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Abstract

We demonstrate the existence of a broad class of real numbers which are not el-
ements of any number field: those in the neighborhood of infinity. After considering
the reals and the affinely extended reals, we prove that numbers in the neighborhood
of infinity are ordinary real numbers of the type detailed in Euclid’s Elements. We
show that real numbers in the neighborhood of infinity obey the Archimedes property
of real numbers. The main result is an application in complex analysis. We show that
the Riemann zeta function has infinitely many non-trivial zeros off the critical line in
the neighborhood of infinity.

§1 Introduction

It is the popular theme in modern mathematics to define R by an algebraic
number field approach but here we return to the geometric approach given by
the Euclid magnitude [1]. Following Euclid, a real number is the length of a
line segment. This length exists completely separately from the axioms of a
complete ordered field. We will examine at the end of this paper the Riemann
hypothesis which predates Dedekind’s work on R [2] by several years so we are,
therefore, perfectly well motivated to eschew the Dedekind cut definition of R
in favor of the Euclid definition. Euclid’s Elements is something of a grand
canon of mathematics and Euclid’s definition of R dominated the mathematical
landscape for thousands of years until the most recent chapter of the history
of mathematics began around the turn of the 20th century. Most importantly,
Riemann formulated his famous hypothesis during the era in which the Euclid
definition of R was the one in common usage. The axioms of a complete
ordered field had not modified the ancient definition of R at that time, and
the Dedekind cut did not exist at that time.

Motivating the present approach, Pugh writes the following in Reference [3].

“The current teaching trend treats the real number system R as a
given—it is defined axiomatically. Ten or so of its properties are
listed, called axioms of a complete ordered field, and the game be-
comes: deduce its other properties from the axioms. This is some-
thing of a fraud, considering that the entire structure of analysis is
built on the real number system. For what if a system satisfying the
axioms failed to exist? Then one would be studying the empty set!”



2 REAL NUMBERS IN THE NEIGHBORHOOD OF INFINITY

Although the Euclid magnitude was the definition of R throughout most of
the past two millennia, modern mathematicians have chosen to adopt, for the
time being at least, the currently trendy field axioms. Through such axioms,
it is claimed that R is such that the set

R ={R,+, x} ,

satisfies all of the field axioms. Here we will define R as a cut in the real
number line (a line with the label “real number line” attached) but we will
not adopt the full structure of Dedekind cuts.! In the present convention, R
will be such that R does not universally satisfy the field axioms. Nothing is
lost in the present definition, however, because there shall exist Ry C R such
that the set

R/ = {Ro,—l—, X} s

does satisfy all of the field axioms. Indeed, R’ shall be exactly identical
to what is usually called the real number field. By taking the more general
approach through a geometric definition of R, we do not lose any of the power
of the field axioms because R contains a subset R, (called real numbers in the
neighborhood of the origin) which does 100% of the work done by the real
number field when it is defined as in R. Nothing at all is lost in this geometric
definition of R but, as we will show, very much is gained when we define R
geometrically as opposed to through its algebraic operations + and x. That
which is gained shall be called real numbers in the neighborhood of infinity:
R\ Ry. As we will show, the field axioms preclude the existence of numbers in
the neighborhood of infinity but the existence of these numbers is very much
implied by the historical a-real-number-is-a-cut-in-an-infinite-line approach to
R. As Pugh states in the above excerpt from Reference [3], our only burden
is to show that there does exist a non-empty set which satisfies the definition.
Since our definition is vastly simpler than the ordered field definition, this
task is accomplished easily. The main hurdle will be to show that numbers in
the neighborhood of infinity satisfy the Archimedes property of real numbers
which we concede as an axiomatic requirement for any valid definition of R.
In the next section of this paper, we will give the geometric definition of
x € Ras acut in a number line. In the third section, we will discuss the affinely
extended real number line which is the real line together with its endpoints
at infinity. This is the two-point Stone-Cech compactification of R [4-6]. In
the fourth section, we give an axiomatic definition for infinity and we never
require at any point that oo € R. Infinity is not a real number! After de-
veloping infinity, we define real numbers in the neighborhood of infinity. We
give their properties and show that such numbers, as presently defined, do not
satisfy the axioms of a complete ordered field. It is precisely this property

11t is likely that Dedekind ended up with an eponymous variety of cut after he was compelled toward
the study of cuts as the endpoints of Euclid’s magnitudes during his primary mathematics training. Such
magnitudes are cropped from an infinite line by “cutting.”
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which makes the geometric definition of R better than the algebraic definition;
the geometric definition contains all the numbers admitted by the algebraic
definition—numbers in the neighborhood of the origin—but also admits an-
other class of numbers in the neighborhood of infinity whose properties are
exciting, interesting, and non-trivial. In the sixth section, we examine the
axiomatized arithmetic operations bestowed upon numbers in the neighbor-
hood of infinity throughout the previous sections. In the seventh section, we
make a direct extension from R to C. In the final section, we will discuss the
Archimedes property of real numbers and show that the Riemann ¢ function
has infinitely many non-trivial zeros off the critical line. All of these zeros are
in the neighborhood of infinity.

The main purpose of this paper to develop axiomatically enough of the
properties of the neighborhood of infinity for us to prove a few theorems re-
garding the behavior of the Riemann ( function in that neighborhood. An
extended analysis of the topological properties of R as given here appears in
Reference [7], as does the formal construction by Cauchy sequences.

§2 Real Numbers
Definition 2.1 The real numbers are defined in interval notation as
R = (—o00,00) ,

where the interval (—oo, 00) is an infinite line.

Definition 2.2 A cut in a line x € R separates one line into two pieces as

R\z = (—o0,z)U (z,00)
Definition 2.3 A real number x € R is a cut in the real number line.

Remark 2.4 A number is a cut in a line. A line is defined in Reference [1].
All lines can be cut so all lines are number lines. A given line is the real
number line by definition. A real number separates the real number line into
a set of “larger” real numbers and a set of “smaller” real numbers.

Definition 2.5 Call real numbers in the neighborhood of the origin x € R.
Define them such that

Ry = {z]|(GneN)]-n<z<n|}

Here we define R, as the set of all z such that there exists an n € N allowing
us to write —n < x < n.
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Definition 2.6 Call real numbers in the neighborhood of infinity x € R.
Define them as all real numbers except for real numbers in the neighborhood
of the origin:

Remark 2.7 A main result of this paper (Main Theorem 5.5) is to demon-
strate that R, is not the empty set.

