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Abstract
This paper gives us an application of Eratosthenes sieve to distribution mean
distance between primes using first and upper orders of Gauss integral log-
arithm Li(x).We define function Υ in section 5. Sections 1 − 4 give us an
introduction to the terminology and a clarification on Υ terms. Section 6
reassumes foregoing explanations and gives us two theorems using first and
upper integral logarithm orders.

1. Introduction

A number is a twin if it can be found at distance two from the previous
or following number of a sequence.
A famous algorithm for making table of primes is the sieve of Eratosthenes:
sequentially write down the integers from 2 to a number n that is the last
of table; cross out all number greater then 2 which are divisible by 2; the
remaining numbers are all twins but only some of them will survive to the
next deletions. Then we can find the smallest remaining number greater
then 2: it is 3. So we cross out all numbers greater then 3 which are divis-
ible by 3,the remaining ones are twins in the form 6k + 1 and 6k − 1. As
previous only some of them will survive to the next deletions. We can go as
far as b

√
nc so the numbers remaining are prime.

A famous conjecture affirms that there are an infinite number of twin primes.
We can demonstrate this conjecture by the natural distribution of primes us-
ing the formula n

lnn , discovered by Gauss and upper orders of Li(x) function
(integral logarithm) discovered by Gauss too.
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2. Inaccurate sieves

First we observe that, if a number x is prime, it will suffice to control
if it is divisible by integers under

√
x. So, if we want to realize an exact

sieve of Eratosthenes to the number x we must cross out multiples of primes
numerically inferior to

√
x.

We name would-be twin primes those numbers in the form 6k + 1, 6k − 1
included between x and its root. They are

b2x
6
c − b2

√
x

6
c (1)

using (1) we can miscalculate two numbers in excess at most but this is a
negligible error. To find the couples, it will suffice to divide by two.
Primes greater then 3, under

√
x, will be named eliminators because they

will surely cut out some of the would-be twin primes thanks to the sieve; in
fact these numbers, being 6k + 1 or 6k − 1, have a period of 6. This means
that they have to ”jump” six times to complete the period; so

6k + 1 ≡ 1 mod 6

6k − 1 ≡ −1 mod 6

The following figure clarifies the terminology

Fig 1 An eliminator y and its ”jumps”(or multiples).

In the figure, y is an eliminator and the ”jumps” are its multiples. Specif-
ically the eliminator 6k + 1, after 4 jumps, cuts out a 6k − 1 number and,
after 6 jumps, it cuts out a 6k + 1 number; 6k − 1 behaves specularly.
The very natural conclusion is that every y eliminator will take x/y jumps:
x/6y will delete numbers of its own form and x/6y will cut out numbers of
the opposite one. An y eliminator will delete totally:

b x
6y
c+ b x

6y
c ∼ b x

3y
c (2)
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would-be twin primes. Among these we can reject the jumps within the
eliminator’s zone, so we consider only the would-be twin primes over

√
x.

Finally the formula (2) becomes

K = b x
3y
c − b

√
x

3y
c (3)

which doesn’t consider possible repetitions, i.e. two or more eliminators
could delete the same would-be twin prime,but, by this way, we consider
two or more times the same deleted number; moreover we conjecture that
whenever an eliminator makes a jump it deletes a pair of twins, but actually
it could delete a number already deprived of its twin (i.e. it is insignificant
in the amount of couples).
The final formula is

bx
6
c − b

√
x

6
c −

∑
y∈π(

√
x)

K (4)

with K is (3) and π(
√
x) are primes under

√
x. Thinking that (4) verifies

the conjecture (i.e. it is positive) is an utopia, unless we presume that the
distribution of eliminators is near

√
x. We have only to refine the estimate,

by removing repetitions and introducing new remarks.

3. The w(n) function

Now we can introduce the w(n) function that represent the number of
distinct prime factors of a number n. Hence we can avoid repetitions, in
fact all numbers hit by an eliminator are deleted necessarily by another
eliminator too (because of factorization); so we can easily halve the number
of jumps. But a would-be twin primes could be deleted by more than two
numbers, for example if all numbers would be hit by three eliminators we
should divide the total amount of jumps by three. All we need now is a
function that shows how many different primes factor a number. Now we
consider mean increase of w(n) (it is be considered that the growth of w(n)
is very irregular). This is the number eliminators jumps should be divided
by.

