Fermat's theorem: The second case (A is multiple of n)

In Memory of my MOTHER

All calculations are done with numbers in base n, a prime number greater than 2.

The notations:

 $A' / A_{(t)}$ – the first / the t-th digit from the end of the number A;

 $A_{[t]}$ – is the k-digit ending of the number A (i.e. $A_{[t]}$ =A mod n^t);

Let's assume that for co-prime natural numbers $A \left[\text{=n}^k A^{\circ} \right]$, B, C and a prime n>2

1°) A^{n} + B^{n} - C^{n} =0 and C^{n} - B^{n} =(C-B)P, where, as it is known [see $\frac{v_i X r a : 1707.0410}{v_i}$], 1.1°) (C-B)_[kn-1]=0, P=P°n, Aⁿ=n^{kn}A°ⁿ, U=A+B-C=n^ku (u'≠0, k>1). 1.2°) C-A=bⁿ, B=bq; A+B=cⁿ, C=cr; qⁿ=Q, rⁿ=R, P°'=Q'=R'=1; the numbers A°, P°, n, b, q, c, r – are co-prime.

Proof of the FLT

2°) Consider the number $D=(A+B)^n-(C-B)^n-(C-A)^n$, where $(C-B)^n_{[k+2]}=0$, from here

2.1^o) $D_{[k+2]}=[(A+B)^{n}-(C-B)^{n}-(C-A)^{n}+(A^{n}+B^{n}-C^{n})]_{[k+2]}=[[(A+B)^{n}-C^{n}]-[(C-A)^{n}-B^{n}] \}_{[k+2]}$, or

2.2°) $D_{[k+2]} = \{ [c^n (c^{n-1}-r^n)V] - [b^n (b^{n-1}-q)W] \}$, where $(c^{n-1}-r)_{[k]} = (b^{n-1}-q)_{[k]} = 0$, $V_{(2)} = W_{(2)} = 10$, a'=b'

 3°) and therefore, $D_{[k+2]}=0$.

However after removing parenthesis in Newton's binomials in 2° and grouping the summands having equal powers into pairs, we can notice that all pairs end by k+2 zeroes and only the pair in 4°) $n^{k+1}A^{\circ}C^{n-1}+n^{k+1}A^{\circ}B^{n-1}$ ends by k+1 zeroes, because (k+2)-th digit is equal to (2A°)' (since the numbers C^{n-1} and B^{n-1} end by the digit 1 – see SFT), which contradicts to 3^o! From what follows the truth of FLT.

Mezos. Octoner 25, 2018

P.S. The Proof of the first case see [viXra:1809.0571.](http://vixra.org/abs/1809.0571)