Consider space-time with a single spherical mass m

with an Indeterminacy radius Rs. The Wiener graphs
are for some unde�ned unit of time. But as one increases
the number of coin �ips towards in�nity, the time interval
decreases to an in�nitesimal, dt. For a granular space-
time though, the number of coin �ips isn't in�nite and
the time interval, though small, isn't in�nitesimal. Once
again, Indeterminacy is the probability of, given that the
venue is at a position with that Indeterminacy, the venue
migrates from that position at the next coin �ip.
Since migrations slow as venues approach a mass, in-

determinacy then, expresses the slowdown in time and
the compression of space as the venue approaches Rs.
[As we'll be frequently employing Indeterminacy, we'll
represent it by the letter 'u' (from the German word for
indeterminacy, Unbestimmtheit)].
As a venue migrates in towards Rs, u decreases. The

probability density of the venue being at a particular
radial distance, r, therefore, increases. This results in
venues piling up as they approach Rs. But as the venues
'tile' space-time, the only way they can pile up is by
way of curvature (i.e. squishing in the radial dimension
and compensating by lengthening in the time dimension):
To a distant observer, the venues would decrease in size
and migrate more slowly which is to say time would slow
down.
Recalling (see Statement 2) that the contravariant dis-

tance to a lack hole is
´ r̄

0
dr = r̄, while the covariant

distance is
´ r̄

0
d( r

1−2Gm/r ) =∞, we can (in Cartesian co-

ordinates) associate the contravariant distance with the
number of Planck lengths from the observer to the point
of observation and the covariant distance with the num-
ber of venues from the observer to the point of observa-
tion.
[This implies that local to the particle, space-time is

not stochastic. And there, a deterministic Lagrangian
can be de�ned. That 'local to the particle space-time'
coordinate system is covariant (as it is moving with the
particle). From another coordinate frame (e.g. the labo-
ratory frame) measurements on that local frame are sub-
ject to the intervening stochasticity, and because of that
stochasticity, the measurements are also stochastic, and
the measurements are contravariant, as can be seen by
the raising of the covariant coordinates by the stochastic
metric tensor).]
Now, near r = Rs, space-time becomes Q-classical (no

quantum e�ects, as opposed here to R-classical: no gen-
eral relativity e�ects) so a metric makes some sense.
Since the Measures (bias in the coin �ips) are presumed
not to be a function of location, we take the simplifying
assumption that the metric tensor does not depend on
the Measures, but only on the Indeterminacy, u. And,
for the moment, we'll ignore how a venue migrates in a
mass (when Rs is less than the mass radius).
Since for a mass, we have spherical symmetry, we can

let, ds2 = −f(u)dt2 + g(u)dr2 + r2dΩ2where f and g
are two (to be determined) functions of u, and dΩ2 ≡
dθ2 + sin2(θ)dϕ2is the metric of a 2-dimensional sphere.
Consider f(u) and g(u). We wish dt to lengthen and dr
to shorten as u decreases. ds can be thought of as the
time element in the frame of the venue. So, for example,
as u goes to zero, a big change in t will result in a small
change of s, and a small change in r results in a large
change in s. The simplest implementation of the above
suggests that f(u) is just u itself and g(u) is u−1i.e. ds2 =
−udt2 + u−1dr2 + r2dΩ2.
Now, as to u, note that,
at r = in�nity: u = 1,
at r = Rs : u =0, and
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for r < Rs : u can become unphysical (u<0).
The simplest expression for u satisfying the above is,

u = (1− Rs

r ) which gives us

ds2 = −(1− Rs

r )dt2 + (1− Rs

r )−1dr2 + r2dΩ2

We have of course, as described earlier, equated the
Schwartzschild radius with the Indeterminacy radius.
This is the result Karl Schwartzschild derived from the

