
C ⊗ H ⊗ O-valued Gravity, [SU(4)]4

Unification, Hermitian Matrix

Geometry and Nonsymmetric

Kaluza-Klein Theory

Carlos Castro Perelman
Center for Theoretical Studies of Physical Systems

Clark Atlanta University, Atlanta, GA. 30314, perelmanc@hotmail.com

November 2018

Abstract

We review briefly how R ⊗ C ⊗ H ⊗ O-valued Gravity (real-complex-
quaterno-octonionic Gravity) naturally can describe a grand unified field
theory of Einstein’s gravity with a Yang-Mills theory containing the Stan-
dard Model group SU(3) × SU(2) × U(1). In particular, the C ⊗H ⊗ O
algebra is explored deeper. It is found that it can furnish the gauge group
[SU(4)]4 revealing the possibility of extending the Standard Model by
introducing additional gauge bosons, heavy quarks and leptons, and a
fourth family of fermions with profound physical implications. An anal-
ysis of C ⊗ H ⊗ O-valued gravity reveals that it bears a connection to
Nonsymmetric Kaluza-Klein theories and complex Hermitian Matrix Ge-
ometry. The key behind these connections is in finding the relation be-
tween C⊗H ⊗O-valued metrics in two complex dimensions with metrics
in higher dimensional real manifolds (D = 32 real dimensions in particu-
lar). It is desirable to extend these results to hypercomplex, quaternionic
manifolds and Exceptional Jordan Matrix Models.

Keywords: Nonassociative Geometry, Clifford algebras, Quaternions, Octonionic
Gravity, Unification, Strings.
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1 Introduction

This introduction is a review of our recent work [1] and may be skipped by
those readers familiar with it. Recently we have argued how R ⊗ C ⊗ H
⊗ O-valued Gravity (real-complex-quaterno-octonionic Gravity) naturally can
describe a grand unified field theory of Einstein’s gravity with a Yang-Mills
theory containing the Standard Model group SU(3) × SU(2) × U(1) [1]. It
was based on an extension of the work by [2],[3],[4]. The quaternion algebra is
defined by qiqj = −δijqo + εijkqk; i, j, k = 1, 2, 3, and qo is the identity element.
Given an octonion X it can be expanded in a basis (eo, ea) as

X = xo eo + xa ea, a = 1, 2, · · · , 7. (1.1)

where eo is the identity element. The Noncommutative and Nonassociative
algebra of octonions is determined from the relations

e2
o = eo, eoea = eaeo = ea, eaeb = −δabeo +Cabcec, a, b, c = 1, 2, 3, ....7. (1.2)

The non-vanishing values of the fully antisymmetric structure constants Cabc is
chosen to be 1 for the following 7 sets of index triplets (cycles) [4]

(124), (235), (346), (457), (561), (672), (713) (1.3)

Each cycle represents a quaternionic subalgebra. The values of Cabc for the other
combinations are zero. The latter 7 sets of index triplets (cycles) correspond to
the 7 lines of the Fano plane.

The octonion conjugate is defined

X̄ = xo eo − xm em. (1.4)

and the norm

N(X) = < X X > = Real (X̄ X) = (xo xo + xk xk). (1.5)

The inverse

X−1 =
X̄

N(X)
, X−1X = XX−1 = 1. (1.6)

The non-vanishing associator is defined by

{X,Y,Z} = (XY)Z−X(YZ) (1.7)

In particular, the associator

{ei, ej , ek} = dijkl el, dijkl = εijklmnp c
mnp, i, j, k.... = 1, 2, 3, .....7 (1.8)
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There are no matrix representations of the Octonions due to the non-
associativity, however Dixon has shown how many Lie algebras can be obtained
from the left/right action of the octonion algebra on itself [4]. OL and OR are
identical, isomorphic to the matrix algebra R(8) of 8 × 8 real matrices. The
64-dimensional bases are of the form 1, eLa, eLab, eLabc, or 1, eRa, eRab, eRabc,
where, for example, if x ∈ O, then eLab[x] = ea(ebx), and eRab[x] = (xea)eb.