L =
1

#z

∑
z∈[1,n]

w(z) (5)
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4. Completely deleted twins

Using the prime numbers theorem:

lim
x→∞

π(x)
x/ ln(x)

= 1

and according to Chebyschev boundes

0.92...
x

ln(x)
≤ π(x) ≤ 1.105...

x

ln(x)

we obtain this assertion: if we have x numbers (considering that x
ln(x) are

primes) we can choose as mean distance among close primes precisely ln(x).
In fact this is a weak form (first order expansion) of integral logarithm Li(x):

Li(x) =
x

lnx

∞∑
k=0

k!
(lnx)k

Littlewood (1914) demonstrated that Li(x)−π(x) change sign infinity times
so Li(x) is a good would-be mean, yet to simplify calculus we are going to
use x

ln(x) (first order approximation) reserving upper orders to final theo-
rem. When the distance between two primes, that according the foregoing
estimate is

µ− x = ln(x), (6)

increases as far as it becomes bigger then 8, we know that between two
primes there is a completely deleted couple of would-be twin primes (re-
membering that period is 6) i.e. a couple of twin doesn’t survive elimina-
tor’s jumps. This is a good thing because, thanks to this sacrifice, the other
couples of primes will survive proving our claim. As a matter of fact, if a
couple is completely erased, this means that we needed to use two jumps
to eliminate it. So we take into account the jumps that will hit numbers
already deprived of their twin, from the whole number of jumps. These
jumps, in fact, are irrelevant to count the would-be couples of twin that will
be deleted (indeed, we can consider a couple of twin already destroyed, from
the moment it misses one of the two members).
Mathematically we can write

T =
∑

p∈[
√
x,x]

bdist(p)− 3
6

c (7)
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where dist(p) gives distance function between p (prime) and the following
prime number. Now

T̃ =
n∑

p=
√
n

(b ln(p)− 3
6

c)+ (8)

is the number of jumps needed to completely erase the twin couples between√
n and n. Every x in (6) is, in fact, a prime hence if we develop the formula

above we obtain
n∑

p=
√
n

b ln(p)
6
c−b3

6
(

n

ln(n)
−
√
n

ln
√
n

)c ∼
n∑

p=
√
n

ln(p)
6
−5.5

6
(

n

ln(n)
−
√
n

ln
√
n

)(9)

clearly we added here floor functions so we have to take away at least a
number of elements equal to decimals you may obtain from formula above.
For this considering numerator divided by 6 the following decimals can be
obtained: 1

6 ,
2
6 ,

3
6 ,

4
6 ,

5
6 ; adding these numbers we obtain 2.5, thus we have to

add to the numerator −2.5 ∗ ( n
ln(n) −

√
n

ln
√
n

): this clarifies 5.5.

5. Alternative approach to use of w(n) function and L term

Considering would-be twin primes between x and its root, we find that
these numbers are b2x6 c − b

2
√
x

6 c according to (1). If we cut out from this
formula the primes up to [

√
x, x] we get the primes erased by the sieve

without repetitions. Hence we obtain effortlessly the (5) and third member
of (4). Therefore

1
L

∑
y∈π(

√
x)

K = bx
3
c − b

√
x

3
c − π(x) + π

√
(x) (10)

without computing w(n) for each would-be prime numbers. Therefore using
all these approximations we can write the twin primes computing function :

Υ(x) = bx
6
c − b

√
x

6
c − 1

L

∑
y∈π(

√
x)

K + T (11)

with
1
L

∑
y∈π(

√
x)

K = bx
3
c − b

√
x

3
c − π(x) + π

√
x (12)

T =
∑

p∈[
√
x,x]

bdist(p)− 3
6

c (13)
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It represents the amount of twin primes included between
√
x and x; if this

amount is bigger then zero, our conjecture (affirming that there are endless
twin primes couples) is proved.

Fig. 2 With:
Red → exact twin primes function into [

√
x, x] and

Blue → Υ(x).

