Fermat's last theorem

In Memory of my MOTHER

All calculations are done with numbers in base n, a prime number greater than 2.

The notations:

A', A", A", A", $A_{(t)}$ – the first, the second, the third, the t-th digit from the end of the number A.; A_[t] – is the k-digit ending of the number A (i.e. A_[t] =A mod n^t).

0°) <u>Lemma</u>.

The sum of the numbers a_i^n (where $a_i=1, 2... n-1$) ends by d00, where d is a digit and d=(n-1)/2.

Proof of the first case of the FLT

Let's assume that for co-prime natural numbers A, B, C, where (ABC)' \neq 0 and n is a prime number n>2,

- 1°) [D=] Aⁿ+Bⁿ-Cⁿ=0, where, as it is known [see <u>viXra:1707.0410</u>],
 (A+B-C)_[2]=0 and A'+B'-C' is either 0 or n-1, and therefore the digit
- 2°) u"=(A"+B"-C")' is either 0 (if A'+B'-C'=0) or n-1 (if A'+B'-C'=n).
- 3°) If we multiply 1° by gⁿⁿⁿ, where g=1, 2, ... n-1, we find n-1 equivalent equations..

Leave in all equations 3° only the last digits, i.e. put A=A', B=B', C=C'. Then the sum of powers for each of the letters A, B, C, as well as the total sum of all n-1 of the numbers D of 3°, has an ending d00 has an ending d00 [where $d=(n-1)/2 - \sec 0^\circ$].

In each the equations 3° the digit D'''>0 [otherwise after the operation 3° with this equality with D'''=0 the digit D''' in the total sum is also zero] and there is equality with

4°) D'''>1 [otherwise, in the total sum of n-1 equals 3°, digit D''' \neq (n-1)/2].

However, restoring in the equation 4° digits of A", B", C " cannot convert this digit into 0 because, as it follows from the binomial theorem

5°) $A^{n}=(...+A^{"}n+A^{"})^{n}, B^{n}=(...+B^{"}n+B^{"})^{n}, C^{n}=(...+C^{"}n+C^{"})^{n}$

and from the Small Theorem, the third digit in the sum of the penultimate three terms in the binomial decomposition $-(A^{n-1}A^{"+}B^{m-1}B^{"-1}C^{"})'$ [=u", i.e. 0 or n-1, – see 3°], where $A^{n-1'}=B^{m-1'}=C^{n-1'}=1$, – it is either 0 or n-1 (see 2°).

Thus, Fermat's equality in the first case is contradictory in the third digit also for two-digit numbers A, B, C. Well, the third and subsequent digits of the bases A, B, C do not participate in the formation of the third digits of degrees (see 5°). From what follows the truth of FLT in the first case.

Proof of the second case of the FLT (A is multiple of n)

Let's assume that for co-prime natural numbers A $[=n^kA^\circ]$, B, C and a prime n>2

- 1°) $A^n+B^n-C^n=0$ and $C^n-B^n=(C-B)P$, where, as it is known [see <u>viXra:1707.0410</u>],
- 1.1°) (C-B)_[kn-1]=0, P=P°n, Aⁿ=n^{kn}A^{on}, U=A+B-C=n^ku (u'≠0, k>1).
- 1.2°) C-A=bⁿ, B=bq; A+B=cⁿ, C=cr; qⁿ=Q, rⁿ=R, P^o'=Q'=R'=1; the numbers A^o, P^o, n, b, q, c, r are co-prime.
- 2°) Consider the number $D=(A+B)^n-(C-B)^n-(C-A)^n$, where $(C-B)^n_{[k+2]}=0$, from here

2.1°)
$$D_{[k+2]} = [(A+B)^n - (C-B)^n - (C-A)^n + (A^n + B^n - C^n)]_{[k+2]} = \{[(A+B)^n - C^n] - [(C-A)^n - B^n]\}_{[k+2]}, \text{ or } (A+B)^n - (C-B)^n - (C-$$

- 2.2°) $D_{[k+2]} = \{ [c^{n}(c^{n-1}-r)V] [b^{n}(b^{n-1}-q)W] \}_{[k+2]}, \text{ where } c'=b', V_{[2]} = W_{[2]} = 10, (c^{n-1}-r)_{[k]} = (b^{n-1}-q)_{[k+1]} = (b^{n-1}-q)_{(k+1)} (\text{since } [(A+B-C)/cn^{k}]' = [(A+B-C)/bn^{k}]', where c'=b') \text{ and therefore,}$
- 3°) $D_{[k+2]}=0.$

However after removing parenthesis in Newton's binomials in 2° and grouping the summands having equal powers into pairs, we can notice that all pairs end by k+2 zeroes and only the pair in

4°) $n^{k+1}A^{\circ}C^{n-1}+n^{k+1}A^{\circ}B^{n-1}$ ends by k+1 zeroes, because (k+2)-th digit is equal to (2A°)' (since the numbers C^{n-1} and B^{n-1} end by digit 1 – see SFT), which contradicts to 3°!

Thus FLT is verified.

Mezos. August-October, 2018