From the structure constants of the Octonion algebra one can associate to
the left action of ea on eo and eb

eLa [eo] = ea eo = ea, eLa [eb] = ea eb = Cabc ec (1.9)

the following 8×8 antihermitian matrix MLa : eLa ↔MLa, and whose entries
are given by

(ML
a )bc = Cabc, a, b, c = 1, 2, · · · , 7; (ML

a )00 = 0, (ML
a )0c = δac, (ML

a )c0 = −δac
(1.10)

And similar procedure for the right actions, Due to the non-associativity of the
Octonions one has e1e2 = e4, but ML1ML2 6= ML4 !, because there are no
matrix representations of the non-associative Octonion algebra, and as a result
one has that

MLa MLb 6= Cabc MLc (1.10)

Dixon [4] many years ago published a monograph pointing out the key role
that the composition algebra (the Dixon algebra) T = R ⊗ C ⊗ H ⊗ O had
in the architecture of the Standard Model. More recently, it has been shown
by Furey how this algebra acting on itself allows to find the Standard Model
particle representations [5]. For this reason we constructed in [1] a gravitational
theory based on a R ⊗ C ⊗ H ⊗ O-valued metric defined as

gµν(xµ) = g(µν)(x
µ) + gIAµν (xµ) (qI⊗eA), qI = qo, q1, q2, q3; eA = eo, e1, e2, · · · , e7

(1.11)
where the ordinary 4D spacetime coordinates are xµ, µ = 0, 1, 2, 3, and g(µν) is
the standard Riemannian metric. The extra “internal” C⊗H⊗O-valued metric
components are explicitly given by

(g(µν) + ig[µν])
oo, (g[µν] + ig(µν))

ko, (g[µν] + ig(µν))
oa, (g(µν) + ig[µν])

ka (1.12)

k = 1, 2, 3; a = 1, 2, · · · , 7. The index o is associated with the real units qo, eo.
The bar conjugation amounts to i → −i; qk → −qk; ea → −ea, so that ḡµν =
gνµ.

The generalization of the line interval considered in [2], [3] based on the
metric (3.1) is then given by

ds2 = < gµν dx
µ dxν > = ( g(µν) + goo(µν) ) dxµ dxν (1.13)

3



where the operation < · · · > denotes taking the real components. From eq-
(1.13) one learns that the R ⊗ C ⊗ H ⊗ O-valued metric leads to a bimetric
theory of gravity where the two metrics are, respectively, g(µν), g

oo
(µν) = h(µν).

The R ⊗ C ⊗ H ⊗ O-valued affinity was given by

Υρ
µν = Γρµν(gµν) + Θρ

µν = Γρµν(gµν) + δρµ Aν =

Γρµν(gµν) + δρµ
(
Aooν (qo ⊗ eo) +Aiaν (qi ⊗ ea) +Aioν (qi ⊗ eo) +Aoaν (qo ⊗ ea)

)
(1.14)

Thus we have decomposed the R ⊗ C ⊗ H ⊗ O-valued affinity Υρ
µν into a

real-valued “external” part Γ plus an “internal” part Θρ
µν . The base spacetime

connection may be chosen to be the torsionless Christoffel connection

Γρµν = Γρνµ =
1

2
gρσ (∂µgσν + ∂νgµσ − ∂σgµν) (1.15)

but the ‘internal” part Θρ
µν of the connection is taken to be independent of the

metric, like in the Palatini formalism.
The R ⊗ C ⊗ H ⊗ O-valued curvature tensor Rσ

ρµν = Rσρµν + Ωρ
σµν , in-

volving the base spacetime and internal space curvature is defined by

Rσ
ρµν = Υσ

ρµ,ν − Υσ
ρν,µ + Υσ

τν Υτ
ρµ − Υσ

τµ Υτ
ρν . (1.16)

Rσ
ρµν = Rσρµν(Γρµν) + δσρ Fµν . (1.17)

where Rσρµν(Γρµν) is the base spacetime Riemannian curvature associated to the
symmetric Christoffel connection Γρµν .

The “internal” space C ⊗ H ⊗ O-valued curvature is

Ωρ
σµν = δρσ Fµν (1.18)

with
Fµν = Aµ,ν −Aν,µ − [ Aµ , Aν ]. (1.19)

and where the field Aµ can be read directly in terms of the internal space affinity
from the relation

Θρ
µν = δρµ Aν (1.20)

There are 32 complex-valued fields (64-real valued fields)