Definition 2.8 For x € R, we have the property

1 n
lim — = diverges |, and lim Z k = diverges .
k=1

=0T T Nn—00

§3 Affinely Extended Real Numbers

Remark 3.1 In this section, we present a few standard properties of the
affinely extended real numbers which can be found in References [8-11]. The
affinely extended real numbers are a Stone-Cech compactification of R [4-6].
We will use this well known two-point compactification to introduce the neigh-
borhood of infinity. Then we will prove that neighborhood exists in uncom-
pactified, ordinary R in the Euclidean sense. Since the real number line has two
distinct branches, positive and negative, we will introduce the neighborhood
of the infinity though the two-point compactification purely for convenience.

Definition 3.2 Define two affinely extended real numbers oo such that for
reR .
lim — =+o00 and nh_g)logk:oo .

Definition 3.3 The set of all affinely extended real numbers is
R = RU{*oo} .
Definition 3.4 The affinely extended real numbers are defined in interval

notation as .
R = [—o0,0]

Definition 3.5 An affinely extended real number = € R is +o00 or it is a cut
in the affinely extended real number line.

Axiom 3.6 In R, o0 are such that the limit of any monotonic sequence of
real numbers which diverges in R is equal to oo or —oc.
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Theorem 3.7 Ifz € R and x # +oo, then v € R.
Proof. Proof follows from Definition 3.3. &

Axiom 3.8 Infinity is such that

oo — oo = undefined |, and 2 _ undefined .

8

Axiom 3.9 Infinity does not have the distributive property of multiplication
over addition.

Remark 3.10 Axiom 3.9 is given precisely because we are using here the two-
point compactification of R [4-6]. Axiom 3.9 may be discarded if one prefers
instead to use the one-point Alexandroff compactification [12]. Peaking ahead
to the treatment of complex variables of the form x + iy in Section 7, in the
two-point compactification we will take

00 - (:c + iy) = undefined ,

because oo and t0o are unified by a one-point compactification. In the one-
point compactification, we would eschew Axiom 3.9 to take

00 (z+iy) = o0 .

§4 Infinity Hat

Definition 4.1 Additive absorption is a property of oo such that non-zero R,
numbers are additive identities of +00. The additive absorptive property is

too+r=x+00==%00 , for r€Ry\O .

Remark 4.2 In avoidance of certain contradictions, the arithmetic operations
which we shall axiomatize for real numbers in the neighborhood of infinity will
require the removal of the zero additive identity element from infinity. For this
reason we have specified € Ry \0 in Definition 4.1.

Definition 4.3 Let the symbol o0 be called “infinity hat” and endow it with
every property of co except additive absorption. =00 are explicitly two differ-
ent infinities such that

—(£30) = F9 .

Axiom 4.4 Infinity and infinity hat both describe the same affinely extended
real number, i.e.: |30] = .
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Remark 4.5 Although the operations of o0 differ from those of co, we say
they are the same number because the present treatment identifies unique
numbers with unique points along the extended real number line. The op-
erations neither contribute to nor appear in the definition of the number.
Therefore, Axiom 4.4 is not contradictory in any way although such an axiom
is impossible within the framework of the ordered field definition of R.

Definition 4.6 If an expression using o0 causes a contradiction via additive
non-absorptivity, then the hat must be removed to alleviate the contradiction.
This property requiring removal of the hat in certain instances is called the
non-contradiction property of o0.

Remark 4.7 Although it is not difficult to obtain statements requiring us to
remove the hat from o0 through the non-contradiction property, there is a very
broad class of structures in which the hat does not imply any contradiction
and this class of structures should be studied.

Axiom 4.8 The hat which differentiates infinity hat o0 from canonical infinity
oo is inserted and removed by choice except in the case where it invokes a
contradiction and must be removed by definition.

Example 4.9 An example of a statement in which the hat does not invoke a
contradiction and may be left in place is

—

r=00—0>b .

Example 4.10 An example of a statement in which the hat invokes a contra-
diction and may not be left in place is given by two sequences

xn:ik , and yn:co—i-ik ,
k=1 k=1

where ¢ is some non-zero real number. Since oo and 50 are the same number
(Axiom 4.4), we can use Definition 3.2 to write

lim z, =oc0o =020 , and lim y, =c0o =020 .

We may also write, however,

lim vy, = lim ¢o+ lim 2, = ¢ + 0 .
n—o0 n—oo n—oo

This delivers an equality
65 =y + 65 s
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which contradicts the additive non-absorption of 0. At this point, we must
obey the non-contradiction property of 50 (Definition 4.6) by removing the
hat. Then

00 = (o + o0

demonstrates the usual additive absorptive property of infinity and there is no
contradiction.

Axiom 4.11 &0 is such that for any non-zero b € Ry
to0+b=>b+0o0
+o0—b=-b+

+0+ (—b) =+0—b
+50 + b =400 — (—b)
—(+) =Fx
+oo if b>0

i@'b:b'(i&):{ﬁa it b<0

+00 +o00 if b>0
b Fo if b<0

b

—~

+ oo

Axiom 4.12 Regarding 0 € R, o0 is such that

450+ 0 =04+00 = +00 — 0 = undefined
4050 -0 = 0 - +00 = undefined

:i:/\
% = undefined
0
—=0.
+ oo

Remark 4.13 We will revisit the lack of zero as an additive identity element
for o0 in Example 5.12. We will show that it is required to remove the zero
additive identity from infinity if we want the freedom to add and subtract real
numbers in the neighborhood of infinity.

Remark 4.14 When the oo symbol appears as o0, we consider the hat to be
an instruction to delay the additive absorption of co indefinitely or until such
a delay causes a contradiction. The instruction to “delay additive absorption”
should be understood to mean that additive absorption is not a property of o0
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but that the additive absorptive property can be implemented trivially after
an ad hoc decision to remove the hat by choice, or after its removal is required
by the non-contradiction property.

Infinity without the hat is afforded with some freedom to do the algebraic
operations of its expressions in different orders, and there is no requirement
in mathematics that every expression must be simplified as much as possible.
Since there is no a prior: requirement for us to immediately execute the ad-
ditive absorptive operation in all cases, we add absolutely nothing to infinity
with the hat. Rather, the hat is simply a superior alternative to a declaration,
“Remember not to simplify this expression via the additive absorptive opera-
tion which does not necessarily have to be completed immediately.” Instead,
we will put the hat there as a reminder not to do that operation while the hat
is in place.

