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Abstract

The hidden variable solution to the EPR paradox proposes that correlation of
measurements of entangled particles is due to variables that get decided when the
entangled particles get created. It is shown that the correlation of spin measure-
ments in Bell’s form of the EPR paradox can be explained as deriving from spin
of the entangled particles in the z-direction. This spin parameter is not hidden as

it is included in the standard quantum mechanical formulation.

Albert Einstein, Boris Podolsky and Nathan Rosen proposed a thought ex-
periment where conjugate properties are measured from two entangled particles
in a paper [1] published in 1935. The authors claimed that the position could
be measured precisely from one particle and the momentum from another. By
Heisenberg’s uncertainty principle position and momentum cannot both be pre-
cisely measured, thus the authors concluded that the measurements of entangled
particles must be correlated: if the position is precisely measured from one parti-
cle, the momentum cannot be precisely measured from the other particle because
of some mechanism. The authors suggested that the mechanism of such correla-
tion can either be faster than light transfer of information from one particle to the
other one, which Einstein naturally rejected, or that the particles have in some
way agreed on how to answer to future measurements. This agreement would be
stored in some variables in the particles. As such variables did not seem to exist
in quantum mechanics, they become called hidden variables in the EPR paradox.

In 1964 John Bell reformulated the paradox as a measurement of the spin of
two entangled particles and proved Bell’s Teorem in [2]. His proof seemed to show
that local hidden variables could not be a solution to the EPR paradox. Recently
I made an elementary argument in [3] showing that Bell’s proof is not valid: Bell’s
inequality violations are caused by an incorrect normalization of detector direc-
tions. Experiments that have confirmed Bell’s Theorem use the same incorrect

scaling of detector directions and naturally get the same result as Bell.



The present short note shows that the EPR paradox in the form proposed
by Bell can be solved by what he called hidden parameters, but these parameters
are already in the formulation of quantum mechanics and threfore not in any way
hidden. Notably it will be shown that the entangled particle system studied in the
EPR paradox may be in two mixed states after breaking up, but in both states
each particle has a definite spin angular momentum value.

In one of these states the first particle has the spin + in the x-direction and
the second has -, while in the second mixed state the spins in the x-direction are
the opposites. Assuming, as in the hidden parameter solution, that the particles
do have definite spins, the wave functions are not mixes of these two states but
one or the other.

As spin is conserved, spin directions are not changed by the following measure-
ment in either particle. This simple mechanism gives the observed anticorrelation
of the spins of the two particles. The argument does not show that this is the
way it happens, but it shows that this is a possible logical explanation to the EPR
paradox.

The entangled wave function studied in the EPR paradox in [2] is of the type

) = c1]|Vo4) ® [Vo) +C2|t—) ® [th4)

where [¢;4) and [¢;_), j € {,y, 2}, are the eigenvectors of the Pauli matrices
o; corresponding to the eigenvalues 1 and -1 respectively and c;,c2 are complex
numbers. The wave function |¢) is created by a break-up of a spin zero single
state and must have spin zero. We have to derive the spin zero subspace.

The first particle is
) = c1lta4) + caltho—).
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<¢w+‘¢> =
<¢z—|7/)) =C2

the probabilities of measuring the eigenvalues |¢,4), m € {z,y,2}, a € {+, -},

are the real numbers

Wer ) = 3 (1 + (e + c163)

o 87 = 51~ (Elez + c163))

Wy} = S0~ ilcier — exch))
1

(g [9)|* = 5 (1 +i(cler — c165))
(o[ = cier
[(a—|9)|* = c5ea.

The wave function [1) can be expressed in a basis |¥m+), [Ymy) as
%) = (Ymt |0 Ymt + (Pm—[P) [
The second particle
[¥') = calpoy) + calipa).

has similar formulas with ¢; and ¢ interchanged, but as it is moving in the

opposite direction, the spin is inverse. Thus, the total spin + in the x-direction

for the two particles is
1.1 1.1 1
§h§(1 + (CTCQ + ClC;)) + Ehi(l - (6301 + CQCT)) = ih

The total spin - in the x-direction for the two particles is

1.1 1.1 1
—§h§(1 - (CTCQ + ClC;)) - §h§(1 + (C;Cl + CQCT)) = _Eh

The total spin of the two particles in the x-direction is the sum of these numbers,

i.e., it is zero for any ci,cs.



