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This paper modifies two significant points of existing quantum electrodynamics. First, the image of
a virtual photon is replaced with a real one, i.e., till date, we consider virtual photon as being capable
of exchanging its energy between two particles along with self interaction, and that it is a transient
fluctuation. We shall change this definition such that what we call “an electron” would include
two bare electrons and these two would interact within a real photon. The virtual photon in this
study is the same as the real photon which is not to observe, but difference from traditional virtual
photon because the re-imaged virtual photon would exist continuously not temporally. Second,
it is assumed that the bare electron is a perfect black body. To meet the constraints of charge
conservation, a virtual photon must include two bare electrons. There is a temperature gradient
between the two because the two particles alternate between behaving as emitters and absorbers.
The proposed study extends this model by considering that an electron comprises two blinking bare
electrons and at least one real photon by exchanging the energies within the three. Consequently,
we attempt to create an electron model that exhibits spinor behavior by setting and modifying a
trigonometric function which could periodically achieve the value of zero-point energy.

I. INTRODUCTION

One of the reasons to generate the ultraviolet diver-
gence is self-energy. In quantum electrodynamics (QED),
it is considered that an electron has self-energy due to the
interaction within itself or between a surrounding field.
Superstring theory and renormalization theory have been
developed to avoid the difficulties associated with diver-
gent amplitudes in the perturbation theory.

In general, the problem of ultraviolet divergence occurs
while calculating integral of the amplitudes and propa-
gators while interacting with its self-energy. In other
words, a virtual photon with a short wavelength causes
this divergence. There exist some formulas for calculat-
ing the self-energy. These formulas include the radius of
an electron (r0) in its denominator. To make r0 shorter
(r0 → 0), its total value approaches ∞ because r0 stays
in the formula’s denominator, as depicted in Fig. 1.

Infinity was caused by the interaction of an electron
within itself, as shown in Fig. 1. If a model wherein the
distance between a particle before and after the inter-
action “non-zero” is developed, the divergence could be
avoided to some extent. From this viewpoint, we treat
three particles with a certain relation with each other as
one free electron’s vibration.

Herein, we propose a model which would avoid the
electron’s interaction of electron within itself. To restrict
the interaction range, we do not consider the interaction
between the surrounding field and the particle owing to
the limitation of thermodynamics.

Comparing a system that is interacting within itself
to an isolated system is possible. On the contrary, we
compare a system interacting within itself and with the
surrounding field to a closed system. In this study, we
have focused only on the isolated system.
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FIG. 1. Self-energy diagram in QED and that in the modified
model. Both diagrams (a) and (b) show the same example
of “an electron.” The intention of transparency at regular
intervals with the blue and green lines will be explained in
Section III D.

II. METHODS

We begin to investigate modeling of an electron by con-
sidering energy conservative harmonic oscillators, which
defined trigonometric functions that periodically achieve
zero-point energy. This oscillator model is different from
the classical harmonic oscillator because it includes three
terms of oscillators. We will find these three terms ob-
tain two spinor and one vector particle according to these
phases (III A). Then, we would recognize a system as
a whole particle include three oscillators by considering
three particles. We shall call the system an electron.

The first two particles are bare electrons as perfect
black bodies and the second one is the virtual photon.
By having a certain relation among these three particles,
it seems successful to get rid of the “zero distance” of
interacting by itself. The two bare electrons apart from
a distance of Compton wavelength presumably. A time
course of these three particles would help us explain the
particle oscillation in a better manner by rearranging the
swing of the virtual photon between the two bare elec-
trons.
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To maintain the energy conservation and to generate
energy which vibrates the particle, we consider the two
bare electrons as a perfect black body. Despite significant
experimental efforts, a perfect black body [1] has not yet
been found in nature [2]. This study, not only proves that
an electron is a perfect black body but assumes that this
is the case and build upon this assumption to contribute
to a flourishing branch of physics. It is natural to think
that the perspective of an electron is not a perfect black
body. Nevertheless, remarking our view of the electron’s
inner structure allows us to imagine this elementary par-
ticle as consisting of thermodynamic oscillators.

An internal structure for the electron is suggested. It
is assumed that an electron consists of two bare electrons
with both being black bodies. This reorganization con-
stitutes a new image of the electron. These two bare
electrons exchange thermal energy in the form of radi-
ation through virtual photons. This is possible because
those two bare electrons are inside of the virtual photon.
The two black bodies exchange thermal energy through
the virtual photon as a real photon.

Since this study mentions that the individual particles
have a moment of appearing two bare electrons of ther-
mal energy within one virtual photon. In this model,
we would recognize the particle that two bare electrons
within the virtual photon as an individual electron.

Hence, we shall distinguish an electron as an individ-
ual particle from a bare electron or two bare electrons
within a virtual photon. In this study, the word “an/the
electron” shall be used a synthesis particle of a virtual
photon including one or two bare electrons. We shall
distinguish between “an/the electron” and “a/the bare
electron” (See Fig. 2).

An electron’s structure is as follows. First, consider
there is a tiny thermal source in the center. This thermal
spot, named bare electron in this study, can be moved
by radiation, however, it stops time and fixes it in the
center of the electron. Next, consider a real photon that
surrounds the bare electron. This real photon has an
electromagnetic interaction with the bare electron. Since
the system is isolated, this real photon with Compton
wavelength is unobservable from the outside. So, it can
be said to be a virtual photon at that point.

