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Abstract

The Pythagorean fuzzy set (PFS), as an extension of intuitionistic fuzzy set, is

more capable of expressing and handling the uncertainty under uncertain envi-

ronments. Whereas, how to measure the distance between Pythagorean fuzzy

sets appropriately is still an open issue. Therefore, a novel distance measure

between Pythagorean fuzzy sets is proposed based on the Jensen–Shannon di-

vergence in this paper. The new distance measure has the following merits: i)

it meets the axiomatic definition of distance measure; ii) it can better indicate

the discrimination degree of PFSs. Then, numerical examples are demonstrated

that the PFSJS distance measure is feasible and reasonable.

Keywords: Pythagorean fuzzy sets, Distance measure, Jensen–Shannon

divergence

1. Introduction

In recent years, the problems of modeling and dealing with uncertainty have

attracted great attentions from researchers in decision theory [1]. Nevertheless,

the fuzzy set theory [2] presented by Zadeh in 1965 plays an important role in
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decision theory. For the sake of handling the uncertainty of information more

accurately, the fuzzy sets had been extended to intuitionistic fuzzy sets (IFSs)

by Atanassov [3] in 1986. Later on, Yager extended the intuitionistic fuzzy sets

into the Pythagorean fuzzy sets (PFSs) [4, 5] in 2013.

It is well known that a lot of distance measures have been proposed for the

fuzzy sets and IFSs in the last few decades [6]. In this paper, we try to measure

the distance of PFSs by the divergence between PFSs to measure the difference

of PFSs. Since the square root of Jensen-Shannon divergence is a true metric

in the space of probability distributions [7], a novel distance measure between

PFSs is proposed based on the Jensen–Shannon divergence. It has been proven

in this paper that the new distance measure has some merits, in which it not

only meets the axiomatic definition of distance measure, but also can better

indicate the discrimination degree of PFSs. After that, numerical examples are

demonstrated that the proposed distance measure is more reasonable.

The rest of this paper is organized as follows. Section 2 introduces the pre-

liminaries of this paper briefly. In Section 3, some new distance measures of

PFSs are defined. Section 4 illustrates the proposed distance measure. Finally,

Section 5 gives a conclusion.

2. Preliminaries

2.1. Pythagorean fuzzy sets

Definition 2.1 [3] Let X be a finite universe of discourse. An intuitionistic

fuzzy set (IFS) A in X is defined by the mathematical form

A = {⟨x, µA(x), νA(x)⟩|x ∈ X}, (1)
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where the functions

µA(x) : X → [0, 1] and νA(x) : X → [0, 1] (2)

with the condition

0 ≤ µA(x) + νA(x) ≤ 1. (3)

The µA(x) is the degree of membership of x ∈ X; νA(x) is the degree of non-

membership of x ∈ X.

For an IFS A in X, a hesitancy function of x ∈ X is defined by

πA(x) = 1− µA(x)− νA(x), (4)

which reflects the hesitancy degree of x ∈ X.

Definition 2.2 [4, 5] Let X be a finite universe of discourse. A Pythagorean

fuzzy set (PFS) A in X is defined by the mathematical form

A = {⟨x,AY (x), AN (x)⟩|x ∈ X}, (5)

where the functions

AY (x) : X → [0, 1] and AN (x) : X → [0, 1] (6)

with the condition

0 ≤ A2
Y (x) +A2

N (x) ≤ 1. (7)

The AY (x) is the degree of membership of the element x ∈ X; AN (x) is the

degree of non-membership of the element x ∈ X. Here, C(x) is denoted as the

commitment of the membership function, in which C2(x) = A2
Y (x) +A2

N (x).

For the PFS A in X, a hesitancy function of x ∈ X is defined by

H(x) =
√

1− C2(x), (8)

which reflects the uncertainty or a lack of commitment associated with the mem-

bership and non-membership grades of x ∈ X.
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2.2. Jensen–Shannon divergence measure

Definition 2.3 [8] Let X be a discrete random variable, P and Q be two proba-

bility distributions of X, in which P = {p1, p2, . . . , pn} and Q = {q1, q2, . . . , qn}.

