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Abstract
We show that there is a variety of Schur complements that yield a

decoupling of a quasi-definite linear system into two quasi-definite linear
systems of half the size each. Splitting of linear systems of equations via
Schur complements is widely used to reduce the size of a linear system
of equations. Quasi-definite linear systems arise in a variety of computa-
tional engineering applications.

1 Theorem
Definitions Given n, m ∈ N, N = 2 · n, M = 2 ·m, A ∈ RN×N , B ∈ RM×N ,
D ∈ RM×M , and

K̂ :=
[
A BT

B −D

]
,

where A and D are symmetric positive definite. K̂ is called quasi-definite [?].
We consider a splitting of A, B, D in blocks of size n×n, m×n, and m×m,

respectively:

A =
[
A1 AT

2
A2 A4

]
, B =

[
B1 B2
B3 B4

]
, D =

[
D1 DT

2
D2 D4

]
.

Using these blocks, we can reorder K̂ as

K :=


A1 BT

1 AT
2 BT

3

B1 −D1 B2 −DT
2

A2 BT
2 A4 BT

4
B3 −D2 BT

4 −D4

 =:
[
K1 KT

2
K2 K4

]
,

where K1, K2, K4 ∈ R(n+m)×(n+m) are defined as indicated by the 2× 2 block
structure. We then define two matrices:

U := K1 −KT
2 ·K−1

4 ·K2 (1a)
V := K4 −K2 ·K−1

1 ·KT
2 (1b)
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Notice that the matrices U, V are well-defined since the inverses exist due to
quasi-definiteness of K1, K4.

Result The matrices U, V have the following 2× 2 block-structure

U =
[
U1 UT

2
U2 −U4

]
, V =

[
V1 VT

2
V2 −V4

]
,

where U1, V1 ∈ Rn×n and U4, V4 ∈ Rm×m are symmetric positive definite.

Proof All we have to show is that U1 is symmetric positive definite. The rest
then follows by analogy.

Simply by insertion of the blocks into the definition of U, we find the fol-
lowing formula for U1:

U1 = (A1 + BT
3 ·D−1

4 ·B3)
− (A2 + BT

4 ·D−1
4 ·B3)T · (A4 + BT

4 ·D−1
4 ·B4)−1

· (A2 + BT
4 ·D−1

4 ·B3)
(2)

We notice that

A1 + BT
3 ·D−1

4 ·B3

is symmetric positive definite because A1 and D4 are symmetric positive defi-
nite.

Hence, U1 is positive definite if and only if

X :=
[
A1 + BT

3 ·D−1
4 ·B3 (A2 + BT

4 ·D−1
4 ·B3)T

A2 + BT
4 ·D−1

4 ·B3 A4 + BT
4 ·D−1

4 ·B4

]
is positive definite. That is indeed the case, as we now show:

xT ·X · x

= xT ·A · x +
([

B3
B4

]
· x
)T
·D−1

4 ·
([

B3
B4

]
· x
)

> 0 ∀x ∈ Rn+m , x 6= 0

because A is positive definite and D is positive definite, implying that D4 is
positive semi-definite.

Corollary From ”if and only if” follows that the result holds in a strict sense.
I.e., U1, V1, U4, V4 are symmetric positive definite if and only if A, D are sym-
metric positive definite.

Remark The result is easily generalized for complex numbers.
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2 Applications
The motivation for considering the matrices U, V is that a linear system of
equations with K can be decoupled into two linear systems of equations with
U, V. We show this.

After suitable reordering of a quasi-definite linear system, consider

K ·
[
x1
x2

]
=
[
b1
b2

]
. (3)

We find the two decoupled linear systems for x1, x2 ∈ Rn+m:

U · x1 = b1 −KT
2 ·K−1

4 · b2 (4a)
V · x2 = b2 −K2 ·K−1

1 · b1 (4b)

Depending on the structure of K̂, in some cases it is attractive for computational
cost to build and solve the decoupled systems; e.g. when K̂ is banded [?]. In
doing so, one can exploit that the matrices U, V have quasi-definite structure.
Also, the result can be applied recursively, as U, V can be considered in turn
as matrices of format K̂. This recursive applicability can also be used to check
the inertia, according to the corollary: The linear systems with U, V are split
recursively, until eventually the resulting split systems are so small that one can
compute the inertia in a direct way to determine if A, D were positive definite.

Application to Dense Block-Tridiagonal Linear Systems When K̂ can
be reordered into a (dense) block-tridiagonal form, then U, V in turn can be
reordered into a dense1 block-tridiagonal form. This is particularly attractive
for solving banded linear systems with a symmetric cyclic reduction algorithm
[?] and parallel computations. As we show in [?], formulas for the split linear
systems use the matrices U, V. Hence, the theorem holds recursively for all
the linear systems generated within the cyclic reduction algorithm, providing
following utilities:

• If K̂ is quasi-definite then by induction so will the matrices U, V in each
iteration of the cyclic reduction.

• Following the induction, the inverses in the cyclic reduction algorithm do
all exist, since K1, K4 are quasi-definite (after suitable reordering).

• The inertia of U, V after the last iteration of cyclic reduction can be
computed to safeguard to check positive definiteness of A, D.

The last item is particularly useful when the system matrix K̂ arises within
an optimization algorithm. For instance, for SQP methods, which typically
compute a step-direction by solving a convex quadratic program [?], the matrix
A must be ensured to be positive definite, and must be otherwise manipulated
(e.g. by applying a shift to A).

1There is fill-in on the band due to the inverses in U, V.
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3 Conclusion and Outlook
We presented a quite general result for quasi-definite matrices. The result has
a wide applicability for structured linear systems, cyclic reduction algorithms,
and in the field of convex and non-convex programming.
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