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Abstract 
 
This letter attempts to show that the Kaluza hypothesis of the five-dimensional (5D) spacetime (in 
Klein’s interpretation and absence of the cylinder condition) is sufficient to explain the quantum 
electrodynamics (QED). It is a short version of the article “Fractal Structure of the Spacetime, the 
Fundamentally Broken Symmetry” (http://vixra.org/abs/1806.0181) written as an attempt to start 
a discussion in the physics community. To author’s regret, it has been rejected by Nature Physics on 
9/24/2018 and by arxiv.org (gr-qc) on 10/23/18 in spite of the endorsement from Dr. S. M. Kopeikin. 
 
 
 
 
 
Introduction 
 

It is a common belief that the original Kaluza hypothesis [1] adding a fifth extra [forth spatial] 
dimension to the Einsteinian spacetime model cannot lead to a self-consistent quantum theory of 
electromagnetism, even in its Klein’s interpretation [2]. Indeed, the Kaluza-Klein (KK) extensions [3] 
of the General Relativity (GR) theory remain essentially classical field theories and are not quantized 
naturally. Conversion of any given KK theory into a self-consistent quantum field theory like the 
quantum electrodynamics (QED) seems highly problematic. Moreover, taking to the account the 
experimental evidence [4] of the Bell’s inequalities’ break [5] at the “quantum scale”, the classical 
field theoretical approach may not be applied to particles’ interactions in general. 

Thus, it is likely that the classical KK approach to the unification of electromagnetism with 
gravity based on the Kaluza hypothesis cannot lead to a self-consistent quantum field theory. 
However, the classical KK approach is not the only possible way of building a quantum field theory 
based on the geometry of spacetime. The argument below is not a formal proof, it is an attempt of 
constructing of a non-classical field theory (an abelian gauge field theory) mathematically similar to 
the QED, however, founded solely on the spacetime geometry (i.e. the Kaluza’s model of 5D 
spacetime in Klein’s interpretation), in the best traditions of the GR.  

 
 
 
 



Results 
 

Let us start from the original Kaluza’s description of the 5D spacetime disregarding the 
cylinder condition [1]. Briefly, each world point of the 4D (Einsteinian or ordinary) spacetime 
“contains” an extra spatial dimension represented by a microscopic 1D circle (S1) of a subatomic size 
(according to the Klein’s interpretation [2]). An additional geometrical condition for the 5D 
spacetime model is that each extradimensional S1 is uniform and a maximal section. 

Let us assume that any elementary electric charge (e.g. electron) induces 5D spacetime 
curvature, just like any massive object induces 4D spacetime curvature. It is suggested that the 5D 
spacetime geometry is the one and only origin of the particle movement (the Einsteinian 
understanding of force). The three main differences of the charge-induced curvature compared to 
the mass-induced curvature should be taken to the account: 1) the effect of mass appears in the 4D 
spacetime only, whereas electric charges influence both the 5D spacetime (directly) and the 4D 
spacetime (indirectly); 2) the latter effect is dual, i.e. one type of charges induces positive geometric 
5D spacetime curvature, and another type induces negative curvature; 3) due to the compact size 
of the fifth dimension [2] the 5D spacetime geometry cannot be directly accessed by the observer 
(as any elementary 5D object can only be accessed as a 4D projection, a 4D world point). Let us call 
this phenomenon the undetectability condition.  

Let us describe the movement of a point-like charged test particle (e.g. electron). For the 
observer, the particle movement in the 5D spacetime is inaccessible due to the undetectability 
condition, and hence, it should be somehow translated either into the movement in 4D spacetime 
or into the movement in 3D space and absolute time. The latter description is preferable for 
simplicity reasons. Notably, as the fifth dimension size is presumably microscopic [2], one cannot 
describe the charge-induced curved local 5D spacetime with a classical field (e.g. by a KK GR 
extension) due to the fifth dimension (i.e. the fourth spatial dimension) inevitably collapsing into a 
point. However, instead of describing the actual 5D spacetime curvature in R4+1 (like all the KK 
models do [3]) one could describe the 4D-space curvature (corresponding to the 5D spacetime 
curvature with absolute time) as an additional parameter of the ordinary 3D space (corresponding 
to the 4D spacetime with absolute time). Thus, the 4D-space curvature should be described by a 
scalar field in R3 (assuming the global 3D space is R3, for simplicity). In addition, it is assumed that 
the particles always move by the geodesics in the 4D space (the geodesic condition). If all possible 
4D (spatial) geodesics can be translated into 3D geodesics, one would be able to describe the 4D-
space curvature as a field in R3, the simplified global 3D space.  

Thus, if the extradimensional curvature governs the charged particle movement, the former 
can be described by a scalar field in R3 with the two conditions: 1) scalar 4D-space curvature is 
described by a scalar field, and 2) all possible 4D-space geodesics are properly translated into 3D-
space geodesics. As there are two types of electric charges, it is logical to assume that one type 
induces positive geometrical curvature, and another type induces negative geometrical curvature. 