The Jensen-Shannon divergence between P and Q is defined by

JS(P,Q) =
1

2

[
S

(
P,

P +Q

2

)
+ S

(
Q,

P +Q

2

)]
, (9)

where S(P,Q) =
∑

i pi log
pi

qi
(1 ≤ i ≤ n) is the Kullback-Leibler divergence and∑

i pi =
∑

i qi = 1.

JS(P,Q) can also be formed as

JS(P,Q) = H

(
P +Q

2

)
− 1

2
H(P )− 1

2
H(Q),

=
1

2

[∑
i

pi log

(
2pi

pi + qi

)
+

∑
i

qi log

(
2qi

pi + qi

)]
,

(10)

where H(A) = −
∑

i pi log pi (1 ≤ i ≤ n) is the Shannon entropy.

Then, the square root of Jensen-Shannon divergence can be defined by

DJS =
√
JS(P,Q). (11)

Property 1 [7] Let P , Q and K be three arbitrary probability distributions of

X, then

(1) DJS(P,Q) ≥ 0, where DJS(P,Q) = 0 iff P = Q, for P,Q ∈ X,

(2) DJS(P,Q) = DJS(Q,P ), for P,Q ∈ X,

(3) DJS(P,K) +DJS(K,Q) ≥ DJS(P,Q), for P,Q,K ∈ X,

(4) DJS(P,Q) ≤ 1, for P,Q ∈ X.
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3. New distance measures between PFSs

3.1. Normalized Hamming and Euclidean distances for PFSs

We extend Hamming and Euclidean distances for PFSs as the normalized

distances. More specifically, the normalized distances for PFSs are proposed

that is concordant with the mathematical notion of normalization.

Let X = {x1, x2, ..., xn} be a finite universe of discourse, and A and B

be two PFSs in X, in which A = {⟨xi, AY (xi), AN (xi)⟩|xi ∈ X} and B =

{⟨xi, BY (xi), BN (xi)⟩|xi ∈ X}.

Definition 3.1 The normalized Hamming distance measure between PFSs A

and B is defined by

D̃Hm(A,B) =
1

2n
·

n∑
i=1

(|µ2
A(xi)−µ2

B(xi)|+|ν2A(xi)−ν2B(xi)|+|π2
A(xi)−π2

B(xi)|).

(12)

Definition 3.2 The normalized Euclidean distance measure between PFSs A

and B is defined by

D̃E(A,B) =

√
1

2n
· ((µ2

A(xi)− µ2
B(xi))2 + (ν2A(xi)− ν2B(xi))2 + (π2

A(xi)− π2
B(xi))2).

(13)

Definition 3.3 The normalized Chen’s distance measure between PFSs A and

B is defined by

D̃C(A,B) = [
1

2n
· ((µ2

A(x)−µ2
B(x))

β +(ν2A(x)−ν2B(x))
β +(π2

A(x)−π2
B(x))

β)]
1
β ,

(14)

where β is a distance parameter, satisfying β ≥ 1. If β = 1, it degenerates to

the Hamming distance as Eq. (12). If β = 2, it degenerates to the Euclidean

distance as Eq. (13).
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It is clear that the above distance measures satisfy the metric conditions

(cf. [9]).

3.2. A new distance measure for PFSs

In Pythagorean fuzzy set (PFS) theory, how to measure the difference between

PFSs is still an open issue. Clearly, the square root of Jensen-Shannon diver-

gence is a true metric in the space of probability distributions. Therefore, a new

distance measure for PFSs is proposed based on Jensen–Shannon divergence in

this section. Then, some essential properties of the proposed distance measure

are inferred. It has been proven that the new distance not only satisfies the

axiomatic definition of distance measure, but also is capable of distinguishing

PFSs more better and can avoid counterintuitive outcomes.