We have not added anything to infinity with the hat. The hat is merely
an instruction about how to use the algebraic freedom which already exists
in the order of operations. While we have not added anything to infinity, we
have added something to mathematics. Peeking ahead to Axiom 5.10, an ideal
example of that which is gained through the hat is

(0—b)—(0—a)=a—b .

After delaying the absorptive operation on the left, there is no infinity remain-
ing on the right into which we might absorb. Such statements are not possible
without the axioms of R (given in the following section.)

§5 Real Numbers in the Neighborhood of Infinity

Definition 5.1 The set of large real numbers in the neighborhood of infinity
1s

R = {£(x-0b)|beRy, b>0} .

Remark 5.2 We call R large numbers in the neighborhood of infinity to dis-
tinguish them from all numbers in the neighborhood of infinity: R, = R\ R,.

As we show in Reference [7], it is not the case that R\ R = 0.

Axiom 5.3 The ordering of R numbers is

+(50 — b) = £(c¢ — a) — a=
(50 —b) > (50— a) = a>b

— (0 —b) > —(0 —a) — a<b
(50 —b) > — (¢ —a) \ b,a € Ry
(F—b) >z ¥ b,z € R
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—(68—b)<x v b,r € Ry
(3 —b) < 00 v be Ry
(&-b) > 0 v bER, .

Theorem 5.4 R is a subset of R.

Proof. Definition 3.3 gives R = [~00,00]. By Definition 3.5, an affinely ex-
tended real number z € R is a cut in, or endpoint of, the affinely extended
real number line. Definition 2.2 requires that a cut separates one line into two
pieces. Observe that

R\ (3c—b) = [-00,50—b)U (50 —b,o0]
R\ (-0+b) = [-00,—00+b)U(-30+b,00] .

Il z € R conform to the definition of affinely extended real numbers so
CR. &

) >

Main Theorem 5.5 R is a subset of R.

Proof. If a number is an affinely extended real number z € R and x # 400,
then, by Theorem 3.7, we have x € R. Theorem 5.4 proves

reR = z€eR
so, in the absence of additive absorption,

+£(0 —b) #4306 = +o0 .
(Definition 5.1 requires b # 0.) This proves the theorem.

Alternatively, by the ordering of Axiom 5.3, we have
R\ (o0 —b) = (—00,00—0b)U (00 —b,00) .

All numbers z € R satisfy the definition of z € R through Definitions 2.2 and
2.3. This also proves the theorem. &

Theorem 5.6 R is a subset of Ry.

Proof. We have shown in Main Theorem 5.5 that

RcR ,
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so we will satisfy the definition of R, (Definition 2.6) if we show that
RN Ry, = 0.
Definition 2.5 requires that elements of R, satisfy
—n<z<n ,
For proof by contradiction, assume j:(65 — b) € Ry. This requires
—n<£(B—b) <n
Since b € Ry, we know it has an additive inverse. Add or subtract b to obtain
—n+b<oo<n+b , and —n—-b<-o0<n-—>b .

We obtain a contradiction as o0 cannot be less than the sum of two Ry numbers
and —o0 cannot be greater than the difference of two Ry numbers. All R
numbers satisfy the definition of R, (Definition 2.6.) &

Remark 5.7 The remainder of this section defines and makes remarks on
the arithmetic operations for R numbers, and we will also treat these oper-
ations in the following section. The purpose in defining operations for R is
to supplement the canonical operations for Ry and those of co ~ a0. (The
canonical operations of Ry are those given when R’ = {Ry, +, x } satisfies the

field axioms.) Every R number can be decomposed and its pieces manipulated

separately but the main purpose in defining special operations for R is to de-
fine new operations for expressions which are undefined under the arithmetic
operations of Ry and o0 alone, or whose structure vanishes under additive
absorption.

Axiom 5.8 The arithmetic operations of R numbers with Ry numbers are
(b= -+
(—m+b) = b

:I:ooqi(bZFx) if b#£uw

j:(oo—b)+x:xj:< —b { $ b

— xb if z#0
undeﬁned if z=0

{j:ooqi— if x#£0
=0 .

i(&?—b) rT=1x- i

undefined if =0

i( - b)
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Remark 5.9 Although the axiom of closure is not always explicitly included
in the axioms of a complete ordered field, it is usually taken for granted that
number fields are closed under their operations. By Axiom 5.8, however,

reERy , z>b = [(&?—b)—i—x]%@

Although we have not given the ordering for numbers of the form (65—1—a) with
a > 0, it reasonably follows from Axiom 5.3 that such numbers are greater
than infinity. Therefore, with R as presently defined, the set R = {R,+, x}
is not a number field because it is not closed under its operations.

Axiom 5.10 The arithmetic operations of R numbers with R numbers are

+(0—b) + (56— a) =+ F (a+1b)

(5 -1) F (- a) = £(a— )
£(55 1) (55— a) = £
L) _

0 —a
Remark 5.11 Axiom 5.10 states that
(65—1)) — (65—@) =a—0>0 .

Although this implies the existence of an additive inverse for every R number,
it does not imply an additive inverse for o0 because the case of a = b = 0 is
ruled out by the definition of R (Definition 5.1.)

Example 5.12 Axiom 4.12 states that infinity does not have a zero additive
identity element. We were not able to demonstrate this requirement in Section
4 because we needed first to define the axioms of R which make it impossible
for oo or 50 to have zero as an additive identity.? This example gives an
illustration of the type of contradictions which are avoided by removing the
zero additive identity element of infinity. Consider the limit

. 2 .
Jim, (" —a) =0

which can also be computed as

lim (:L‘2—x) = lim 2® — lim z = 0o — 00
T—00 T—00 T—00
This is a typical example used to demonstrate the lack of an additive inverse

for co. If infinity is bestowed with an additive inverse, then we obtain from

2The additive identity element of +£350 is 60 through the multiplicative absorptive property and the
definition of multiplication that 2z = « + . Every € Rp\0 is an additive identity element of oco.
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the above a contradiction oo = 0. The expression co — 0o, thus, is undefined.
If we added the hats to infinity then we could insert the additive identity on
the right side of co = 0o — 0o to write

00 = 00 — OO

=0—-0+0

=o0—-o0+1-1

=(x®-1)—-(x-1)=0 .
We see that unhatted infinity likewise cannot have zero as an additive identity
because we could write

00 = 00 — 00

=00 —o00+ (1-1)

=x—00+1-1

=(x-1)-(¢-1)=0,
where we have simply chosen within the freedom afforded to the order of
algebraic operations not to do the additive absorptive operation at the second

step. By allowing infinity to have zero as an additive identity element, we
induce the same contradiction which forbids an additive inverse for infinity.