 First, let us consider the case of the positive 4D spatial curvature (time curvature is 
disregarded). If an elementary charge induces a stable curvature of the flat 4D space, this local space 
can be modeled by a small size hypersphere S4. Although the global 4D space cannot be modeled by 
a hypersphere (presumably, the global 4D space topology is S3 x S1), the local 4D space perfectly can, 
if its size does not exceed the extra dimension’s diameter. In reality, this curved space may have 
some curvature gradients and shape imperfections disregarded for simplicity reasons. Let us assume 
this local space as an ideal hypersphere embedded in flat R5. Next, one needs to find a proper 



transition from this local S4 geometry to the global (simplified) geometry, R3. First, S4 can be mapped 
to S3, the intersection of S4 with hyperplane R4 containing the center of S4. The latter condition 
assures that S3 is the geodesic of S4 and is predetermined by the Kaluza model’s additional condition 
(see above). Then, the S4 original scalar curvature lost in the transition can be described as a scalar 
field in each point of S3. The important property of this local S3 is that it is isometric to the global 
(real) space, which is also assumed as S3. Thus, one can substitute the local space with the global 
space preserving the geodesic condition. Then, the extradimensional spatial scalar curvature can be 
described by some scalar field in S3 manifold. 

Next, one can use the stereographic projection and translate S3 into RP3 providing the scalar 
field description in the ordinary (simplified) space, R3. However, this scalar field depends on the 
inner parameter (curvature) of the 4D space, which cannot be described with a real field due to the 
undetectability condition. Therefore, one needs to implement a complex scalar field. Ideally, S3 
should be translated into a complex manifold that 1) accounts for the periodicity (circle symmetry) 
of the extra spatial dimension, 2) preserves the geodesic condition, and 3) is isometrically 
embeddable in R3 space. That can be done, if one replaces S3 with a unit sphere S(C2) in the complex 
coordinate space C2 and uses the principal Hopf bundle [6] over the complex projective space: U(1) 
→ S(C2) → CP1. The projection map: S(C2) → CP1 gives a Riemannian submersion with totally 
geodesic fibers isometric to U(1). This Hopf bundle is a generalization of the geometrical fibration: 
S1→ S3 → S2. As the Hopf fibration is known to assign a great circle of S3 to each point on S2, it maps 
all the geodesics of S3 onto S2, which in turn is projected to planar CP1, hence preserving the geodesic 
condition. Thus, CP1 gives the simplest possible type of the scalar field that can be used to describe 
the local extradimensional curvature (i.e. the original S4 scalar curvature) in global space, R3 (flat 3D 
space). 

A similar construction can be used with the hyperbolic pseudosphere H4, in case the 
elementary charge is assumed inducing negatively curved local 4D space. With similar reasoning, 
the H4 curvature can be described by a scalar field in CP1 with an opposite sign compared to the case 
above. Briefly, one can take the intersection of H4 and R4, which again gives S3. The H4 original 
curvature lost in the transition can be described by a scalar field in each point of this S3. Assuming 
the negative extradimensional curvature counteracts the positive curvature, the second type scalar 
field should have an opposite sign compared to the case above (positive curvature). The Hopf 
fibration: U(1) → S(C2) → CP1 again translates S3 (replaced by S(C2)) into the complex projective 
space preserving the geodesic condition. Finally, one obtains the “negative” type complex scalar 
field (with an opposite sign) describing the opposite elementary charge action in the global 
(simplified) 3D space, R3. 

Thus, the extradimensional curvature assumed governing the electromagnetic field can be 
described with a complex scalar field having two counteracting components, the “positive” and the 
“negative” fields. This two-component complex scalar field has a Fubini-Study metric (which is an 
Einsteinian metric), and an action: 

 
S = ∫d4x(∂µϕ∗)(∂µϕ)−V(|ϕ|)                                  (1) 

where ϕ acts as the “positively” charged field, ϕ∗ acts as the “negatively” charged field, and V(|ϕ|) is 
the complex scalar field potential.  