Aµ = {Aooµ , Aioµ , Aoaµ , Aiaµ } (1.21)

and the commutators in eq-(1.19) are defined by

[qI ⊗ eA, qJ ⊗ eB ] =
1

2
{qI , qJ} ⊗ [eA, eB ] +

1

2
[qI , qJ ]⊗ {eA, eB} (1.22)

which lead to the following explicit components for Fµν

F ooµν = ∂µA
oo
ν − ∂νA

oo
µ (1.23)
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F ocµν = ∂µA
oc
ν − ∂νA

oc
µ + (Aoaµ Aobν − δij Aiaµ Ajbν ) Ccab (1.24)

F koµν = ∂µA
ko
ν − ∂νA

ko
µ + (Aioµ Ajoν − δab Aiaµ Ajbν ) fkij (1.25)

F kcµν = ∂µA
kc
ν − ∂νA

kc
µ + Aoaµ Akbν Ccab + Aioµ Ajcν fkij (1.26)

The next step was to embed the Standard Model Gauge Fields into the
Internal Connection Θρ

µν . Eqs-(1.23-1.26) yield the following 32 complex-valued
non-vanishing field strengths

F ooµν , F koµν , F ocµν , F kcµν , k = 1, 2, 3; c = 1, 2, · · · , 7 (1.27)

Given the U(1) Maxwell field

Fµν = ∂µAν − ∂νAµ (1.28)

the Maxwell kinetic term in the Standard Model action is embedded as follows

Fµν Fµν ⊂ F ooµν (Fµνoo )∗ (1.29)

Given the SU(2) field strength

Fkµν = ∂µAkν − ∂νAkµ + Aµi Ajν εkij (1.30)

the SU(2) Yang-Mills term is embedded as

F iµν F
µν
i (i = 1, 2, 3) ⊂ (F koµν ) (Fµνko )∗ (k = 1, 2, 3) (1.31)

Since the SU(2) algebra is isomorphic to the algebra of quaternions, the em-
bedding (1.31) is very natural. The chain of subgroups

SO(8) ⊃ SO(7) ⊃ G2 ⊃ SU(3) (1.32)

related to the round and squashed seven-spheres : S7 ' SO(8)/SO(7), S7
∗ '

SO(7)/G2, reflect how the SU(3) group is embedded. The number of generators
of SO(8), SO(7) are 28 and 21 respectively. There are 7 + 21 = 28 complex-
valued field strengths, respectively

F ocµν , F kcµν , k = 1, 2, 3; c = 1, 2, · · · , 7 (1.33)

such that the SU(3) Yang-Mills terms can be embedded into the contribution
of the above 7 + 21 = 28 complex-valued fields as follows

Fαµν Fµνα (α = 1, 2, . . . , 7, 8) ⊂ (F ocµν) (Fµνoc )∗ + (F kcµν) (Fµνkc )∗ (c = 1, 2, . . . , 7)
(1.34)
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and where the SU(3) field strength is given by

Fγµν = ∂µAγν − ∂νAγµ + Aµα Aβν f
γ
αβ (1.35)

Having reviewed some of the results in [1] we shall proceed in the next sec-
tion to show how the matrix realization of the C ⊗ H ⊗ OL algebra naturally
leads to a rank-16 u(4) ⊕ (4) ⊕ u(4) ⊕ u(4) algebra. This, in turn, suggests to
extend the Standard Model based on the SU(3) × SU(2) × U(1) group to one
based on [SU(4)]4. In the final section we show how to establish the correspon-
dence among C ⊗ H ⊗ O-valued gravity, generalized Hermitian geometry and
Nonsymmetric Kaluza-Klein Theory. The construction in section 3 must not
be confused with the model of R⊗ C ⊗H ⊗O-valued gravity discussed above.

2 SU(4)C ×SU(4)F ×SU(4)L×SU(4)R Unification

Given that the complex quaternionic algebra C ⊗H is isomorphic to the Pauli
spin algebra with the 2 × 2 matrices q0 = 12×2, qk = iσk, k = 1, 2, 3, and the
left action of the octonionic algebra on itself is represented by the 8×8 matrices
eLA = ML

A, A = 0, 1, · · · , 7, then the 4 × 8 = 32 generators qI ⊗ eLA of the
C ⊗H ⊗OL algebra can be represented by 32 complex 16× 16 matrices, which
is tantamount to 64 real 16×16 matrices, and which is compatible with the fact
that 64 (2× 4× 8) is the dimension of the C ⊗H ⊗OL algebra.