Remark 5.13 The expressions oo and o0 are perfectly well defined but oo +0
and o0 + 0 are examples of an undefined composition. Since co is not an R
number, this property cannot create problems for the algebra of R numbers.
Essentially, we have traded the zero additive identity element of infinity for
the freedom to add and subtract R numbers.

Axiom 5.14 The additive operation is not associative for R +R.

Example 5.15 The example demonstrates why R + R cannot have the asso-
ciative property. Through associativity we may easily derive a contradiction
from Axiom 5.10 which gives

(50—b)+ (0 —a) =0 — (b+a)
To obtain that contradiction, subtract an R number from both sides as
(5—b) + (5 —a)] — (B—c) =55 — (b+a) — (X —c)

Assuming the associative property of addition, we may arrange brackets to
write

(R—b)+[(@—a) = (F—0)] =B (b+a) — (F—0)



JONATHAN W. TOOKER 13

X+ [c—(b+a)]=c— (b+a)
Subtracting the Ry part from both sides yields
=0,

which is not allowed. Since additive associativity is required among the ele-
ments of a number field, this example further demonstrates that the present
definition of R is not such that R = {R,+, x} satisfies the field axioms in all
cases.

Theorem 5.16 It is possible to make cuts in the real number line which are
numbers greater than any n € N, i.e.: certain cuts in the real number line are
real numbers in the neighborhood of infinity.

Proof. Suppose there exists a line segment AB. FEvery line segment can be
bisected by a cut at its midpoint C'. We say C'is a midpoint of AB if and only
if

len AC =lenCB , and len AC +lenCB =1len AB .
Suppose z is a chart on AB such that € [0,7/2]. Then define a conformal
chart 2’ such that

7' = tan(x) , and 2’ €0, 00]

The greater bound on the 2z’ chart is derived through Definition 3.2 as

in(6
lim tan(fd) = lim sin(6)
0—m/2 6—/2 cos(6) Zm:)(lm: =0 T

We know it is possible to bisect any line segment AB at a midpoint C. If we
add a chart to AB, it cannot affect this fundamental geometric property that
every line segment can be bisected. Adding a chart such that 2'(B) = oo does
not disrupt the fundamental geometric properties of line segment. To prove
the present theorem by contradiction, assume z’(C) is less than some n € N
(where 2/(C') refers to the value of 2’ at the geometric midpoint of AB.) Then

len AC <n , and lenCB <n ,

so it follows that
len AC +1lenCB < 2n .

Here we obtain a contradiction because, by the definition of a midpoint, we
have
len AC +lenCB =len AB = o0 but 0o &£ 2n .

Therefore, when AB is charted in 2, the magnitude of the cut at the midpoint
C'is greater than any natural number. Because len[0, co] = len(0, 00), it follows
that we can make a cut in the positive branch of the real line at a magnitude
greater than any natural number. &
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Remark 5.17 In Theorem 5.16, we have derived a requirement for two lengths
which are equal, less than infinity, and whose sum is equal to infinity. This
requirement is given a dedicated treatment in Reference [7].

Theorem 5.18 An R number does not have a multiplicative inverse.

Proof. Axiom 5.10 gives

o0 —a

which allows us to give a simple proof by contradiction. Assume that the

numerator has a multiplicative inverse e,. Multiplying both sides by e, gives
€p (65 — b) 1

—— =€ = 6=
o —a X —a

By Axiom 5.8, the expression on the left identically zero. If e, = 0, however,

then the product e, (65— b) is undefined (Axiom 5.8.) Therefore, x € R cannot
have a multiplicative inverse. &

Remark 5.19 In Example 6.3, we will discuss the notion that division cannot
be defined as multiplication by the inverse for numbers which do not have a
multiplicative inverse.

§6 Limit Considerations for Axiomatized Operations

Example 6.1 This example shows we that cannot always substitute the limit
definition of infinity to directly compute all expressions involving co. If we use
Definition 3.2 to write

oo—oo:<liml)—<liml):lim<l—l):hm0: ,
z—0 z—0 z—0 \ x r—0

then we contradict Axiom 3.8 which gives
00 — 0o = undefined .

This example motivates the axiomatization of certain operations on expres-
sions using o0.

Theorem 6.2 The quotient of a number x € Ry divided by a number y € R
is identically zero (Aziom 5.8.)

Proof. For proof by contradiction, et z be any non-zero real number such that



JONATHAN W. TOOKER 15

—=2z .
Y

By Axiom 5.3, ||z|| < |ly|| so we have ||z|| < 1 which implies z € Ry. (The
case of ||z|| = 1 would imply = € R, a contradiction.) All Ry numbers have a
multiplicative inverse so we find, therefore, that

x

=1 <= T=2zy .

Y

The product zy is given by Axiom 5.8 as
zy=z-(£00Fb) ==£(c0— 2b)

This delivers a contradiction because it requires that x = zy is a real num-
ber in the neighborhood of infinity while we have already defined = to be a
real number in the neighborhood of the origin. Therefore, the only possible
numerical value for z/y is 0.

Alternatively, the limit definition of infinity gives the same result. Observe
that for some n,b € Ry we have

= lim =0 . =

Example 6.3 This example treats the R / R operation. In Axiom 5.8, we have
given
0- (30 — b) = undefined .
This follows from
0-(30—b)=0-0—-0-b ,
with 0 - 50 being undefined, as per usual. In Axiom 5.10, however, we have
given

which can be written as

f‘bz(aﬁ—b)(j ):(@_b).o |

o —a x—a

Apparently, R / R = £1 contradicts Axiom 5.8 which says such expressions are
undefined. For this, we need to give special attention to the - operator which
is usually defined as multiplication by the inverse. Theorem 5.18 shows that
x € R does not have a multiplicative inverse so

o —b

— 4 (®-b)(X-a)"

oo —a
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We need a separate definition for the <+ operation. In this case, we resort to

the limit

oo —b i—b o 1—=bx
lm1

IHOE—Q/ x%Ol_ax

—

o —a

This is the result given in Axiom 5.10.

Example 6.4 This example treats the RxR operation. If we axiomatize this
operation with the limit definition of infinity, then we obtain

<1 —z(b+a) + z%ba

xr2

) = diverges

This is the value that appears in Axiom 5.10. If we gave any value other than
that supported by the limit definition of infinity, then that would be contriAved
and arbitrary because we have already used the limit definition for R=Rin
that same axiom. However, we could equally well choose some definition for
R xR and then require for consistency that R / R be computed in the same way.
Therefore, in this example we will demonstrate the invalidity of a few other
possible definitions for RxR to support the limit as the correct computation
to determine the relevant quotient and product.

