
1 28 November 2018 

A Factorial Identity Resulting from the Orthogonality Relation 

of the Associated Laguerre Polynomials 

Spiros Konstantogiannis 

spiroskonstantogiannis@gmail.com 

28 November 2018 

Abstract 

Plugging the closed-form expression of the associated Laguerre 

polynomials into their orthogonality relation, the latter reduces to a 

factorial identity that takes a simple, non-trivial form for even-degree 

polynomials. 
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1. Introduction 

The associated Laguerre polynomials ( )L xν
λ  are λ -degree polynomial solutions to 

the associated Laguerre differential equation 

( ) ( ) ( ) ( )1 0xy x x y x y xν λ′′ ′+ + − + =  

for , 0,1,...ν λ =  [1, 2]. If 0ν = , the associated Laguerre polynomials reduce to the 

Laguerre polynomials ( )L xλ  [1, 2]. 

The polynomials ( )L xν
λ  are given by the closed-form expression [1, 3] 
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 is the binomial coefficient, i.e. 
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The polynomials ( )L xν
λ  satisfy the orthogonality relation [1-3] 
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for λ λ′≠ . 

2. The factorial identity  

Using the closed-form expression of the associated Laguerre polynomials, the 

orthogonality integral takes the form 
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That is 
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The integral on the right-hand side is easily calculated using the Gamma function, 

since 
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and then 
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Then, since ( ) ( )! ! 0v vλ λ′+ + ≠ , the orthogonality relation of the associated Laguerre 

polynomials reduces to the following factorial identity 
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where , , 0,1,...λ λ ν′ =  and λ λ′≠ . 

If 0λ′ = , then 0n =  too, and (1) reads 
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and since 1 !ν  is non-zero, 
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The series in (2) has +1λ  terms. If λ  is odd, the series has an even number of terms, 

while m  and mλ −  have different parity, i.e. if m  is even/odd then mλ −  is 

odd/even, and thus 
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Then, the terms with 0m =  and m λ=  are opposite, as are the terms with 1m =  and 

1m λ= − , as are the terms with 2m =  and 2m λ= − , etc. Thus, in this case, the 

series consists of ( )1 2λ +  pairs of opposite terms, and the identity (2) is rather 

trivial. However, if λ  is even, m and mλ −  have the same parity, and also the series 

has an odd number of terms, thus it does not consist of pairs of opposite terms. 

Therefore, in the case where λ  is even, the identity (2) is not trivial. Moreover, 

setting 2λ λ→ , with 1,2,...λ = , the series in (2) is written as 
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and (2) takes the form 
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with 1, 2,...λ =  

Let us verify (3) for 1, 2,3λ = . 

For 1λ = , we have 
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For 2λ = , we have 

( ) ( )( )
2

0

1 1 1 1 2 1 1 1 1 3 4 1
0!4! 2!2! 4!0! 4! 2!2! 12 4 12 12 12 32 ! 2 2 !m m m=

= + + = + = + = + = =
−∑  

and 

( ) ( )( )
2

1

1 1 1 2 1
1!3! 3!1! 3! 32 1 ! 2 2 1 !m m m=

= + = =
− − +∑  

For 3λ = , we have 
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