Each complex 16× 16 matrix, above, can be expanded in terms of the basis
elements of the complex Clifford algebra Cl(8, C) comprised of 28 = 256 complex
16× 16 matrices. However this is far too cumbersome. It is easier if we expand
each of the above 32 complex 16× 16 matrices in terms of the tensor products
ΓM⊗14×4, where ΓM (M = 1, 2, · · · , 32 = 25) is the basis of the complex Clifford
algebra Cl(5, C) comprised of 32 complex 4 × 4 matrices, and 14×4 is the unit
4× 4 matrix.

Therefore we end up having that the 32 complex 16× 16 matrix generators
qI ⊗ eLA of the C ⊗ H ⊗ OL algebra can be expanded in terms of a linear
combination of the 32 Cl(5, C) algebra generators ΓM as follows

qI ⊗ eLA = (ML
IA)16×16 =

32∑
M=1

CMIA (ΓM )4×4 ⊗ 14×4, (2.1)

where I = 0, 1, 2, 3;A = 0, 1, 2, · · · , 7, and CMIA are complex numerical coeffi-
cients.

Let us recall the following isomorphisms among real and complex Clifford
algebras [6]

Cl(2m+ 1, C) = Cl(2m,C)⊕ Cl(2m,C) ∼M(2m, C)⊕M(2m, C) ⇒
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Cl(5, C) = Cl(4, C)⊕ Cl(4, C) (2.2)

where M(2m, C) is the 2m×2m matrix algebra over the complex numbers (some
authors [4] use the different notation C(2m)).

Also one has

Cl(4, C) ∼M(4, C) ∼ Cl(4, 1, R) ∼ Cl(2, 3, R) ∼ Cl(0, 5, R) (2.3)

Cl(4, C) ∼M(4, C) ∼ Cl(3, 1, R)⊕ i Cl(3, 1, R) ∼M(4, R)⊕ i M(4, R) (2.4)

Cl(4, C) ∼M(4, C) ∼ Cl(2, 2, R)⊕ i Cl(2, 2, R) ∼M(4, R)⊕ i M(4, R) (2.5)

where M(4, R),M(4, C) is the 4× 4 matrix algebra over the reals and complex
numbers, respectively.

In [6] we showed, by recurring to the Weyl unitary “trick”, how from each one
of the Cl(3, 1, R) commuting sub-algebras inside the Cl(4, C) algebra one can
also obtain the u(p, q) algebras with the provision p+q = 4. Namely, the u(p, q)
algebra generators are given by suitable linear combinations of the Cl(3, 1, R)
generators. In particular, the u(2, 2) = su(2, 2) ⊕ u(1) algebra contains the
conformal algebra in four dimensions su(2, 2) ∼ so(4, 2). When p = 4, q = 0,
the algebra is u(4) = u(1)⊕ su(4) ∼ u(1)⊕ so(6).

To sum up, given that the algebra M(4, C) ∼ gl(4, C) is also the complex-
ification of u(4) (sl(4, C) is the complexification of su(4)), and by virtue of
eqs-(2.2), the Cl(5, C) algebra can be decomposed into four copies of u(4)

Cl(5, C) = Cl(4, C)⊕ Cl(4, C) ∼ u(4)⊕ u(4)⊕ u(4)⊕ u(4) (2.6)

The dimension of the four copies of u(4) is 4 × 16 = 64 which matches the
dimension of the C ⊗H ⊗OL algebra, as expected (64 is also the dimension of
the real Cl(6) algebra). Consequently, the C⊗H⊗OL algebra, by virtue of the
decomposition in eq-(2.1), can accommodate a grand unified group given by

SU(4)C × SU(4)F × SU(4)L × SU(4)R ⊂ U(4)× U(4)× U(4)× U(4) (2.7)

The gauge group SU(3)C × SU(3)F × SU(3)L × SU(3)R can naturally be
embedded into the above [SU(4)]4 group. The former group involving a unifi-
cation of left-right SU(3)L×SU(3)R chiral symmetry, color SU(3)C and family
SU(3)F symmetries in a maximal rank-8 subgroup of E8 was proposed by [7] as a
landmark for future explorations beyond the Standard Model (SM). This model
is called the SU(3)-family extended SUSY trinification model [7]. Among the
key properties of this model are the unification of SM Higgs and lepton sectors,
a common Yukawa coupling for chiral fermions, the absence of the µ-problem,
gauge couplings unification and proton stability to all orders in perturbation
theory.

