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ABSTRACT 

In this article, we propose a generalized method for obtaining a substitution for reducing a 

reducible linear ordinary differential equation with function coefficients (RLDEF) to a linear 

ordinary differential equation with constant coefficient (LDE). This proposed method was also 

used to obtain the already known substitutions for the Euler’s and Legendre’s homogeneous 

second order linear differential equation. The derived method is able to reduce quite a large 

number of RLDEF to LDE including the Euler’s and Legendre’s homogeneous second order 

linear differential equation.  However, these RLDEF (homogeneous and inhomogeneous) must 

satisfy the condition for reducibility, which is also proposed before the substitution is derived. 

the condition for reducibility is based on the order of the differential equation. In this article, the 

condition for reducibility is presented for a second and third order LDEF. 

Keywords:  reducibility, generalized, differential equations. 

1.0 Introduction 

The solutions to RLDEF have been one of the major problems in solving linear ordinary 

differential equations (ODEs).  These RLDEF can be solved either by substitution which 

transforms it into a LDE or by knowing one of the solutions of the RLDEF. 

However, reducing these RLDEF by substitution to a LDE requires getting the right substitution. 

These substitutions are majorly gotten by trial and error method especially when it is not the 

Euler’s or Legendre’s homogeneous differential equation form which has standard substitutions 

[1, 2]. 

This paper proposes a standard method of determining if a linear ordinary differential equation 

with function coefficients is reducible and subsequently a method on how to determine the 

substitution that will reduce it if reducible to LDE, which hitherto does not exist in literature to 

the best of our knowledge. 

#corresponding author: oghenewaire.olowu@uniben.edu 
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2.0 Proposition 1 

The homogeneous second order ordinary differential equation with function coefficient 
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Proof. 

Given a second order differential equation of the form 
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Substitute (2.2) and (2.3) into (2.0) and simplify gives
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5.2)(')()(")( bxrxgxrxf   

Where b  is a constant 
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Substitute (2.8) and (2.10) into (2.5) and after simplification we have 
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Also from (2.8) and (2.1), we have 
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(2.0) is reducible if (2.11) holds and (2.12) is a substitution required to reduce (2.0) to a LDE 

 

3.0 Proposition 2 
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The homogeneous third order ordinary differential equation with function coefficient 
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reducible to a differential equation with constant coefficient by the substitution 
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Proof 

Consider a third order ordinary differential equation of the form: 
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Substitute (3.2), (3.3) and (3.4) into (3.0) and after simplification gives 
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Substitute (3.9) and (3.11) into (3.5) and simplify 
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Substitute (3.9), (3.11) and (3.12) and simplify 
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Also from (3.1) and (3.10), we have 
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4.0 Proposition 3 

The homogeneous third order ordinary differential equation with function coefficient 
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Consider a fourth order ordinary differential equation of the form: 
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Substitute (4.2), (4.3), (4.4) and (4.5) into (4.0) and after simplification gives 
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Substitute (4.12) and (4.14) into (4.7) and simplify 
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Also from (4.1) and (5.13), we have 
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5.0 Illustrative examples 
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5.1 Solve the differential equation with algebraic coefficient 
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5.2 Solve the differential equation with logarithmic coefficient 
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To check if the equation is reducible, 

From (2.11),
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5.5 Solve the third order linear differential equation with algebraic coefficients 
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If the equation is reducible then from (3.13) and (3.14) 
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5.6 Solve the fourth order differential equation with algebraic coefficient 
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Where 0d,0c,0b   

Implies (5.29) is reducible, using (4.20) to get the substitution 
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6.0 Derivation of the substitution for the Cauchy-Euler’s homogeneous differential 

equation using the proposed method. 

 The Cauchy-Euler’s homogeneous differential equation is of the form 
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1.6xlnz   

Substituting (6.1) into (6.0) we have, 
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dz
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(6.1) is the substitution given by Cauchy-Euler to reduce (6.0) to a differential equation with 

constant coefficient as seen in (6.2). 

7.0 Deriving the substitution for the Legendre’s homogeneous differential equation using 

the proposed method. 

 The Legendre’s homogeneous differential equation is of the form 
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Substituting (7.1) into (7.0) we have, 
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(7.1) is the substitution proposed by Legendre to reduce (7.0) to a differential equation with 

constant coefficient as seen in (7.2). 
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8.0 CONCLUTION 

The proposed method has able to reduce linear ordinary differential equation with function 

coefficients to linear ordinary differential equation with constant coefficient as illustrated in 

section three. Section 3, ordinary differential equation with algebraic, logarithmic and 

trigonometry coefficients were treated. 

The Cauchy-Euler’s and Legendre substitution for reducing equations of specific form were 

derived using our proposed method. The derived substitution is the same as the ones proposed by 

Cauchy-Euler and Legendre to solve their form of equations as seen sections four and five. 

The proposed method can be use to solve problems that even the popular Frobenius method will 

be unable to solve. 
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