Definition 3.4 Let X be a finite universe of discourse, and A and B be two

Pythagorean fuzzy sets in PFSs(X): [0, 1] × [0, 1] → [0, 1], in which A =

{⟨x,AY (x), AN (x)⟩|x ∈ X} and B = {⟨x,BY (x), BN (x)⟩|x ∈ X}. The Pythagorean

fuzzy divergence measure, denoted as PJS(A,B) between two PFSs A and B is

defined by

PJS(A,B) =
1

2

[
S

(
A,

A+B

2

)
+ S

(
B,

A+B

2

)]
, (15)

with

S(A,B) =
∑
κ

A2
κ(x) log

A2
κ(x)

B2
κ(x)

, κ ∈ {Y,N,H} (16)

A2
H(x) = 1−A2

Y (x)−A2
N (x), (17)

where S(A,B) is the Kullback-Leibler divergence and
∑

κ A
2
κ(x) =

∑
κ B

2
κ(x) =

1.
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PJS(A,B) can also be formed as

PJS(A,B) = H

(
A+B

2

)
− 1

2
H(A)− 1

2
H(B),

=
1

2

[∑
κ

A2
κ(x) log

(
2A2

κ(x)

A2
κ(x) +B2

κ(x)

)
+
∑
κ

B2
κ(x) log

(
2B2

κ(x)

A2
κ(x) +B2

κ(x)

)]
,

(18)

with

H(A) = −
∑
κ

A2
κ(x) log A2

κ(x), κ ∈ {Y,N,H} (19)

where H(A) is the Shannon entropy.

On the basis of Definition 3.4, a new distance measure for PFSs can be defined

based on the square of the Pythagorean fuzzy divergence.

Definition 3.5 Let X be a finite universe of discourse, and A and B be two

Pythagorean fuzzy sets. A new distance measure for PFSs, denoted as Dχ(A,B)

between A and B is defined by

Dχ(A,B) =
√

PJS(A,B). (20)

The properties of the proposed distance measure can be inferred as follows:

Property 2 Let A, B and C be three arbitrary probability distributions of X,

then

P1. Dχ(A,B) = 0 iff A = B, for A,B ∈ X,

P2. Dχ(A,B) = DJS(B,A), for A,B ∈ X,

P3. Dχ(A,B) +DJS(B,C) ≥ Dχ(A,C), for A,B,C ∈ X,

P4. 0 ≤ Dχ(A,B) ≤ 1, for A,B ∈ X.

Definition 3.6 Given two PFSs A and B in a finite universe of discourse

X = {x1, x2, ..., xn}, where A = {⟨xi, AY (xi), AN (xi)⟩|xi ∈ X} and B =
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{⟨xi, BY (xi), BN (xi)⟩|xi ∈ X}. The normalized new distance measure between

A and B is defined by

D̃χ(A,B) =
1

n
·

n∑
i=1

Dχ(A,B)

=
1

2n

[∑
κ

A2
κ(xi) log

(
2A2

κ(xi)

A2
κ(xi) +B2

κ(xi)

)
+

∑
κ

B2
κ(xi) log

(
2B2

κ(xi)

A2
κ(xi) +B2

κ(xi)

)]
,

(21)

where A2
H(x) = 1−A2

Y (x)−A2
N (x) and κ ∈ {Y,N,H}.

4. Numerical example

Example 1 Suppose three PFSs A, B and C in the universe of discourse X.

Let us randomly set α = 0.50 and β = 0.60. These PFSs are given as follows:

A = ⟨x, 0.50, 0.60⟩;

B = ⟨x, 0.60, 0.50⟩;

C = ⟨x, 0.40, 0.60⟩.

By Eqs. (18)-(20), the distances can be measured as

Dχ(A,B) = 0.0693;

Dχ(A,C) = 0.0593;

Dχ(C,B) = 0.1141.

5. Conclusion

In Pythagorean fuzzy sets (PFSs) theory, how to measure the distance be-

tween PFSs properly is still an open issue. To address this issue, in this paper,
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we first proposed the normalized distance measures. Then, a novel distance

measure was proposed based on the Jensen–Shannon divergence. The new dis-

tance measure had some advantages than other distance measure methods. To

be specific, first, the PFSJS distance measure satisfied the axiomatic defini-

tion of distance measure. Secondly, the PFSJS distance measure indicated the

discrimination degree of PFSs more better. In summary, this study considers

divergence measure of PFSs, which is a main contribution in this work.
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