The standard model (SM) fermions (quarks, leptons) can be embedded into
the fermionic matter belonging to the following SU(4)C × SU(4)F × SU(4)L ×
SU(4)R representations as follows
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QSM ⊂ Q = (4, 4, 4̄, 1), QcSM ⊂ Qc = (4̄, 4̄, 1, 4), (2.8)

LSM ⊂ L = (1, 4, 4̄, 1), Lc = (1, 4̄, 1, 4) (2.9)

where the Q,Qc,L,Lc multiplets include the addition of heavy quarks (anti-
quarks); leptons (anti-leptons), and an extra fourth family of fermions (and
their anti-particles). The first (left handed) quark family is

Q1 ≡


ur dr Ur Dr

ub db Ub Db

ug dg Ug Dg

Qu Qd QU QD

 (2.10)

where Qu, Qd, QU , QD, and Ur,b,g, Dr,b,g are the additional quarks . As usual
r, b, g stand for red, blue, green color. The charge conjugate multiplet containing
the (right-handed) anti-quarks of the first family is

Qc
1 ≡


ur ub ug Qu
dr db dg Qd
Ur Ub Ug QU
Dr Db Dg QD

 (2.11)

By ur one means ucr̄, the up anti-quark with anti-red color, etc · · ·. Whereas
Qu = Qcu, · · ·. And similar assignments for the remaining quark families.

The lepton multiplet will include the ordinary leptons (neutrino, electron,
· · · ), plus the addition of charged E−, E+, · · ·, and neutral leptons NE , N

c
E , · · ·.

The first (left handed) lepton multiplet is comprised of {νe, e−, NE , E−}, and
its (right handed) anti-multiplet is comprised of {νce , e+, N

c
E , E+}. If necessary,

one may also have to add extra fermions to cancel anomalies.
An analysis of the models based on SU(4)C × SU(3)L × SU(3)R, and a

preliminary discussion of SU(4)C×SU(4)L×SU(4)R can be found in [8]. Their
lepton assignment differs from ours. An early SU(4)C × SU(4)F model, and
based on an extension of the Pati-Salam group SU(4)C × SU(2)L × SU(2)R,
was proposed by [9]. Examples of a fourth family extension of the Standard
Model can be found in [10].

Concluding this section, the algebraic structure of C ⊗ H ⊗ OL led to the
group [SU(4)]4 and reveals the possibility of extending the standard model by
introducing additional gauge bosons, heavy quarks and leptons, and a fourth
family of fermions. The physical implications are enormous.

3 C⊗H⊗O-valued gravity, Matrix geometry and
Nonsymmetric Kaluza-Klein Theory

In the final section we show how to establish the correspondence among C⊗H⊗
O-valued gravity, generalized Hermitian Matrix geometry and Nonsymmetric
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Kaluza-Klein Theory. It must not be confused with the model of R⊗C⊗H⊗O-
valued gravity discussed previously in section 1.

We begin by recalling that the standard Hermitian metric on a complex
D-dim manifold whose complex coordinates are zµ, z̄µ, µ = 1, 2, · · · , D; µ̄ =
1̄, 2̄, · · · , D̄, satisfies the properties [11]

gµν = gµ̄ν̄ = 0, gµν̄ = gν̄µ 6= 0, (gµν̄)∗ = gµ̄ν = gνµ̄ 6= 0 (3.1)

The real infinitesimal line interval ds2 is given by

ds2 = gµν̄ dz
µ dz̄ν + gµ̄ν dz̄

µ dzν (3.2)

The H ⊗ O-valued extension of the above Hermitian metric leads to a real
infinitesimal line interval of the form

ds2 =
1

16
Trace ( gµν̄ dz

µ dz̄ν + gµ̄ν dz̄
µ dzν ) (3.3)

and provided in terms of the trace of the 16 × 16 matrix-valued gµν̄ ,gµ̄ν com-
ponents as we shall explain next.