General Relativity �eld equations. One can easily go a
bit further by noting that Rs can only be a function of the
mass, and �nding a product of mass with some physical
constants to give a quantity with dimensions of length
suggests Rs = kGm

c2 where k is a constant. So we now
have (setting units so that c=1),
ds2 = −(1− kGms

r )dt2 + (1− kGms

r )−1dr2 + r2dΩ2.
We still need to determine the value of the constant,

k. But this is known territory. Rs was derived (by
Schwarzschild and others) by requiring the metric to re-
produce the Newtonian result at large values of r and
small values of mass, and we need not reproduce the
derivation(s) here.
At �rst glance, there appears to be a con�ict between

the Schwarzschild metric and stochastic granular space-
time theory in that for masses less than the Planck mass,
the Schwarzschild radius is less than the Planck length
(which is not allowed as the Planck length is posited to
be the minimum possible). But, as described earlier, any
physical radius must be the e�ective radius ( e�ective
radius= rest-radius + Radius Quantum Correction). As
a mass decreases to below the Planck mass, quantum
e�ects occur which increase the e�ective radius. So a
Schwarzschild radius of one Planck length is the min-
imum possible Schwarzschild radius. Masses less than
one mass then increases the (e�ective) Schwarzschild ra-
dius (until the rate of increase decreases to zero). That
the Schwarzschild radius of a Planck mass is the Planck
length is then consistent with the granular hypothesis.

V. STOCHASTIC GRANULAR SPACE-TIME
AND THE LORENTZ AETHER THEORY

We consider that our Stochastic Granular Space-time
(SGS) theory is (or can be made to be) a super-set of
the Lorentz Aether Theory (LAT) where the aether is
space-time itself (speci�cally, the 'grains'/venues making
up the space-time). By doing so, we can appropriate the
LAT derivation of the constancy of the speed of light.
(We feel that any theory of space-time should contain an
explanation of that constancy.)
As is widely known[4], the Michelson-Morley experi-

ment failed to �nd the Lorentz aether, thus seemingly
invalidating the Lorentz Theory[5]. Less widely known
perhaps, is that the second version of Lorentz's theory
(with H. Poincairé as second author) reproduced Ein-
stein's Special Relativity (ESR) so well that there is no
experimental way to decide between the two theories[6].
The second LAT theory di�ers from the �rst in that it
posits that the aether is partially dragged along with

a moving body in the aether. This is akin to frame
dragging (e.g. the Lense-Thirring e�ect) in the Kerr
Metric[7]. We will posit frame dragging in SGS as well,
i.e. the dragging along of venues by a moving object.
(Note that the Kerr metric itself 'breaks' the continuity
space-time. If it didn't, the frame dragging would 'wind-
up' space-time, and it doesn't[8]. One might take this as
an argument for a discrete space-time such as in SGS.)
Although LAT derives the constancy of the speed of

light whereas ESR takes it as a given, there are objections
to LAT:

1. There is an 'aether', the makeup of which is not
speci�ed.

2. There is a privileged, albeit unobservable, reference
frame where the aether is at rest (isotropic).

3. The (constant) velocity of light results from elec-
tromagnetic interactions with waves (and matter),
and not from properties of space-time.

SGS can address these issues: As for 1, the makeup of
the aether, SGS says the aether is the space-time itself.
And in 1922, Einstein himself said essentially the same
thing.
[Note: Einstein (translation)-�Recapitulating, we may

say that according to the general theory of relativity
space is endowed with physical qualities; in this sense,
therefore, there exists an ether. According to the general
theory of relativity space without ether is unthinkable;
for in such space there not only would be no propagation
of light, but also no possibility of existence for standards
of space and time (measuring-rods and clocks), nor there-
fore any space-time intervals in the physical sense. But
this ether may not be thought of as endowed with the
quality characteristic of ponderable media, as consisting
of parts which may be tracked through time. The idea
of motion may not be applied to it�]
2. A privileged reference frame, is also not an issue in

SGS. The stochastic nature of space-time makes it impos-
sible to de�ne a global rest frame. But we can consider
a local privileged reference frame where the correlation
region (the region where we can consider a background
privileged frame) is large compared to the region where
we are doing experiments.
3. The constancy of the speed of light not a result of

the properties of space-time, can be addressed as well.
While there is nothing wrong with the LAT derivation
of the constancy, we can give a qualitative geometrical
model as an alternate way of thinking about the con-
stancy:
We maintain that frame-draging occurs whenever a

mass (non-zero rest mass) moves through space-time.
Photons, as their rest mass is zero, moves without frame-
draging. This (as we will see) allows an argument show-
ing the constancy of c.