While the two black bodies emit and absorb thermal
energy, they do not do so in an equal proportion ow-
ing to phase lag between cosine and sine powered four,
as shown in Section III B. By allocating sine and cosine
function for emitter and absorber with Fig. 6 in Section
III C, respectively, seems to work in this model well. The
total energy does not change because this model uses an
isolated system. By arranging the energy conservation
according to Classical Dynamics, we assigned a pair of
bare electrons to the sine and cosine functions.

On studying the sum of its thermal energy and time-
dependent changing value, we found that it alone does
not satisfy the law of conservation of energy. This phe-
nomenon will be explained with Fig. 4 in Section III B.
To ensure that energy is conserved, the difference in the

FIG. 2. Image of an/the electron in this study.

total thermal energy by phase shall be transported by
the virtual photon in the form of kinetic energy.

However, in this electron model, we reinterpret this
energy-absorption process by as follows: the energy radi-
ated from the emitter would absorbed by the absorber.
Since, the value of these two types of energy would not
be equal, if the value of the emittance energy is larger
than that of absorbance, the excess energy would ab-
sorbed by the virtual photon through the conversion of
thermal energy into kinetic energy. Furthermore, this
model would make the mass of an electron substitutable
from off mass shell to on mass shell by the following
method: a) consider a bare electron thermal spot as po-
tential energy and b) real photon, which we already have
recognized as a virtual photon, is considered as having
actual fluid-like existence.

It will be shown that the virtual photon moves in space
with its velocity changing from zero to maximum in a
manner similar to a harmonic oscillator. The velocity is
generated from the energy released by the velocity po-
tential. The temperature gradient forms this potential.
This gradient, in turn, arises from the energy difference
between the two bare electrons.

These two bare electrons shall exist in a spatially sep-
arated position based on the Pauli Exclusion principle,
therefore these bare electrons as the thermal potential en-
ergy compose a scalar field which could be stated by the
temperature gradient (IV B). This study postulate that
the scalar field has velocity potential (IV A) and that the
centering force captured the virtual photon would move
along with the scalar field by having a value of velocity.
This study shows that the velocity potential changes with
time; the changing velocity of the virtual photon is de-
scribed by the velocity potential as shown in Eq.(IV.8),
which shows that the virtual photon has non-zero mass.

Summarizing, this electron model would be able to ex-
clude of the effect of self-energy interaction. As shown in
Section III D, the two black bodies exchange their emit-
ter/absorber states by phase. We study the effect of self-
energy interaction in this model. If a bare electron in-
teracts through self-energy, then the bare electron would
be in both, the absorber and emitter phases simultane-
ously; because the electron emits energy, it should be
absorb energy simultaneously.



3

III. MODELING

A. Energy conservation and zero-point energy

In this subsection, we investigate the development of
a new model based on the law of conservation of energy
and study it under a Classical Dynamics (CD) frame of
reference. In CD, mechanical energy is calculated as the
sum of potential energy and kinetic energy:

ECD = KCD + UCD

=
1

2
mω2

0A
2
(
cos2(ω0t+ δ) + sin2(ω0t+ δ)

)
=

1

2
mω2

0A
2 . (III.1)

where Aω0 is the initial velocity. These processes are
shown in Fig. 3.

Let us consider an electron that is at the ground state
of an ideal harmonic oscillator. The total energy of the
electron is E0 for hν. We modify the energy conservation
equation in CD to the following equation:

E0 = EA + EB , (III.2)

where E0 = hν is total energy of an electron in the
isolated system. EA and EB each represent an as yet
unidentified type of energy.

We utilize a new equation to introduce lead zero-point
energy into this system; the temporal change of the en-
ergy of EB can be described by the following equation:

EB =
1

2
E0 sin2(ωt) . (III.3)

Eq. (III.3) indicates another method for introduc-
ing zero-point energy; this method uses thermodynamics.
This study considered an isolated system; therefore, we
could set this system as the ground state. Under such a
circumstance, it would be appropriate to substitute E0

for hν in Eq. (III.4):

E0 − EB = E0

(
1− 1

2
sin2(ωt)

)
= hν

(
1− 1

2
sin2(ωt)

)
.

(III.4)

The electron in this system could take a value of 1/2hν,

1

2
hν ≤ E0 − EB = EA ≤ hν . (III.5)

In the phase sin2(ωt) = 1 in Eq. (III.4), EA takes the
minimum value

FIG. 3. Energy conservation during a harmonic oscillation in
CD.

EA =
1

2
hν . (III.6)

Considering EB and modifying it

EB =
1

2
E0 sin2(ωt)

=
1

2
E0

(
1− cos2(ωt)

)
= E0 − E0

(
1

2
+

1

2
cos2(ωt)

)
= E0 − E0

(
1

4
+

1

2
cos(ωt) +

1

4
cos2(ωt)

)
− E0

(
1

4
− 1

2
cos(ωt) +

1

4
cos2(ωt)

)
= E0 − E0

((
1 + cos (ωt)

2

)2

+

(
1− cos (ωt)

2

)2
)

= E0 −
(
E0 cos4

(
ωt

2

)
+ E0 sin4

(
ωt

2

))
.

(III.7)

Comparing the results thus obtained with that in Eq.
(III.2), we find that the sum of second and the third terms
on the right side of Eq. (III.7) is equal to EA. We obtain
the corresponding expression through substitution:

EA = E0 − EB

= E0 cos4
(
ωt

2

)
+ E0 sin4

(
ωt

2

)
.