Firstly, Axiom 3.9 states that oo does not have the distributive property
of multiplication over addition S0 oo likewise, does not have this property.
Therefore, we cannot Compute R x R with the FOIL method. If we could do
that, then by the assumption 50? = 50 we would obtain

(65—())(65—@) =0 —-—o0—00+ba .

As written, this expression is undefined through o6 — 0. If we rearranged the
Ry term as

0 — 00 — X0+ 2ba — ba = (30 — ba) — (50 — ba) — (30 — ba) ,

then the non-associativity of addition in R gives a contradiction
[(55 — ba) — (5 — ba)] — (55 — ba) = (35 — ba) — [(55 — ba) + (5 — ba)]
0— (50 —ba) = (0 — ba) — (50 — 2ba)
— (50 — ba) = ba
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The expression on the left is not equal to the expression on the right. Indeed,
if we subtract away the Ry part, then we obtain the familiar contradiction
—o00 = 0. L

As another non-limit method for computing R x R, we should examine the
multiplicative absorptive property of o0. Due to the lack of multiplicative
distributivity over addition, it is impossible get either of (35 — b) or (50 — a)
on its own multiplied by 50. Therefore, the multlphcatlve absorptlve property
of 50 cannot uniquely determine the product of R x R.

Remark 6.5 Consider R, x R as in
:B(63—b) =00 —ab .

If z is a positive number, then by Axiom 5.3 the magnitude of the product
decreases as the magnitude of z increases. Therefore, there is some radical
change in behavior as x increases from Ry to R because the product R x R

is greater than any x € R. This exotic behavior is studied more closely in
Reference [7].

§7 Complex Numbers

Definition 7.1 The set of all complex numbers is

C = {z+iy|lr,yeR, i=v-1}

Definition 7.2 The set of all complex numbers in the neighborhood of the
origin is

Co = {v+iylayeRy, i=V-1}

Axiom 7.3 As oo does not absorb —1in 1D, in 2D (meaning in C) we have the
condition that infinity absorbs neither —1 nor +i. In other words, we carry
the Stone-Cech compactification over into C and do not adopt a one-point
compactification.
Definition 7.4 The affinely extended complex plane is

C = CuU{#oo}U {+ico}
Remark 7.5 As the extended real line R has two distinct infinities, the ex-
tended complex plane C has four: {400, +ico, —00, —ico}.
Axiom 7.6 The multiplicative operations for 00 and 4400 with 4 are

+50-1 =14 (£00) =i
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+i00-i=1i-(+id0) = Foo .

Remark 7.7 The non-distributive property of 400 by multiplication over ad-
dition (Axiom 3.9) was practically redundant in 1D but for z € C this feature
gains significance. For the 1D case, if a,b € Ry, then there exists a ¢ € Ry
such that a +b = ¢. This allows us to mimic the distributive property through
multiplicative absorption as

X (a+b)=00-c= .
To the contrary, if z € Cy, then
& - (z + iy) = undefined # sign(z)30 + i sign(y)s0.

Axiom 7.8 The multiplicative operations for =060 with complex numbers z €
Cy are

[+ if  Re(z) >0 and Im(z)=0
Foo if  Re(z) <0 and Im(z)=0
IS j:z§ %f Im(z) >0 and Re(z)=0
Fioo if  Im(z) <0 and Re(z)=0
undefined if  Im(z) #0 and Re(z) #0
| undefined if z=0

Remark 7.9 The multiplicative operations for 4700 with complex numbers
z € Cy follow from Axiom 7.8. The arithmetic operations for complex numbers
z € C whose real and/or imaginary parts are R numbers follow directly from
the other axioms.

§8 The Riemann Hypothesis

Remark 8.1 The Riemann hypothesis [13-26] dates to Riemann’s 1859 paper
[27]. Since the axioms of a complete ordered field date to Dedekind’s 1872
paper [2], it would be patently absurd to claim that the Riemann hypothesis
is formulated in terms of the ordered field definition of R. While we cannot
directly show what definition of R Riemann had in mind when formulating his
hypothesis, we can point out that his program of Riemannian geometry is a
direct extension of Euclidean geometry. This qualitatively supports the notion
that Riemann had in mind the cut-in-a-number-line definition of R given by
Euclid in the Elements. When one examines the Elements [1], the very many
diagrams, definitions, and postulates make it exceedingly obvious that Euclid’s
definition of a real number x € R is exactly the one given here in Definition
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2.2
R\ z=(—o00,2)U(z,00) ,

formulated as the alternative identical statement
reR , >0 = (0,00)=(0,2]U (z,00)

Riemann—the man himself being the premier mathematical analyst of the
19th century—went to no lengths whatsoever to formalize with rigor the def-
inition of R used by him to formulate his hypothesis. What does this tell us
that a man of the utmost standards of mathematical rigor did not even deem
it worthwhile to mention his definition of R? It tells us, in the opinion of this
writer, that Riemann assumed it would be implicitly obvious to his intended
audience that he was relying on the Euclidean definition of R which is totally
equivalent to the definition given here in Section 2. Furthermore, even if one
does not accept that Riemann meant to implicitly use Euclid’s definition, upon
seeing that Riemann did not give a definition for R, one may reasonably con-
clude that the specifics of the aspect of Riemann’s hypothesis relating to the
definition of the domain of {(z) were not highly relevant. Rather, the object of
relevance would be the behavior of {(z) at various z. It is reasonable to assume
that when Riemann formulated his hypothesis he had in mind that any defi-
nition of R consistent with the Euclid magnitude and explicitly displaying the
Archimedes property of real numbers would be sufficient. The domain of {(z),
namely C, would be constructed from two orthogonal copies of R, one of them
having the requisite phase factor i. As per Pugh [3] quoted in Section 1, if we
prove that all z € R satisfy the Archimedes property, then that should be suf-
ficient reason to accept the present definition of R into applications regarding
Riemann’s hypothesis.

For some reason, the modern statement of the Archimedes property has
evolved to include natural numbers in its predicate but this is not at all sup-
ported by the statement of the property as it is given in Euclid’s Elements [1].
The modern statement depending on natural numbers is

Ve,ye R st. <y dneN st nx>y .