7

Consider an object (here, the black circle) moving at
high speed in the direction of the arrow. The object
moves through the venues (here represented by the white
rectangles). But due to venue frame dragging at high ve-
locities, the venues are pushed ahead of the moving ob-
ject. But venues are constant in (5-D) volume, and the
only way that they can 'pile up' is by contracting in the
direction of motion (and expanding in other dimensions).
The object must move through these venues. As the ob-
ject's speed increases, the contraction increases (rather in
the way a 'curvature well' becomes ever deeper). To an
external observer (making contravariant observations),
the objects increase in velocity slows until it stops com-
pletely where the venue dimension in the direction of mo-
tion approaches zero. To that observer (as can be seen in
the diagram above) the object is accelerating (which be-
cause of the Equivalence Principle, is under the in�uence
of gravity). This establishes that a mass has a limiting
velocity.
We have postulated that a particle with non-zero rest

mass drags along (empty) venues as it moves, Photons,
having zero rest mass, do not drag venues.
So, if a particle moving with respect to the local priv-

ileged reference frame emits a photon, the photon does
initially travel with a velocity of c plus the velocity of
the particle. But the particle is dragging venues. As the
venue contracts in the direction of motion, since its vol-
ume is constant, it expands in the time dimension. And
this makes the time a photon takes to pass through the
venue constant. The photon has more venues to pass
through than it would have if the particle were not mov-
ing. Because of the additional distance (i.e. number of
venues) the photon needs to travel, its speed at the de-
tector, would be a constant, which is to say c.
If the detector were extremely close to the emitter (on

the order of Planck lengths) one would measure a value
of the velocity greater than c.
This length scale is too small to measure so the velocity

greater than c is unobservable. But other phenomena re-
lated to frame dragging might be large enough to detect.
A comet in an extremely elliptical orbit or a space-craft
'slingshotting' around a planet might exhibit a detectable
motion anomaly.
The SGS model violates Galilean Relativity in that

motion is not (in this model) relative. LAT violates it as
well. This is allowed (in both cases) by having a privi-
leged reference frame.
With SGS then, there is a new phenomenon at play:

'Velocity Induced Frame-draging'. So, in addition to
frame-draging being generated by mass (or acceleration),
it is also generated by an object's linear motion in the
space-time aether. One way of perhaps justifying this is
to consider the conservation of energy, as the sum of po-
tential and kinetic energy. The former is gravity depen-
dent while the other is motion dependent. Since gravity
yields curvature, perhaps velocity does as well. Potential

then, could be considered a result of Mach's Principle.
Frame-draging has much in common with curvature,

speci�cally Schwarzschild curvature. We might therefore
expect the metric tensors to be similar. Indeed, without
doing any calculations, we can guess at a metric for the
moving object. Consider the g11(the radial component
of the Schwarzschild metric) (1 − 2Gm

rc2 )−1. The velocity
induced model is not a function of mass, so m and G are
unlikely to be in g11. However, note that Gm/rc2 have

units of v2/c2, so we might expect g11 to be (1− k v2

c2 )−1

where k is a constant. We would expect a (coordinate)
singularity to occur when v = c, so that would make
k = 1. A similar argument can be made for g00(the time
component).

VI. (BRIEF) DISCUSSION

The aim of 'Stochastic space-time' is to introduce
stochasticity into the structure of space-time itself, rather
than into the properties of the particles in the space-time.
This is an alternate, geometrodynamic, approach to Nel-
son's groundbreaking model that indeed has matter mov-
ing stochastically in the space-time.
Because points have no extent, there seemed to be no

way to prevent events (points) migrating to the same
point. Therefore tessellating space-time would be prob-
lematic. So a granular model of space-time seemed neces-
sary. Further, whereas the only geometrical property of
an event is its coordinate location, grains, having extent,
can have di�erent values of ∆x, ∆y, ∆z, and ∆t. And
that allows an explanation of curvature within four di-
mensions (as opposed to explaining it by embedding the
four dimensional space-time manifold in a �ve dimen-
sional Euclidean space). And as long as the 4-volume of
the grains (which we call 'venues') is constant, we do not
violate Lorentz invariance.
In order that we treat time in the same way as we treat

space (and not to have particles appear at di�erent places
at the same time), we needed a new version of time, τ-
time. The implication is that our usual t-time is just a
human construct, not actually intrinsic to space-time.
This paper is an attempt to repair some of the errors

and inconsistencies of Part A (which necessitated some
new ideas) so that the path to a future, deeper theory
will be smoother.

note: this is part b. parts a and c can be found

at viXra 1811.0502 and 1811,0463 respectively.
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