(III.8)

Assuming EA = EA1 + EA2, we allot the first term
of the right side of Eq. (III.8) to EA1, and the second
term of the right side Eq. (III.8) to EA2. So far, we
have acquired three oscillators that may be described as
follows:

(Oscillator 1) : EA1 = E0 cos4
(
ωt

2

)
, (III.9)
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(Oscillator 2) : EA2 = E0 sin4

(
ωt

2

)
, (III.10)

(Oscillator 3) : EB =
1

2
E0 sin2(ωt) . (III.11)

In the following subsection, we determine the relation-
ship between three oscillators.

B. Applying the first law of thermodynamics

Traditionally, a harmonic oscillator has two kinds of
energy, kinetic and potential energy. In this model, we
used thermal energy instead of potential energy. We use
the first law of thermodynamics as a special case for con-
sidering internal energy: “An isolated system does not
allow for passage of matter or energy into or out of the
system” [4].

Let us focus our attention on an electron model com-
posed of one virtual photon and two spinors of bare elec-
trons as an “isolated system.” That is, the electron does
not allow the spinors to leave or to pass energy outside
of the photon.

The first law is expressed using the total amounts of
work, w, and thermal energy, q:

U = q + w . (III.12)

“If energy cannot move in or out, then the total en-
ergy U of the system does not change” [4]. This iso-
lated system is “adiabatic” with respect to the surround-
ings. However, the inside is not adiabatic, because two
differential-phase spinors are present. In this situation,
q 6= 0. Let us apply the isolated system assumption to
this electron model. Thermal energy, q, is equal to T ,
giving us

U = T + w . (III.13)

However, this model does not deal with pair production
from two-photon interaction. The virtual photon does
not vanish with the passage of time.

We interpret the above formula as follows:

(Etotal) = (Epotential energy) + (Ekinetic energy) . (III.14)

In this study, we shall consider the bare electron’s ther-
mal energy as potential energy in the following manner:

(Etotal) = (Ethermal energy) + (Ekinetic energy) . (III.15)

We shall pay attention to whether the virtual photon
maintains this relation while obeying energy conserva-
tion throughout quantum oscillations. In other words,

we examine an interaction by real photons without con-
sidering the virtual-photon cloud around an electron. We
proceed to explore further connection between the above
equations and the first law of thermodynamics as shown
below:

(Etotal) = (Ebare electron) + (Evirtual photon) . (III.16)

This conclusion could make the model simply distin-
guishable. Bare electrons absorb thermal energy, whereas
the photon carries kinetic energy. Let us apply these roles
to Eq. (III.13); we have Uisolated system,

(Etotal) = (Uisolated system)

= TP.E. + γ∗K.E. .
(III.17)

where TP.E. is thermal potential energy and γ∗K.E. is the
kinetic energy of the virtual photon.

Moreover, the bare electron would possess thermal en-
ergy and not kinetic energy because, as mentioned pre-
viously, the bare electron would appear and disappear at
the same point. A material point of the bare electron has
no sense of continuous spatial moving velocity.

However, the rest mass of an electron is expressed in
joules. Similarly, a bare electron has bare energy, and
we express its energy using in the unit kelvin (K) to em-
phasize modeling the quiescent energy of electrons in the
category of thermodynamics.

T0(time=0) (K) = m0 (eV) , (III.18)

where m0 is the particle’s rest mass, eV is electron volt
unit.

As mentioned in subsection III A in Eqs. (III.9 to
III.11), we obtain the energies of the three oscillators
using the concept of classical energy conservation. Here,
we assume oscillator 1 would be a vector particle because
it has ωt phase. As well as oscillator 1, assume oscilla-
tor 2 and 3 would be spinor particles because they have
ωt/2 phase. So, let us allot the energies of these oscil-
lators to the energy of a virtual photon, γ∗K.E., and the
energies of bare electrons, Ee1 and Ee2, as shown in Eqs.
(III.9 to III.11). The relationship between these oscilla-
tors and the total energy in the isolated system, E0 for
hν, is shown in Fig 4. We obtain the following:

(Oscillator 1) : Te1 ≡ EA1

= E0cos4
(
ωt

2

)
,

(III.19)

(Oscillator 2) : Te2 ≡ EA2

= E0cos4
(
ωt

2

)
,

(III.20)
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(Oscillator 3) : γ∗K.E. ≡ EB

=
1

2
E0 sin2(ωt) .

(III.21)

Maintaining energy conservation through time-
dependent oscillations, the abovementioned equations
could be arranged as follows.

E0 = EA + EB

= EA1 + EA2 + EB

= E0

(
cos4

(
ωt

2

)
+ sin4

(
ωt

2

)
+

1

2
sin2(ωt)

)
= Te1 + Te2 + γ∗K.E. .

(III.22)

In order to proceed further, we would be able to gener-
ate another CD-based harmonic oscillation model which
maintains energy conservation through the simultaneous
use of three oscillators. These relationships are shown in
Fig. 4.

C. An electron contains black bodies

In this subsection, I interpret the bare electron as a
black body.

To simplify the model, we assume the following.

Assumption 1: A bare electron is a perfect
blackbody and radiates its energy harmoni-
cally through time-dependent oscillation.