Numbers in the neighborhood of infinity do not conform to the natural num-
ber statement of the Archimedes property but they do absolutely conform to
the statement that appears in Euclid’s elements (given below.) Regarding the
natural number statement of the property, consider Remgrk 6.5. Those re-
marks point out that for any n € N and any positive x € R, we have nx < x.
It follows that if x < y, then nx % y. Therefore, z € R do not exhibit the
Archimedes property of real numbers when it is formulated without precedent
in terms of natural numbers. However, we will show in this section that the
statement depending on natural numbers has no precedent in the ancient his-
tory of mathematics and that it is only a modern (over-)simplification of the
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genuine Archimedes property of antiquity. Indeed, without reference to any
one technical statement or another, the main gist of the Archimedes property
is that there is no greatest real number. It is obvious that the present def-
inition of R satisfies the main gist of the Archimedes property. The round
bracket notation

R = (—o00,00) ,

directly requires “no greatest element.”

In this section, we will examine the Archimedes property to show that all
zeRdo satisfy the property given in Euclid’s Elements and that, therefore,
they are fully qualified for applications to the Riemann hypothesis. Then we
will show that the Riemann ( function has infinitely many non-trivial zeros
off the critical line in the neighborhood of infinity.

Definition 8.2 The statement of the Archimedes property which appears in
Euclid’s Elements, and which was attributed by Archimedes to his predecessor
Eudoxus, and which is very often taken to be the definitive statement of the
Archimedes property of real numbers, appears as Definition 4 in Book 5 of
Euclid’s Elements [1]. The original Greek is translated as follows.

“Magnitudes are said to have a ratio to one another which can, when

multiplied, exceed one another.”

Remark 8.3 As it appears in Euclid’s Elements, the straightforward mathe-
matical statement of the property should be

Ve,ye R st. <y JdzeR st. zx>y .

There is no mention of multiplication by a positive integer n € N. It is obvious
that this property—the statement of the Archimedes property in which the
multiplier is z € R rather than n € N—holds for all x,y € R as presently
defined. If we have

r=1, y=00-1 = z<y ,
then choosing z = o0 — 0.9 gives zx > y. If we have
r=00—-2, y=0-1 = ax<vy ,

then choosing z = 1/3 gives zx > y. It is obvious that the present definition
of R defines a set which exhibits the Archimedes property. For some reason,
however, many modern mathematicians often choose to express the property
mathematically as

Ve,ye R st z<y dneN st nx>y .
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This is the statement of a property that R does not have in its current in-
carnation (Definition 2.3) because we needed to choose z ¢ N for the two
cases given in this remark. However, the statement depending on N is not the
Archimedes property of real numbers! Nowhere did Euclid mention integers
but it is claimed, apparently, that Euclid’s definition of multiplication should
be taken only to mean multiplication by n € N or that, perhaps, it should
be obvious from the context that Euclid was writing about multiplication by
natural numbers alone. Indeed, careful (or even cursory) examination of the
context in Reference [1] shows no such thing.

The Archimedes property given here in Definition 8.2 appears as Definition
4 of Book 5 of Euclid’s Elements [1]. We may directly extract from Definitions 1
and 2 of Book 5 that Euclid did not use a definition of multiplication restricted
to n € N. Definition 1 of Book 5 is

“A magnitude is a part of another magnitude, the lesser of the
greater, when it measures the greater.”

Fitzpatrick, the English translator of Euclid’s Elements cited here as Reference
[1], adds the following footnote to this definition.

“In other words, « is said to be a part of 3 if f = ma.”

This makes it perfectly obvious that Fuclid’s multiplication was never re-
stricted to n € N. Euclid was certainly aware that is possible to measure one
magnitude of, say, ten Archimedean length units, and another length having
25 such units. This proves that the multiplier in Euclid’s definitions was never
intended to be restricted to N.

However, so that we need not cite the translator’s footnote in the deter-
mination that Euclid had no intention whatsoever to restrict his multiplier
implicitly as n € N, we should also consider Book 5, Definition 2 [1].

“And the greater is a multiple of the lesser whenever it is measured
by the lesser.”

Is a length of 25 units an integer multiple of a length of ten units? Obviously
not. Are we to believe that Euclid meant to forbid the existence of the number
25 once one has discovered the number ten? Obviously not! A magnitude of
25 units is the greater of the lesser magnitude of ten units with multiplier 2.5.
Surely this was known to Euclid!

We finish this remark with Fitzpatrick’s footnote to Book 5, Definition 4
which is the Archimedes property proper. Fitzpatrick’s footnote to,

“Magnitudes are said to have a ratio to one another which can, when
multiplied, exceed one another,”

is,
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“In other words, a has a ratio with respect to g if ma > 8 and
nf > «, for some m and n.”

Although it is common to use the variables m and n to refer to natural
numbers, such is not the case in this context. If the multiplier was restricted
as m,n € N, then it could not be said that four is a part of five, or two a
part of three, and it would follow that among four and five or two and three,
neither is the greater and neither is the lesser! Clearly this would be an affront
to reason! There is absolutely no historical precedent for any statements of the
Archimedes property dependent on natural numbers. Such statements should
be called, “Archimedes properties of the second kind,” or some such thing
like, “the Archimedes property of natural numbers,” to distinguish them from
the Archimedes property of real numbers which famously appears in Euclid’s
Elements [1].

In closing, if we could add a second footnote to Definition 4 of Book 5, it
would be the following.

“The Archimedes property of real numbers states that there is no
largest real number.”

The R proven to be R C R in Main Theorem 5.5 satisfies the requirement
that real numbers have the Archimedes property. Now that we have properly
motivated the application of R to the Riemann hypothesis, we will present the
application in the remainder of this section.

Theorem 8.4 If b,yo € Ry, if 2o = (60 — b) + iyo, and if ((z) is the Riemann
¢ function, then ((zp) = 1.

Proof. Observe that the Dirichlet sum form of ¢ [27] takes z, as
1
() = 2_; =
nb
= Z — (cos(yo Inn) — isin(yo In n))
/rLOO
n=1

:1—1—20(005(3/01:071)—isin(yolnn)) =1 . &

n=2

Main Theorem 8.5 The Riemann ¢ function has non-trivial zeros at certain
z € C outside of the critical strip.