Given that the 2 × 4 × 8 = 64 generators of the C ⊗ H ⊗ OL algebra can
be represented by 32 complex 16× 16 matrices (ML

IA)16×16 (or 64 real 16× 16
matrices), the C ⊗H ⊗O-valued metric components appearing in (3.3) can be
expanded in a quaterno-octonionic basis, and rewritten in a 16×16-matrix form,
in the following fashion

gµν̄(zµ, z̄µ) =
∑
I,A

gIAµν̄ (zµ, z̄µ) (qI ⊗ eLA)JK = gJKµν̄ (zµ, z̄µ) (3.4)

gµ̄ν(zµ, z̄µ) =
∑
I,A

gIAµ̄ν (zµ, z̄µ) (qI ⊗ eLA)JK = gJKµ̄ν (zµ, z̄µ) (3.5)

The coordinates are zµ, z̄µ ∈ C2. The matrix indices’ range is J,K = 1, 2, · · · , 16.
The quaternion indices are I = 0, 1, 2, 3, and the octonion indicesA = 0, 1, 2, · · · , 7,
respectively, and such that the components gJKµν̄ (zµ, z̄µ), gJKµ̄ν (zµ, z̄µ) are complex-
conjugates of each other ensuring that the interval (ds)2 in eq-(3.3) is real.

The non-vanishing connection coefficients of a Hermitian complex manifold
are given by [11]

Γρµν = gρλ̄ ∂µgλ̄ν = gρλ̄
∂gλ̄ν
∂zµ

; Γρ̄µ̄ν̄ = gρ̄λ ∂µ̄gλν̄ = gρ̄λ
∂gλν̄
∂z̄µ

(3.6)

The non-vanishing curvature components are

Rρσµ̄ν = ∂µ̄Γρνσ, Rρ̄σ̄µν̄ = ∂µΓρ̄ν̄σ̄ (3.7)

The Ricci tensor components are
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Rµ̄ν = Rρρµ̄ν , Rµν̄ = Rρ̄ρ̄µν̄ (3.8)

and the Ricci scalar is

R = gµν̄ Rµν̄ + gµ̄ν Rµ̄ν (3.9)

Under (anti) holomorphic coordinate transformations

z′µ = z′µ(zρ), z̄′µ = z̄′µ(z̄ρ) (3.10)

the metric components transform as

g′ρσ̄ =
∂zµ

∂z′ρ
∂z̄ν

∂z̄′σ
gµν̄ , g′ρ̄σ =

∂z̄µ

∂z̄′ρ
∂zν

∂z′σ
gµ̄ν (3.11)

g′ρ̄σ̄ = g′ρσ = 0 (3.12)

Let us take the ordinary Hermitian metric in D = 2 complex dimensions case
as an example (D = 4 real dimensions) whose coordinates are zµ, z̄µ, µ, ν =
1, 2 and µ̄, ν̄ = 1̄, 2̄. The invariant measure of integration under the (anti)
holomorphic coordinate transformations (3.10) is

dΩ ≡ dz1 ∧ dz2 ∧ dz̄1 ∧ dz̄2
√
det(gµν̄(z, z̄))

√
det(gµ̄ν(z, z̄)) (3.13)

and the analog of the Einstein-Hilbert action is

S =
1

2κ2

∫
R dΩ (3.14)

where R is given by eq-(3.9) and κ2 is the gravitational coupling, (8πG in
ordinary Einstein gravity in 4D).

To extend these definitions to the C ⊗ H ⊗ O-valued metric case is more
complicated due to the noncommutativity and nonassociativity. One may begin,
firstly, by finding the relation between C⊗H⊗O-valued metrics in two complex
dimensions with metrics in higher dimensional real manifolds.

Focusing on one simple example given by the two-complex dimensional case
(four real dimensions) zµ, z̄µ ∈ C2, so that the C ⊗H ⊗ O-valued metric com-
ponents gJKµν̄ (zµ, z̄µ) have a one-to-one correspondence with the components of
the 32 × 32 complex matrix gMN = g(MN) + ig[MN ], with M,N = 1, 2, · · · , 32.
Similarly, the C ⊗ H ⊗ O-valued metric components gJKµ̄ν (zµ, z̄µ) have a one-
to-one correspondence with the components of the 32 × 32 complex matrix
(gMN )∗ = g(MN) − ig[MN ] = gNM .

Let us decompose the 32× 32 complex metric gMN = g(MN) + ig[MN ] in the
following Kaluza-Klein (KK) form

gMN (xα; ya) =

(
gαβ + hab A

a
α A

b
β Abα hab

Aaβ hab hab

)
(3.15)

10



such that
gαβ = g(αβ) + ig[αβ]; hab = h(ab) + ih[ab] (3.16)

The four-dimensional spacetime indices range from α, β = 1, 2, 3, 4, and the
internal space indices range is a, b = 1, 2, · · · , 28. Similar results apply to the
complex conjugate (gMN )∗(xα; ya). Note that the real dimensions of the higher
dimensional space is 32 = 4 + 28.