We postulate this black body oscillates time depen-
dently, according to an arbitrarily chosen cosine function:

Te1 = E0 cos4
(
ωt

2

)
(III.23)

There is no element cos(kx) in the above equation,
because we assumed the bare electron to have a fixed
position and not to oscillate back and forth in space.
This immovability is shown using the delta function:

Te1 =

∫
all space

E0 cos4
(
ωt

2

)
δ3(r−a)dxdydz . (III.24)

The aforementioned equation indicates a thermal spot
that time-dependently exhibits a change in its thermal
energy magnified by the fourth power of cosine at the
fixed position a.

To simplify the model, assume one-dimensional coor-
dinates and set the center of the bare electron at (x = 0).
The change of energy of the bare electron with respect
to time is shown in Fig. 5.

FIG. 4. Energy conservation during the harmonic oscillation
of three particles as presented in CD. Blue and green lines
show a pair of bare electrons; Yellow line shows the energy of
the virtual photon.

FIG. 5. Plots of Te1 = E0 cos4
(
ωt
2

)
, which is the change in

the energy waveform with a bare electron at location x = 0.

Figure 5 shows that the bare electron black body has
two phases. One is absorbing and the other is emitting.
cos4 ωt/2 is classified into two phase by reference to Fig.
6. As a bare electron is a spinor, the same curve is ob-
served when plotting f(θ/2) = cos4 ωt/2 or E0 cos4 ωt/2
with E0 = 1.

Except stationary points on f(θ/2) = cos4 ωt/2, if
f ′(θ/2) = −2 cos3(ωt/2) sin(ωt/2) were minus, while
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FIG. 6. Plots of cos4(ωt
2

) and −2 cos3(ωt
2

) sin(ωt
2

)

FIG. 7. Plots of Te1 = E0 cos4(ωt
2

) (blue) and Te2 =

E0 sin4(ωt
2

) (green) with E0 = 1.

0 < ωt/2 < π in Fig. 6, the energy of the black body
is decreasing. This is the emittance phase. On the con-
trary, if f ′(θ/2) = −2 cos3(ωt/2) sin(ωt/2) were positive,
the energy of the black body would continue to increase.
This is the absorption phase.

D. The necessity of the paring oscillator

According to Figs 5 and 6, the bare electron energy
is zero when θ/2 = π. If the bare electron vanished at
θ/2 = π, this would allow a virtual photon without a
bare electron to exist, contradicting charge conservation,
since photons cannot carry any electric charge.

To maintain the charge conservation, we take in an-
other bare electron. These two electrons act as both
emitters and absorbers in turn. To meet the require-
ments for simultaneous emission and absorption, assign
Te1 in Eq. (III.19) and Te2 (III.20) which have different
phases, to each.

(Oscillator 1) : Te1 = E0 cos4
(
ωt

2

)
,

(Oscillator 2) : Te2 = E0 sin4

(
ωt

2

)
.

(III.25)

Set the two electrons as paired oscillators with Te1 =
E0 cos4 ωt/2 and Te2 = E0 sin4 ωt/2. Plug 1 into Te, and
take a look at Fig. 7.

While 0 < ωt/2 < π in Fig. 7, one of the bare elec-
trons Te1, is in the emitter phase. On the other hand,
Te2 is in the absorber phase. Te1 emits energy by radia-
tion, which is in turn absorbed by Te2. Moreover, these

FIG. 8. An electron and its inner structure

radiation exchanges can occur within the virtual photon.
Radiated energy propagates via electromagnetic waves,
thereby reinforcing these exchanges.

It is important that the absorber does not always ab-
sorb all the thermal energy that is simultaneously emit-
ted by the emitter. The unabsorbed difference between
the emitter and the absorber is absorbed by the virtual
photon as kinetic energy, and it becomes the energy ob-
tained by the virtual photon. The unabsorbed difference
in thermal energy is the energy used to drive the virtual
photon. This point will be mentioned in the subsection
IV A.

E. Modification of a virtual photon

In this section, we will design a free electron that com-
prises three particles: one virtual photon and two bare
electrons. Suppose a magnetic field of magnitude H = 0.
Therefore, there is no potential energy except thermal
potential energy of the bare electrons. Furthermore, for
the purposes of this electron model, change the concept
of a virtual photon into a real one. In this paper, the term
“a virtual photon” shall be used to describe a real photon
captured by a bare electron with a force represented by
the coupling constant of α shown in Fig. 8.

To push the model forward, let us make another as-
sumption.

Assumption 2: Reinterpret a virtual photon
as a real photon captured by the central force
of a bare electron.

Therefore, the virtual photon captured by the electro-
magnetic force does not emit any electromagnetic radia-
tion and has no oscillation at this moment. By this logic,
a virtual photon can be replaced by a real photon spread
over a certain length. Still a bare electron has radius
< 4.3−19m [3].

Thus, term virtual photon should be modified in such
a way that it refers to a real photon captured by the bare
electron, which exists all the time.

To clarify this free electron model, I explain that only
the bare electron has potential energy in a subsequent
section. That is, the virtual photon has all kinetic energy
and the bare electron has all potential energy.
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FIG. 9. Plots of the bare electrons apart from one another.

F. The Interval between the Two Bare Electrons

The second bare electron acting as absorber would
emerge on the edge of the virtual photon, because the
two bare electrons exert repulsive forces. Both the first
and second bare electrons as well as a virtual photon
would consist of an electron as classically recognized.

To simplify the model, regard the virtual photon as
a sphere with radius of the Compton wavelength. Fur-
thermore, restrict the bare electrons Te1 and Te2, which
are condensed matter of thermal energy, to appear and
disappear at the same point respectively.