Proof. Riemann’s functional form of ¢ [27] is

C(2) = @ sin (%Z) T(1— 2)¢(1 - 2)
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Theorem 8.4 gives ((c0 —b) = 1 when we set yp = 0 so we will use Riemann’s
equation to prove this theorem by computing ((z) at zo = —(60—0b)+ 1. (This
value for zq follows from 1 — zy =50 — b.) We have

[-(@-b+1] = lim <(27r>zsin<%z>) lim (r(z)g(z)>

z2——(30—b)+1 s 2—+(30—b)

= tm (20 (D)) m, (emrees)

For the limit involving I', we will compute the limit as a product of two limits.
We separate terms as

li 2m) T = i 2m) T li .
Lt (07ree) =t (@07TE) @
From Theorem 8.4, we know the limit involving ( is equal to one. For the
remaining limit, we will insert the identity and again compute it as the product
of two limits. If z approaches (50 — b) along the real axis, then it follows from
Axiom 5.10 that

1:,2—(65—19)

—~

z— (@0 -0

Inserting the identity yields

lim ((27T)ZF(Z)>: lim ((27T)ZF(Z)

z—(30—b) z—(50—b)

z— (00 — b))
2z — (60 —b)
Let

(2m) "
z— (60 —0)
To get the limit of A into workable form, we will use the property I'(z) =
27T(z + 1) to derive an expression for I'[z — (60 — b) + 1]. If we can write
['(z) in terms of I'[z — (50 — b) + 1], then the limit as z approaches (50 — b)
will be very easy to compute. Observe that

A:r(z)(z—(aa—b)), and B =

[z~ (8 -b)+1] =T[z— (55— b) +2] (z—(aa—b)H)_ |

On the RHS, we see that [’s argument is increased by one with respect to
the I" function that appears on the LHS. The purpose of inserting the identity
z— (00 = b)[z — (60 — b)]7' = 1 was precisely to exploit this self-referential
identity of the I' function which is most generally expressed as

F(z) = F(Z + 1),271 .

By taking a limit of recursion, we will let z approach a number in the neigh-
borhood of infinity. Then through the axiomatized addition of such numbers



24 REAL NUMBERS IN THE NEIGHBORHOOD OF INFINITY

(Axiom 5.10), we will cast the argument of I' into the neighborhood of the
origin where its properties are well known. The limit is

Ple (B -b)+1] =T() Tim | (z—(&?—b)Jrk)_l

n—(co—b) Pl

Moving the infinite product to the other side yields

[(z) =T[z— (30 —b)+1] lim (z—(&?—b)—i-k)
n—(co—b) Pl
We have let A = T'(z)(z — (0 — b)) where the coefficient z — (60 — b) can be
expressed as the k = 0 term in the infinite product. It follows that

A=T[z— (3 —b)+1] lim <z—(65—b)+k)
n—(c0—b) Pl
To evaluate the limit of AB, we will take the limits of A and B separately.
The limit of A is

lim A=T[Bo—b)—(50—0b)+1] lim n((@—b)—(@—b)+k).

2—>(55—b) n—(35—b)

Axiom 5.10 gives (60 — b) — (60 — b) =0 so

lim A=TI(1) lim k=0 .

z—(30—b) n—(c0—b) o

Direct evaluation of the 2 — (50 —b) limit of B = (2m)*(z — (60 — b)) ™! gives
0/0 so we need to use L’Hopital’s rule. Evaluation yields

d
—(2m)~*
lim B lim dz
2—(55—b) 2—(53—b) i o (B—b)
dz

d
= i 2 —zIn(2n)
z—>(15%1—b) dZe
- _ 1H(27T) 6_(65_b) In(27)
-1
= — In(27) M) =0 .
600
Therefore, we find that the limit of AB is 0. It follows that
([~®-p+1]=_tm 2sin(Z)-0=0. &

z——(0—b)+1 2
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Remark 8.6 In Main Theorem 8.5, we have considered the case of yg = 0
purely for convenience. In Main Theorem 8.7, we prove the case of yy # 0.

Main Theorem 8.7 The Riemann ¢ function has non-trivial zeros at certain
z € C outside of the critical strip with non-zero imaginary parts.

Proof. Following the form of the proof Main Theorem 8.5, we will prove that
([—(—b)+1—iy| =0,
if we can prove that
z—>(6}\>i£1bl)+iyo <<27T)ZF(Z)> =0 .
In proving Main Theorem 8.5, we have introduced the identity
z— (00 —b)
z— (30 —b)
by way of Axiom 5.10. If we approach z along the real axis, then this identity
follows directly from the axiom. If we add an imaginary part as is required for

the present theorem, then to conjure an identity we must note that if 5 € Ry,
then

1=

Y y+if
and that, therefore,
= z— (00— b) —iyo

2 — (3 - b) — iy

This allows us to write

lim ((Qﬁ)zr(z)): lim <(27r)zF(z)

z—(65—b)—z'y0>

2—(55—b) 2—(55—b)+iyo z— (00 —b) — iy
Let
— : 2m)”*
A=T(z) (z — (00 —10b) — zyo) : and B = iﬁ) —
z— (00 —0b) — iy

so that we may compute the limit of the product as the product of limits.
To get the limit of A into workable form, we will use the property I'(z) =
271T'(2z + 1) to derive an expression for I'[z — (50 — b) + 1 — iyo). If we can
write I['(z) in terms of I'[z — (60 — b) + 1 — iyp|, then the limit as z approaches
(50 — b) + iyo will be very easy to compute. Let 2z’ = z — iy, so that

I[z/—(Bo—b)+1] =T — (50 —b)+2] (z’—as—b)ﬂ) .



26 REAL NUMBERS IN THE NEIGHBORHOOD OF INFINITY

As in the proof of Main Theorem 8.5, we let the argument of I' approach a
number in the neighborhood of infinity by taking a limit of recursion as

Pl = (®-b) 41 =T() lm T (z’—(@—b)+k>_l |

n—(c0—b) Pl

It follows that

n

A=T[/ - (c—b)+1] lim (z’—(@—b)+k) ,

n—s(&-b) -

and

n

lim A=T[B—b)—(—0b)+1] lim <(65—b)—(65—b)+k>.

2! —(55—b) n—(co—b) o
Again, the £ = 0 term of the infinite product is zero so

lim A=0 .

2—(3—b)+igo
The limit of B is
(27r) —(50=b)—iyo

lim B =— : — .
2= (55 —b)+iyo (0 —b) +iyg — (00 — b) — 1yo
((277) ~&0) [cos(yo In 27) — i sin(yo In 27)] ) 0
- 0 S0
This requires L’Hopital’s rule again:
lim B = lim — ¢ 7#In(m)
z—(30—b)+iyo 2—(35—b)+iyo A2
_ ln(27r) 6—(65—b) In(27)—1iyo In(27)
_ hl/(\Qﬂ-) (ebln(Zw)efiyo 1n(27r)) -0 .
600
Therefore, we find that the limit of AB is 0. It follows that
((~®-t)+1-ig] =  dm  2sn(Z5).0=0. &
z——(55—b)+1—iyo 2

Remark 8.8 Now we have proven that ( is equal to zero almost everywhere
in the neighborhood of negative infinity for any 1y,. We have proven it “almost
everywhere” because the requirement b > 0 (Definition 5.1) gives (b+1) > 1
and the strip —50 < Re(z) < —(60 — 1) is not covered by Main Theorem
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8.7. Note how this strip of unit width at the extreme left of the left complex
half-plane is quite similar in structure to the famous critical strip of unit width
at the extreme left of the right complex half-plane.