It is important to emphasize that the above Kaluza-Klein decomposition is
not the standard one associated to symmetric metrics but one corresponding
to the Nonsymmetric Kaluza-Klein (Jordan-Thiry) Theory and whose structure
is far richer than the conventional one. Completely new results in comparison
to the standard symmetric Kaluza-Klein theory have been obtained by [12].

The Ricci scalar

R = gMNRMN + (gMNRMN )∗ (3.17)

allows to construct the higher dimensional gravitational action

S =
1

2κ2

∫
d32X [ ||det(gMN )|| ]

1
2 R(X) =

1

2κ2

∫
d32X [det(gMN ) det(gMN )∗]

1
4 R(X) (3.18)

writing the norm of a complex number as ||z|| =
√

(zz∗) is the reason why there
is a 4-th root in (3.18). After the Kaluza-Klein reduction from D = 32 to D = 4
: gMN (xα; ya)→ gMN (xα), eq-(3.18) becomes

S =
Ω28

2κ2

∫
d4x [det(gMN (x)) det(gMN (x))∗]

1
4 R(x) (3.19)

where
∫
d28y = Ω28 is the volume of the 28-dimensional compact internal space.

To sum up, given µ, ν = 1, 2; µ̄, ν̄ = 1̄, 2̄, and M,N = 1, 2, · · · , 32; the
Nonsymmetric Kaluza-Klein reduction from D = 32 to D = 4 : gMN (xα; ya)→
gMN (xα) would allow to establish the following correspondence between C ⊗
H ⊗ O-valued metrics in two complex dimensions and complex-valued metrics
in higher dimensional real manifolds

gJKµν̄ (zµ, z̄µ)↔ gMN (xα) = g(MN)(x
α) + ig[MN ](x

α); α = 1, 2, 3, 4 (3.20)

and similary

gJKµ̄ν (zµ, z̄µ)↔ (gMN )∗(xα) = g(MN)(x
α)− ig[MN ](x

α); α = 1, 2, 3, 4 (3.21)

Finally, after the correspondence of eqs-(3.20, 3.21) is established we may then
propose the action (3.19), after the Kaluza-Klein reduction, to be the one which
corresponds to the H ⊗ O-extension of the prior gravitational action (3.14)
associated with the Hermitian metric in a two-dimensional complex manifold.
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An interesting coincidence is that the line interval ds2 = ηMNdX
MdXN

in a D = 32-dim Euclidean space has SO(32) for its isometry group. SO(32)
and E8 × E8 are the groups associated with the anomaly-free heterotic string
in D = 10. A KK compactification from D = 32 to D = 4 on a 14 complex-

dimensional internal space CP 14 = SU(15)
U(14) yields a SU(15) Yang-Mills in D = 4.

SU(15) can be embedded into SO(32) as SU(15) ⊂ SU(16) ⊂ SO(32).
The simplest case is that of a metric in D = 1 complex dimension (2 real

dimensions) gJKµν̄ = gJK11̄ (z, z̄) which corresponds to a 16 × 16 complex metric
gMN in 16 real dimensions. A KK compactification from D = 16 to D = 2

on a 7 complex-dimensional internal space CP 7 = SU(8)
U(7) yields a SU(8) YM in

D = 2. SU(8) ⊂ SO(16) which is the isometry group of a 16-dim Euclidean
space.

To extend the definitions of the Ricci scalar (3.9) to the C ⊗H ⊗O-valued
metric g case is more complicated due to the noncommutativity and nonassocia-
tivity. For example, one would have terms of the form g∂(g∂g), g(g∂g)(g∂g),
such that their products are no longer associative, and due to the noncommu-
tativity, the results also depend on the ordering of those products.

To finalize this section we propose the construction of a generalized Hermi-
tian Matrix geometry as follows. After the correspondence in eqs-(3.20, 3.21)
is made, one could treat each one of the components of gµν̄ ,gµ̄ν as if they were
16 × 16 matrices, and if one chooses an specific ordering of those matrices in
the products in g∂(g∂g), g(g∂g)(g∂g), one could then define the H⊗O-valued
extension of the Ricci tensor (3.8). Furthermore, due to the cyclic property of
the trace operation, the H ⊗O extension of the Ricci scalar of eq-(3.9) is given
in terms of the trace of the product of the 16× 16 complex matrices as follows