To investigate the relationship between the photon and
the two bare electrons, divide the bare electron Te in Eq.
(III.24) into Eq. (III.26), with initial value x = +a, and
Eq. (III.27), with initial value x = −a:

Te1 =

∫
all space

E0 cos4
(
ωt

2

)
δ(x− a)dx , (III.26)

Te2 =

∫
all space

E0 sin4

(
ωt

2

)
δ(x+ a)dx . (III.27)

Figure 9 is a three-dimensional perspective based on
Fig. 7. The light green circle at x = −a indicates the
outer frame. That means that the paring oscillator, Te2,
does not have any thermal energy at t = 0. Te1 has all
thermal energy in the system at t = 0.

IV. DISCUSSIONS

A. Velocity potential

In this section, we examine how the virtual photon is
captured by the bare electron to move and work in the
isolated system. Our expected image is that of a simple
harmonic oscillator as shown in Fig. 10.

Before looking into the motion by phase, let us check
the two fixed states of the positional relationship between
the virtual photon and a pair of two oscillators.

These two states have two phases. One comes from
cos4 ωt/2 = 1 and the other comes from sin4 ωt/2 = 1.

FIG. 10. Schematic of the manner in which a virtual pho-
ton can be moved as a simple harmonic oscillator with the
emergence and disappearance of bare electrons at fixed points
x = a and x = −a. The two bare electrons would not change
their respective spatial positions, and only the thermal ener-
gies of both the bare electrons are observed to change with
time.

For cos4 ωt/2 = 1, for example, at t = 0, the center of
the virtual photon stays at x = a in Fig. 11.

Here, we add a new assumption.

Assumption 3: The central force belonging to
the two bare electrons moves along the tem-
perature gradient.

Assume that the virtual photon moves along with the
vector field. In other words, the central force arising
from the two bare electrons moves along with the velocity
potential.

On the basis of the above assumption, the virtual pho-
ton captured by the central force of the electron also
moves along the temperature gradient.

Previously, the virtual photon has been discussed in
terms of heat conduction. Henceforth, the virtual photon
will be modeled in terms of velocity potential.

We consider an isolated system, which is energy con-
servative and has a field of conservative force. In such a
field, the potential can be calculated by grad φ. Further,
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FIG. 11. The position of the virtual photon at t = 0. Bare
electrons at two points, −a and a, are separated by a distance
of 2a.

the temperature gradient that is considered is the scalar
potential,which can generate the velocity potential.

To advance this model, it is important to find a re-
lation between the virtual photon and velocity potential
generated by a temperature difference between Te1 and
Te2.

However, two conditions should be satisfied to use the
velocity potential:

• The flow of the fluid should be irrotational.

• The fluid should be a perfect fluid.

Let us check the first condition; the virtual photon
moves along with the x-axis, so

ωvorticity =
∂v

∂x
− ∂u

∂y
= 0 , (IV.1)

or

ωvorticity = rot(grad (Te2 − Te1)) = 0 , (IV.2)

meaning that a specific velocity potential exists because
of the vorticity being zero.

Let us now check the second condition. Here, we pos-
tulate that the virtual photon is a perfect fluid, and will
discuss this topic section IV C on page 9. Thus, it can be
treated as a perfect fluid.

As the virtual photon in this system satisfied the first
and the second conditions, we could further proceed with
modeling. In other words, it is important to clarify how
the virtual photon behaves on a one-dimensional veloc-
ity potential. It would be possible that the temperature
gradient generates this velocity potential.

u = gradφ . (IV.3)

As a result, there is a room to put the virtual photon
into the temperature gradient between Te1 and Te2.

FIG. 12. Relation between the temperature gradients and
bare electrons in three dimensions depending on the phase of
the electrons.

B. Temperature gradient

In this section, we consider the temporal variation in
the temperature gradient. The temperature gradient be-
tween the two bare electrons is calculated as

grad Te = grad (Te2 − Te1) . (IV.4)

Substitute the energies of the two thermal oscillators
Eq. (III.25) into Eq. (IV.4), and calculate the temper-
ature gradient. This is done not only to calculate the
temperature gradient but also the temporal change in the
temperature gradient in Eqs. (IV.5) and (IV.6). Since
the values of thermal energy at both thermal spots vary
with time, the temperature gradient changes with time.
Let the previous ωt is θ,

grad Te1 =
d

dθ

(
E0 cos4

(
θ

2

))
= −2E0 cos3

(
θ

2

)
sin

(
θ

2

)
. (IV.5)

grad Te2 =
d

dθ

(
E0 sin4

(
θ

2

))
= 2E0 cos

(
θ

2

)
sin3

(
θ

2

)
. (IV.6)

grad Te1 and grad Te2 include only time derivative
terms; their space derivatives are zero, because the bare
electrons do not change in position with time. That is,

grad (Te2 − Te1) = 2E0 cos

(
θ

2

)
sin3

(
θ

2

)
+ 2E0 cos3

(
θ

2

)
sin

(
θ

2

)
= 2E0 cos

(
θ

2

)
sin

(
θ

2

)
= E0 sin θ . (IV.7)
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FIG. 13. Plots of uγ∗ and two temperature gradients of the
spinors, obtained by replacing E0 in Eqs. (IV.5) - (IV.7) with
1.