Also, using prime number theorem:

π(x)− π
√
x ∼ (

x

ln(x)
−
√
x

ln
√
x

). (14)

6. Approximation of twin primes’counting function

Hence considering the previous conclusions we reach the following ap-
proximation

Υ̃(x) = bx
6
c − b

√
x

6
c − 1

L̃

∑
ỹ∈π(

√
x)

K̃ + T̃ (15)

with
1
L̃

∑
ỹ∈π(

√
x)

K̃ = bx
3
c − b

√
x

3
c − (

x

ln(x)
−
√
x

ln
√
x

) (16)

T̃ =
(ln(x)− 5.5)

6
(

x

ln(x)
−
√
x

ln
√
x

) (17)
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Teorema 1 The function Υ̃(x), defined by (15)-(17), is bigger then zero
for each x > 141.83. This function approximates Υ(x), the twin primes
counting function, defined by (11)-(13).

√
x− x
6

+ (
x

ln(x)
−
√
x

ln
√
x

) +
(ln(x)− 5.5)

6
(

x

ln(x)
−
√
x

ln
√
x

) ≥ 0

√
x− x
6

+
ln(x)

6
(

x

ln(x)
−
√
x

ln
√
x

) +
0.5
6

(
x

ln(x)
−
√
x

ln
√
x

) ≥ 0

using logarithms properties
√
x− x
6

+ (
x

6
− 2
√
x

6
) +

0.5
6

(
x

ln(x)
− 2
√
x

lnx
) ≥ 0

0.5
6

(
x− 2

√
x

ln(x)
)−
√
x

6
≥ 0

least common multiple
√
x(0.5

√
x− 1− ln(x))
lnx

≥ 0

So the denominator is bigger then zero for each x > 1, and the numerator is
a logarithmic equation having as solutions 0.52 and 141.83. This equation
is positive for external values of the following range: [0.52, 141.83]. Hence
Υ̃(x) is positive for each x ∈ [0.52, 1] ∪ [141.83,∞) proving our theorem.
�.
For each x < 20 you may count the twin primes by hand; the theorem
assures that our conjecture is proved, because for each new x, the twins will
increase more and more, assuming that the function is always positive. This
assumption guarantees that twin primes are endless.
The very basic computing hypothesis to demonstrate the theorem is the
assumption that the distance among primes is, in mean, bigger or equal then
ln(x): the same statement is valid for the estimate of J function in (27).If
we assumed that the distance among primes were k ln(x) with 0 < k < 1
from Gauss’approximation our theorem had not been proved. For instance,
with k = 0.7851 we would have:

√
x(
√
x0.5− 1− 0.5702 ln(x)− 0.2149

√
x ln(x))

ln(x)
≥ 0

√
x(
√
x(0.5− 0.2149 ln(x))− 1− 0.5702 ln(x))

ln(x)
≥ 0
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So, positiveness of numerator depends from the following expression
√
x(0.5− 0.2149 ln(x)) (18)

This quantity is positive at the very beginning, but it will become soon
negative because of ln(x), by this way, the numerator will become negative
too, considering that we will find a sum of all negative terms; and this fact
will reject our conjecture.
Yet using k ln(x) with 0 < k < 1 like mean distance between twin primes
we are assuming π(x) ∼ 1

k
x

lnx ∼ Li(x) for some upper orders depending on
k choice.

Teorema 2 Using hypothesis from theorem (1) but using like mean distance

1
k

x

ln(x)

with 0 < k < 1 the approximating function Υ̃(x) is positive for each x >
141.83

Following the step of the foregoing demonstration we have
√
x− x
6

+
1
k

(
x

ln(x)
−
√
x

ln
√
x

) +
1
k

(k ln(x)− 5.5)
6

(
x

ln(x)
−
√
x

ln
√
x

) ≥ 0

from which

1
k

0.5
6

(
x− 2

√
x

ln(x)
)−
√
x

6
≥ 0

and so
√
x(0.5

k

√
x− 1

k − ln(x))
lnx

≥ 0

check hypothesis because the numerator is a logarithm function like theorem
(1) one. �
The conjecture has been demonstrated to all orders of Li(x) function, in
fact observing its expansion we are assuming:

1
k

=
∞∑
t=0

t!
(lnx)t

.
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