The total spin + in the y-direction for the two particles is
1.1 1.1
57’15(1 —i(ciea — c1c3)) + 57’15(1 + i(cher — eacd))

1 R *
= 57’1(1 —i(cica — c163))

The total spin - in the y-direction for the two particles is

1.1 . 1.1 .
—5hg (L +ileies —ac)) = 5hg (1 —ileyer — cz01))

1 . * *
= —57’1(1 +i(cjea —c163))

The total spin of the two particles in the y-direction is the sum of these numbers,
1 . * *
Ehz(—clcz + c165).

This number is zero if
C1

C2 =+ ‘Cz|.

c1]

The total spin + in the z-direction for the two particles is
1., , . 1
§h(c1cl + cheo) = §h

if the norm of the wave function is set to one. The total spin - in the z-direction

for the two particles is

1 1
—Eh(c302 +cjer) = —57’1.

Summing the numbers shows that the total spin in the z-direction is always zero.
The total spin must be zero to all directions. Therefore cjca — c1c5 = 0. It
implies that
1
2 2
[WDy+[9)" = [y 1) " = 5
i.e., the spin in the y-direction is zero for each particle.
We can set

C1 =

Sl
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as a basis vector can be multiplied by any complex number. We do not necessarily
need to have |c1| = |c2| but can select the basis wave functions so that this is true.
Thus,

1
Cog = +—.

V2

As a conclusion, there are two basis vectors for the subspace spin zero:

62) = () ® [9:) = [$2-) @ [cs)

and
1
V2

Both of these basis vectors give total spin zero to all directions for the two

(2) = —=([$21) ® [2) + [02-) © [924))-

particle system and both give spin zero in y and z directions to each particle
separately, but they do not give spin zero in the x-direction for each particle.
Indeed, for |¢p,) the first particle has the spin

1.1 1.1
57}5(1 + (ciea + c1c3)) — 555(1 — (che1 + c20))

%h(cfcz +cicy) = —%h
in the x-direction and the second particle has the opposite spin. For |¢9) it is
inversely.

In the hidden parameter solution each particle has a definite spin after the
single state has broken up. Thus, |¢) is not a linear combination of the basis
vectors |¢1) and |¢p3). It is one or the other with equal probabilities.

The total spin of a particle cannot change from + to - in a measurement, thus,
if the first particle has the spin + in the x-direction, it is also the total spin of this
particle, and the first measurement can only collapse it to [¢,,4) eigenvectors. It
follows that the second particle must have - spin in the x-direction and the second
measurement can only collapse it to |i,,—) eigenvectors. A similar conclusion is
true if the first particles has spin -.

The basis vectors |¢1) and |@2) are both mixed states and measurements
collapse these mixed stated to pure states of eigenvectors |¢,,,), thus measure-
ments have this somewhat mysterious property of collapsing wave functions, but

the correlation is caused by the conservation of angular momentum, in this case,



spin angular momentum. This mechanism gives the observed anticorrelation be-
tween the measurements without assuming neither instantaneous long distance
information transfer nor any missing variables in quantum mechanics.

The original EPR paradox in [1] has a different solution. The authors of [1]
mistakenly assume that both position and momentum could be measured precisely
from two entagled particles unless there is some mechanism causing correlation of
measurements. There is such a mechanism in the case of spin or polarization mea-
surements, but with conjugated properties in Heisenberg’s uncertainty principle
no such correlation mechanism is needed: particles are waves and they do not have
precise values for conjugated properties.

A point mass has both a precise position and a precise momentum. The
momentum can be obtained by measuring the mass and averaging the velocity
over a long distance. Because the momentum is conserved, the velocity measured
over any short distance equals the average over a long distance.

A wave packet, instead, has some minimum distance over which velocity can
be measured so that it still closely equals the average velocity over a long distance.
Trying to measure velocity over a shorter distance faces the problem that the wave
extends outside this distance, i.e., the mass is not the whole mass. Therefore
the momentum measurement becomes necessarily unprecise if the location is very
precise. Indeed, a wave packet does not have a precise position in the sense a point

mass has.
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