Equation (IV.7) shows that the temperature gradient
between grad Te1 and grad Te2 produces a force F. The
force drives the velocity of the virtual photon along with
simple harmonic motion. On the basis of the above as-
sumption, the virtual photon swing back and force spa-
tially between the two bare electrons.

Therefore, we can insert the above conclusion into Eq.
(IV.3) and calculate the virtual photon’s velocity, uγ∗ ,
as follows:

uγ∗ = −E0 sin θ . (IV.8)

Equation (IV.8) helps us to obtain an insight that the
velocity of the virtual photon as a vector particle θ ex-
hibits a simple harmonic oscillation of a sine function
generated by the temperature gradient of spinor particle
(θ/2).

Note that in this subsection we continue discussing the
three oscillators Eqs. (III.9 – III.11) using θ instead of ωt.
To obtain Eq. (IV.8), we differentiated Eqs. (IV.5 – IV.7)
with θ instead of t. If we continue to calculate Eq. (IV.5)
with respect to ωt and differentiating with t, the final
product obtained from Eq. (IV.7) is grad (Te2 − Te1) =
E0ω sin(ωt).

Where, ω represent the amplitude of a simple harmonic
oscillator. Therefore, electrons with high energy behave
as oscillators having large spatial amplitude in classical
dynamics [6].

In other words, in this model, higher the energy of
the particle, longer is the spatial oscillation of the vir-
tual photon. However, there is no theoretical explanation
about the consistency of the point where electrons with
high energy shorten the Compton wavelength.

Therefore, the interpretation of the relation between
quantum energy amplitude and the amplitude of the en-
ergy of the classical oscillator is still unclear. The re-
lations between the magnitude of the gradient and the
value of the amplitude including the angular velocity and
validity of expression of the angular velocity would need
further study.

FIG. 14. Two spheres and the central force

C. The virtual photon as perfect fluid

Previously, this electron model regards the virtual pho-
ton as a perfect fluid in subsection IV A. To clarify our
image of a captured virtual photon, we use a concept of
“hydrostatic equilibrium” from fluid mechanics.

Gravity points toward the center of the Sun. Similarly,
the electromagnetic force points toward the center of an
electron. Gravity is balanced by a pressure-gradient force
in the Sun. Further, the inner structure of an electron
is comparable with the balancing of the Sun as a self-
gravitating gas sphere in Fig. 14.

Polytropes are considered to be a type of fluid. The
equation of the state of a polytropic fluid can be stated
using a perfect fluid. Generally, the gas of the Sun would
be considered to be polytropes. Using the polytrophic
equation (see Appendix VI A), such polytropes can be
regarded as perfect fluids.

If the virtual photon of the electron had viscosity, the
electron could not exist continuously because of damped
oscillation. As far as the moving behavior, this condition
is equal to the under-damped spring-mass system with
ζ < 1, where ζ is the damping ratio.

For example, suppose

ζ = e−t , (IV.9)

then the oscillation of the virtual photon is

lim
t→∞

ζγ∗K.E. = lim
t→∞

e−t γ∗K.E.

= 0 .
(IV.10)

The photon comprising a viscous fluid causes a viscous
flow, changing its kinetic energy into thermal energy. As
we assume this model to be in an ”isolated system” in the
Introduction, there is no room to escape its kinetic energy
outside the system in itself. Finally, the photon would
cease to oscillate, because of the vanishing of its kinetic
energy Eq. (IV.10). Under this circumstance, the bare
electrons absorb all kinetic energy that the virtual pho-
ton initially possess and the temperature gradient disap-
pears or equal to zero permanently, and the zero-kinetic
energy of the two bare electrons becomes zero. That
would be against quantum fluctuation because only the
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virtual photon could carry kinetic energy, which would
be resource energy of quantum fluctuation.

In this paper, the category “perfect fluid” comprises
all fluids that lack viscosity. That is, both compressible
and incompressible fluids can be perfect. Were we to
treat only the incompressible fluids, this would lead to
an inconsistency.

Interaction between thermal and kinetic energy is es-
sential in this electron model, because the interaction be-
tween the two kinds of energy drives the virtual photon
along with the harmonic oscillator.

Moreover, no conditions on the pressure of the virtual
photon could be shown in this paper. For an incom-
pressible fluid, the pressure of the virtual photon pγ∗ in
thermodynamics (p = p(T, ρ)) is

pγ∗ = p(Te1, Te2, ργ∗) . (IV.11)

Both the Sun and an electron model in this study ex-
hibit similarity because both of them do not have a def-
inite surface on its sphere. The Sun is a condensed gas
body and do not have clear surface.

Furthermore, no equations that describe the hydro-
static equilibrium of the electron are presented in this
study. In addition, the image of the virtual photon is
quite simple and obvious. This aspect will be studied as
a part of future research.

D. Value of emissivity

In the previous section, it was assumed that a bare
electron acts as a perfect black body. Because of this
principle, virtual photons behave like spatial simple har-
monic oscillators (Figs. 13 and 15). What happens if the
emissivity of the bare electron is less than 1? The temper-
ature of the bare electron decreases with each repeated
absorption C. Consider two emittance and absorption
cycles per 2π, each with a frequency f

C = 2ft

= 2
( ω

2π

)
t

=
ωt

π
.

(IV.12)

C is the number of times radiation is emitted from
a black body. However, let us set the emissivity of the
bare electron, ε. When 0 < ε < 1, the energy of T1 can
be calculated as

lim
t→∞

Ee1 = lim
t→∞

εC E0 cos4
(
ωt

2

)
= lim
t→∞

ε(
ωt
π ) E0 cos4

(
ωt

2

)
= 0 .