Further derivation of the equations of motion is rather trivial. By the construction, action (1) 
has a global symmetry under the group U(1), i.e. ϕ → eiα ϕ, which can be translated to a local 



symmetry by introducing a gauge field with the gauge covariant derivative Dµϕ → eiα(x)Dµϕ, where 
e is the elementary electric charge. One can find the gauge transformation-invariant form of the 
above-stated action, add the gauge field kinetic term defined by the transformation group U(1), 
FµνFµν (where Fµν = ∂µAν−∂νAµ) and write the equations of motion with respect to the gauge field. 
Thus, the scalar field dynamics can be given by the Lagrangian density: 

 
L = (Dµϕ∗)(Dµϕ)−V(|ϕ|)−1/4 FµνFµν                    (2) 
 
The equation (2) is similar to the QED Lagrangian, except it describes spinless charged scalar 

fields, not spin ½ leptons. The spin introduction is explained below. 
A point-like test particle’s movement in the global 4D space is governed by the geometry of 

local space, S4. The main alteration type of this local space is the extradimensional curvature. In the 
3D space, this curvature is inaccessible by the observer and is observed only indirectly, as the 
electrostatic field. This geometrical alteration is already taken care of by the equation (2). However, 
assuming particles are in constant motion in local S4, one should take to the account an additional 
geometric alteration, torsion. The motion in S4 can be approximated as having the two components: 
a “visible” movement in the ordinary (simplified) 3D space, R3 and a “hidden” movement along the 
special extra coordinate. For the observer, the latter appears as a constant “invisible” spin along the 
microscopic S1. This spin is the origin of the 4D space torsion indirectly observed in the 3D space as 
the magnetic field. This extradimensional torsion requires one to introduce an additional correction 
for the scalar field description given by the equation (2). 

Although the spin can have infinite possible directions in local 4D space (in S4), for the 
observer, all those directions are reduced to just two, clockwise and counterclockwise (or “up” and 
“down”), due to the separate accessibility of the “visible” movement in R3 and the “hidden” spin 
along the microscopic S1. As there are two parts of the complex scalar field and two possible spin 
directions, one must introduce certain corrections to equation (2) accounting for the proper spin 
direction and making the right commutation. The proper corrections are made by the Dirac matrices 
and replacing the field ϕ to the bispinor field ψ. Then, the Lagrangian (2) takes the form: 

 
L = ψ̅ (iγµDµ)ψ −V(|ϕ|) −1/4 FµνFµν                      (3)    

where ψ is a bispinor field, i.e. electron-positron field; ψ ̅≡ ψ†γ0 is the Dirac adjoint; and γµ are the 
Dirac matrices. Notably, the gauge field potential V(|ϕ|) is now depends on both 4D-space curvature 
and 4D-space torsion, and its minimum V(|ϕ|)min occurs at |ϕ| ≠ 0 in the presence of electric charge, 
due to the initial assumption that the charge is the origin of the extradimensional geometrical 
alterations. Hence, the gauge field behaves as a massive field, and its mass is proportional to the 
lepton’s ground state mass-energy m, i.e. conventional electron’s mass. Thus, the potential can be 
expressed as V(|ϕ|) = ψm̅ψ. After the proper replacement, equation (3) takes the final form of the 
QED Lagrangian: 
 

L = ψ̅ (iγµDµ−m)ψ −1/4 FµνFµν                             (4)   
 
      
 
 



Discussion 
 

The above-presented reasoning shows that the 5D spacetime geometry hypothesized by 
Kaluza in 1921 [1] in the Klein’s interpretation [2] is sufficient for constructing a group U(1) abelian 
gauge theory mathematically identical to the QED. The theory can be directly quantized in the same 
way as the QED (e.g. using the S-matrix technique). Notably, the quantum nature of the resulting 
theory is predetermined by the special properties of the fifth [forth spatial] dimension (microscopic 
size, closeness, and simple connectedness). The undetectability condition explains the necessity to 
use a complex scalar field, not a real field for the descriptions of elementary charges’ dynamics. Due 
to this condition, parameters related to the extra-dimensional geometry, i.e. the electric charge of 
the bispinor field, the Compton wavelength, and consequently the Planck constant, cannot be 
determined by the theory and should be added ad hoc in accordance with the experimental values. 

The unification with gravity comes quite naturally with the V(|ϕ|), the complex scalar field 
potential presently known as the Higg’s field. The latter can be interpreted as a geometric alteration 
of the 4D (ordinary or Einsteinian) spacetime, the “visible” part of the 5D spacetime. Assuming that 
alterations of the 5D spacetime are directly induced by the electric charges, the Higg’s field 
represents the “induced mass”, i.e. the 4D spacetime geometrical alterations induced by the charges 
indirectly. Assuming the charges are in constant motion along the round extra coordinate, their 
dynamics (for the observer) always has a certain “hidden” periodicity. Thus, an elementary charge 
must have certain attributes of a wave, which, however, can only be described by complex-valued 
parameters due to the undetectability condition.  

Considering these facts, it seems reasonable to conclude that the original Kaluza hypothesis 
(in Klein’s interpretation and absence of the cylinder condition) is fully sufficient to explain the 
electromagnetism. In general, this means that the 5D spacetime geometry may be sufficient to 
describe the electromagnetism, as the 4D spacetime geometry sufficiently explains the gravity. 
Moreover, in case the Kaluza spacetime model is extended with three additional more compact 
extra spatial dimensions, it seems possible that a similar approach can lead to the nuclear forces’ 
descriptions solely based on the spacetime geometry.  
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