Definition 8.9 The Riemann hypothesis as defined by the Clay Mathematics
Institute [28] is the following.

“The non-trivial zeros of the Riemann ( function have real parts
equal to one half.”

Definition 8.10 According to the Clay Mathematics Institute [28], the trivial
zeros of ( are the even negative integers.

Remark 8.11 The zeros demonstrated in Main Theorems 8.5 and 8.7 are
neither on the critical line Re(z) = 1/2 nor are they the negative even inte-
gers. Main Theorems 8.5 and 8.7, therefore, are the negation of the Riemann
hypothesis as it is posed by the Clay Mathematics Institute.

Remark 8.12 What is called the theorem of Hadamard and de la Vallée-
Poussin [29, 30] supposedly proves that all non-trivial zeros of ¢ must lie in
the region 0 < Re(z) < 1 which is called the critical strip [13]. However,
the theorem of Hadamard and de la Vallée-Poussin regards the prime number
theorem [13] and the requirement that all non-trivial zeros lie inside the crit-
ical strip is only a corollary result of their theorem demonstrated through an
exterior proposition: Proposition 8.13. Proposition 8.13 supposes that there
can be no non-trivial zeros in the left complex half-plane due to the symmetry
of Riemann’s functional equation and the fact that there are no non-trivial
zeros outside of the critical strip in the right complex half-plane. Below, we
will show that this proposition is false.

Theorem 8.4 shows that ¢ is equal to one everywhere in the neighborhood
of positive real infinity but we have demonstrated in Main Theorem 8.5 non-
trivial zeros in the neighborhood of negative real infinity. Now we will demon-
strate that the corollary of the theorem of Hadamard and de la Vallée-Poussin
requiring all non-trivial zeros to lie inside the critical strip is false because
the symmetry about the critical line is not preserved by Riemann’s functional
equation in the neighborhood of infinity.

Proposition 8.13 If Re(z) > 1, then ((z) # 0 because

-5 =1

p
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Refutation. The argument in favor of this proposition goes as follows [31]. In
the region Re(z) > 1, {(z) absolutely converges to the Euler product so

) =-—— = [[a-ro=-1.

p

Every prime number is a natural number so every term in II, (1 — p~?) is
contained in II,, (1 — n~?). It follows that the former product will converge if
the latter does. It is a property of infinite products that II,, (1 + a,) converges
if and only if X, a,, converges. Since ¥, n~* does converge for Re(z) > 1, we
know that II,, (1—n"7) absolutely converges. Therefore, I1,, (1—p~*) absolutely
converges and the condition that

HI[a-rH =1,

p

guarantees that ((z) # 0 for any z such that Re(z) > 1. If there was some 2
such that ((z) was equal to zero, then the expression could not be equal to

one. To show the failure of this argument, consider zy € R such that

—

zp=00—b = Re(z)>1.

Then,

o= -T1(1- i) = m (1)

©.9]
p p p

This is an indeterminate form because o0 is defined as a limit (Definition 3.2).
Therefore, the expression

) Ja-p=1,

p

cannot be used to rule out zeros of ¢ for all z with Re(z) > 1 because the
expression on the LHS is not defined everywhere in that region. &

Remark 8.14 When one closely examines the reasoning by which the theorem
of Hadamard and de la Vallée-Poussin [29, 30] is said to disallow non-trivial
zeros in the left complex half-plane, one finds in a certain region an undefined
operation on an indeterminate form, as demonstrated in the treatment of
Proposition 8.13. That the neighborhood of infinity has been neglected in
history is demonstrated directly by the pseudo-trivial failure of the Hadamard—
de la Vallée-Poussin result to carry beyond the neighborhood of the origin and
into the neighborhood of negative real infinity in the far left complex half-
plane.
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Remark 8.15 In this section, we have proven that the Riemann { function
has non-trivial zeros off of the critical line, and that, therefore, the famous
Millennium Prize is solved. We have identified new non-trivial zeros in the left
complex half-plane. Then we have discussed a result [29,30] which is said to
prove in a corollary fashion that no such zeros can exist. This corollary result,
Proposition 8.13, fails pseudo-trivially in the neighborhood of infinity. The
zeros demonstrated in Main Theorem 8.5 are in the neighborhood of negative
real infinity, and the theorem of Hadamard and de la Vallée-Poussin [29, 30]
does not disallow non-trivial zeros in that region.

Remark 8.16 Patterson writes the following in reference [13].

“There is a second representation of ( due to Euler in 1749 which
is perhaps more fundamental and which is the reason for the signif-
icance of the zeta-function. This is

)= [ a-»2)"

pEprimes

where the product is taken over all prime numbers p. This is called
the Euler Product representation of the zeta-function and gives an-
alytic expression to the fundamental theorem of arithmetic.”

The fundamental theorem of arithmetic is given in Euclid’s Elements [1]
Book 7, Propositions 30, 31, and 32. A modern statement of the fundamental
theorem of arithmetic is that every natural number greater than one is a
prime number or it is a product of prime numbers. The ultimate goal of all of
number theory being concerned with the distribution of the prime numbers,
now we will demonstrate as a corollary result that the Euler product form
of ¢ [13,32] shares at least some zeros with the the Riemann ¢ function in
the left complex half-plane where the convergence of the Euler product to the
Riemann ( function cannot be proven.

Corollary 8.17 The Euler product has zeros in the neighborhood of negative
real infinity.

Proof. Let

2=—(0—-b)+iy , and  ((z) = H

pEprimes

1—p~
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_ 1 II 1
1 pEb 1 pRx=b)=io

_ 1 0 1
1 1 — p&E—b—iwo
1- ﬁ(POO) [cos(yo In P) — isin(yg In P)] P#P

Let yoIn P = 2n7 for some prime P and n € NU{0}. Then

1 1
¢(z0) = (1—@) HW

p#P
By Axiom 5.8, we have 1/(1 —ad) = 0 so
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