(IV.13)

FIG. 15. (a) Behavior of the virtual photon as a spatial sim-
ple harmonic oscillator while the two bare electrons act as
emitters and absorbers. (b) Plots of given up or down spins
on the phase differential.

This equation implies that the energy of the bare elec-
tron decreases with every absorption in proportion with
the value of the emissivity (ε). The energy of T2 is de-
rived using the same method as that given above:

lim
t→∞

Ee2 = lim
t→∞

εC E0 sin4

(
ωt

2

)
= lim
t→∞

ε(
ωt
π ) E0 sin4

(
ωt

2

)
= 0 .

(IV.14)

These two equations show that the two oscillators be-
have as if they are damped, and would finally cease to
oscillate; this implies that the energy of the bare elec-
trons will decrease with time and eventually reach zero.
Considering the isolated system, the total energy of the
whole electron, E0, is unchangeable:

E0 = lim
t→∞

Ee1 + lim
t→∞

Ee2 + γ∗K.E. , (IV.15)

so

γ∗K.E. = E0 −
(

lim
t→∞

Ee1 + lim
t→∞

Ee2

)
= E0 .

(IV.16)

Equation (IV.16) indicates that the final outcome is
a photon because the total energy of the virtual pho-
ton, γ∗K.E., is ultimately the total energy of the electron
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E0. In other words, the phenomenon whereby two os-
cillators vanish without any positrons and change the
electron’s entire mass-energy into a real photon conflicts
with charge conservation. Consequently, the emissivity
has to be 1 for charge conservation to be maintained.

E. Finding Spinors and Superposition in this
electron model

Let us review equation (III.22) in the previous subsec-
tion III B,

E0 = E0

(
cos4

(
ωt

2

)
+ sin4

(
ωt

2

)
+

1

2
sin2(ωt)

)
= Te1 + Te2 + γ∗K.E. .

(IV.17)

Since γ∗K.E. = 1
2E0sin2(ωt) represents the kinetic en-

ergy of a vector particle, and Te1 = E0cos4
(
ωt
2

)
and

Te2 = E0sin4
(
ωt
2

)
represent the thermal energies of the

spinor particles, this isolated system includes two finish-
ing degrees within one cycle, 2π and 4π.

This could enable us to understand the specific be-
havior that is exhibited by spinors under rotations. To
ensure a symmetric operation, spinors require a 720-
degree rotation; to explain this phenomenon in an easy-
to-understand manner, we consider Diracs Belt Trick or
Plate Trick and other such methods. Further, this elec-
tron model would be able to comprehensively explain the
inclusion of both 360-degree rotation with a vector par-
ticle and 720-degree rotation with spinor particles.

Let us observe Fig. 15 on page 10. Note that a yellow
line has been added in Fig. 11 on page 8. It depicts
the locus of the virtual photon. Furthermore, the line
exhibits a cosine curve on a plane comprising the x and t-
axes. The radius of the virtual photon can be considered
to be double the width of the spatial amplitude, 2A. This
length is observed to be equal to 2a on the x-axis.

Using the concept of phase rotation, it is helpful for us
to not only recognize the relationship between the phase
differential of the bare electron and the virtual photon in
Fig. 16. (d) on page 11 but also build a new concept of
the superposition of spins. Here, we use θ instead of ωt,
and define the “up” and “down” spins of the Te2 spin :

Te2 spin ≡ |↑〉 : 0π < θ < 2π

Te2 spin ≡ |↓〉 : 2π < θ < 4π
(IV.18)

Similarly,

Te1 spin ≡ |↑〉 : 0π ≤ θ < π

Te1 spin ≡ |↓〉 : π < θ < 3π

Te1 spin ≡ |↑〉 : 3π < θ ≤ 4π

(IV.19)

FIG. 16. (c) A representation of the 720-degree rotation per-
formed on two-pair of bare electrons. (d) A representation of
the 360-degree rotation performed on a virtual photon as a
vector particle. (e) Correspondence of the up or down spin
and spatial position of the virtual photon that exhibits in-
phase variation. Note that the diameter of the virtual photon
is not drawn in proportion with the diameter of bare electrons.

On the right side of the defined equality in Eqs. (IV.18)
and (IV.19), there is an inequality with no equal sign. For
example, Te1 spin in π < θ < 3π in Eq. (IV.19), neither
of the two inequalities has an equal sign. The lack of an
equal sign indicates that the thermal energy of Te2 and
the kinetic energy γ∗K.E. are equal to zero, and the entire
energy contained in this system is Te1 spin; therefore, its
spin is clearly defined as “up” or “down” depending on
the status of another bare electron. Because only one
thermal spot, Te1, is uniquely defined as “down” in 2π as
shown in Fig. 15. (a) and Fig. 16. (e), this electron is
no longer in superposition, which is the state of having
mixed “up” and “down” spins.

Let us study the difference between the presence and
absence of the equal sign. We shall distinguish both by
using a concept of superposition. In Eq. III.8 in subsec-
tion III A, we recognized that the total thermal energy;
EA = E0 cos4 θ/2+E0 sin4 θ/2. EA is represented by the
sum of the two functions in a linear order. This equa-
tion is considered to be one of superposition i.e., in this
circumstance, the electron which has two spinors of bare
electrons, each of them can achieve either states of |↑〉 and
|↓〉 elements of spins because the functions E0 cos4 θ/2
and E0 sin4 θ/2 represented the two bare electrons’ sta-
tus which could each be defined by the spin states “up”
and “down.”