R =
1

16
Trace

(
gµν̄ Rµν̄ + gµ̄ν Rµ̄ν

)
(3.22)

To find the analog of the Einstein-Hilbert action in the C ⊗H ⊗ O-valued
metric requires to construct the proper measure. We may define the block
determinant Det of gJKµν̄ (zµ, z̄µ) in terms of antisymmetrized sums of products
of determinants of 16× 16 matrices. Namely,

Det (gJKµν̄ (zµ, z̄µ)) =
1

(2!)2
εµ1µ2 εν̄1ν̄2 det(gJKµ1ν̄1) det(gJKµ2ν̄2) (3.23)

where the determinant of the 16× 16 matrix block is

det(gJKµ1ν̄1) =
1

(16!)2
εJ1J2···J16 εK1K2···K16

gJ1K1
µ1ν̄1 gJ2K2

µ1ν̄1 · · · g
J16K16
µ1ν̄1 (3.24)

and

det(gJKµ2ν̄2) =
1

(16!)2
εJ1J2···J16 εK1K2···K16

gJ1K1
µ2ν̄2 gJ2K2

µ2ν̄2 · · · g
J16K16
µ2ν̄2 (3.25)
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Similarly we can define the block determinant Det (gJKµ̄ν (zµ, z̄µ)) and extend
these definitions to other complex-dimensions beyond D = 2. The measure of
integration is a generalization of (3.13) and given by

DΩ ≡ dz1 ∧ dz2 ∧ dz̄1 ∧ dz̄2
√
Det(gJKµν̄ (z, z̄))

√
Det(gJKµ̄ν (z, z̄)) (3.26)

The generalization of the Einstein-Hilbert action in eq-(3.14) is given in terms
of R in eq-(3.22), and the measure (3.26), as follows

S =
1

32κ2

∫
DΩ Trace16×16

(
gµν̄ Rµν̄ + gµ̄ν Rµ̄ν

)
(3.27)

Therefore, the gravitational action (3.27) based on “coloring” the graviton by
attaching internal indices gµν̄ → gJKµν̄ , · · · and associated to the 16 × 16 matri-
ces, is the one corresponding to a C ⊗H ⊗ O-valued metric, and defined over
a complex Hermitian manifold in two complex-dimensions. We propose that
this matrix approach could be an example of a generalized Hermitian Matrix
geometry, and which must not be confused with the current work on generalized
geometry, double field theories, exceptional field theories in M -theory, see [13]
and references therein.

Going back to the line interval of eq-(3.3), under unitary U(16) symmetry
transformations U† = U−1 acting on the 16× 16 matrix indices only

gµν̄ → U gµν̄ U−1, gµ̄ν → U gµ̄ν U−1 (3.28)

the interval ds2 (3.3) will remain invariant due to the cyclic property of the
Trace

Trace
(

U gµν̄ U−1
)

= Trace
(

U−1 U gµν̄
)

= Trace ( gµν̄ ) (3.29a)

Trace
(

U gµ̄ν U−1
)

= Trace
(

U−1 U gµ̄ν
)

= Trace ( gµν̄ ) ⇒
(3.29a)

Trace
(

U gµν̄ U−1 dzµ dz̄ν + U gµ̄ν U−1 dz̄µ dzν
)

=

Trace ( gµν̄ dz
µ dz̄ν + gµ̄ν dz̄

µ dzν ) (3.30)

Therefore, the unitary group U(16) acts as an isometry group. In ordinary
KK theory the gauge symmetries in lower dimensions emerge from the isometry
group of the compactified internal space. In the previous section one had C ⊗
H ⊗OL algebra ↔ 32 complex 16× 16 matrices ↔ 64 real 16× 16 matrices ↔
64 generators of the rank-16 u(4) ⊕ u(4) ⊕ u(4) ⊕ u(4) algebra. The u(16) has
also rank 16, like the so(32) and e8 ⊕ e8 algebras, but in this case the isometry
group U(16) is larger than [U(4)]4.

To conclude, we have explored the C ⊗H ⊗O algebra deeper and led us to
the gauge group [SU(4)]4 (suggesting the plausible existence of a fourth fam-
ily). Whereas C ⊗ H ⊗ O-valued gravity bear connections to Nonsymmetric
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Kaluza-Klein theories and complex Hermitian Matrix Geometry. It is desirable
to extend these results to hypercomplex, quaternionic manifolds and Excep-
tional Jordan Matrix Models.
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