Comprehensively, both E0 cos4 θ/2 and E0 sin4 θ/2
would have a state of either |↑〉 or |↓〉. In particular,
the state of two spins which is represented in E0 cos4 θ/2
and E0 sin4 θ/2 can take four possible combinations in-



12

FIG. 17. (f) The two coordinate axes applying the Bloch
sphere for representation of the pure state. The dotted purple
line is an example of the phase θ = 3π/2. (g) Appearance of
one-state spin and two-state of superposition alternately as
mentioned in Eqs. (IV.20) and (IV.21).

side the electron: |↑↑〉, |↑↓〉, |↓↑〉, and |↓↓〉. Elabo-
rating, consider the phase θ = 3π/2. In that phase,
cos4 θ/2 = cos4 3π/4 has “down:|↓〉” spin. On the other
hand, sin4 θ/2 = sin4 3π/4 has “up:|↑〉” spin, which has
been shown through the dotted violet line in Fig. 17.

Hence, an electron that comprises two spinor states,
which can be defined as | Te1 spin, Te2 spin〉, could be de-
noted as: |↑↑〉, |↑↓〉, |↓↑〉, and |↓↓〉 except in the phase;
θ = nπ, (n = 0, 1, 2, 3, ..., n). An expression using two
arrows, such as |↑↓〉, could denote an isolated system as
one whole electron.

For example, |↓↑〉 indicates that one electron has ther-
mal energy Te1 which has “down:|↓〉” spin, whereas Te2
has “up:|↑〉” spin.

This system includes both kind of spins, Te1 spin and
Te2 spin. The state of an electron expressed as |↑↓〉 is
a spin-mixed state:|↑〉 : Te1 spin has “up” spin, whereas
|↓〉 : Te2 spin has “down” spin. We could suggest the
following: the superposition in the phase-dependence of
| Te1 spin, Te2 spin〉 by generalizing the angle of circulation
at every (4n+ 0)π,

|↑↑〉 : (4n+ 0)π < θ < (4n+ 1)π ,

|↓↑〉 : (4n+ 1)π < θ < (4n+ 2)π ,

|↓↓〉 : (4n+ 2)π < θ < (4n+ 3)π ,

|↑↓〉 : (4n+ 3)π < θ < (4n+ 4)π ,

(n = 0, 1, 2, 3, ..., n) .

(IV.20)

In particular, the spin is uniquely determined “up” or
“down” in the phase as follows. Since the thermal energy
of either of the pairs Te1 or Te2 would be equal to zero in
the phase as follows:

(Te1 spin = |↑〉, Te2 = 0) : θ = (4n+ 0)π,

(Te2 spin = |↑〉, Te1 = 0) : θ = (4n+ 1)π,

(Te1 spin = |↓〉, Te2 = 0) : θ = (4n+ 2)π,

(Te2 spin = |↓〉, Te1 = 0) : θ = (4n+ 3)π,

(n = 0, 1, 2, 3, ..., n) .

(IV.21)

The states of electrons described in Eq. (IV.21) would
indicate us that an electron has four kind of specific
phases throughout changing its phase, on which the spin
would be uniquely determined.

V. CONCLUSION

Till date, an electron is a spinor particle. This study
provides more significant image of the particle that the
electron would comprise two spinor states. Additionally,
these two spinors states cannot exist simultaneously in
the same space (r0 6= 0) as mentioned in section I be-
cause of the Pauli Exclusion principle; if they could ex-
ist simultaneously in the same space, the virtual photon
would neither oscillate spatially nor achieve the value of
zero-point energy in the system.

One of the features of this research is that the kinetic
and potential energy are clearly separated along with
each particle. A bare electron should be regarded as a
thermal spot with limited thermal energy; i.e., the total
energy of the free electron in this isolated system would
be the summation of the virtual photon’s kinetic energy,
and the bare electron’s thermal energy.

[1] M. Planck, The Theory of Heat Radiation; Dover Publi-
cation, Inc.: New York, (1912)

[2] Zu-Po Yang et al, Nano letters 8, 446–451 (2008).
[3] ZEUS Collaboration et al, arXiv:1604.01280v1 (2016)
[4] David W. Ball, Physical Chemistry 2E, Wadsworth Cen-

gage Learning, (2015)
[5] Bradley W. Carroll and Dale A. Ostlie, An Introduction

to Modern Astrophysics 2E, Cambridge University Press,
(2017)

[6] R. P. Feynman and A.R. Hibbs, Quantum Mechanics and

Path Integrals (McGraw-Hill, New York, 1965).

VI. APPENDIX

A. Hydrostatic Equilibrium

A method to determine the internal structures of the
stars is well established. First, we calculate the stellar ra-

https://arxiv.org/abs/1604.01280
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dius using the hydrostatic equilibrium equation [5] from
fluid dynamics as follows:

dP

dr
= −GMrρ

r2
. (VI.1)

This equation yields the Lane-Emden equation, Eq.
(VI.2).

d

dr

(
r2

ρ

dP

dr

)
= −GdMr

dr
(VI.2)

The pressure P is related to the density as

P = Kρ1+
1
n , (VI.3)

which is known as the polytrophic equation, where K is
a constant. The final two equations belong to the field of
astrophysics.
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