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Abstract.

An exceptionally simple model of ball  lightning is proposed that  describes  it  as  a  highly charged  sphere  of hot, conductive,  air
surrounded by colder air. This conductive sphere possesses a net excess of charge. This charge will create a corona discharge that
will heat the surrounding air thus maintaining the temperature of the ball itself. Numerical simulations are presented which give
results  that  would appear  to agree  with what  many witnesses  have  reported.  It  is  argued  that  such  spheres  are  likely positively
charged.

1. Introduction. 

Ball lightning is a peculiar atmospheric phenomenon usually, but not always, associated with lightning strikes
(Uman           1969;           Rakov            et.      al.      2003). Balls of light are observed to move about, being smaller than a golf ball or
even  several  meters  in  diameter.  Their  color  is  often  red,  orange,  or  white.  They  may  last  anywhere  from
several seconds to several minutes but 5 sec seems typical (Rakov           et.     al.     2003). Their demise is often violent as
they frequently explode (either spontaneously or as a result of contact with objects). Many theories have been
put  forward  to  explain  these  strange  observations.  Some  are  chemical  in  nature;  burning  silicon  has  been
suggested (Abrahamson                     et.      al.      2000). Cen et. al.   (2014) recently captured what may well be the spectrum of a
ball  lightning  produced  by  a  cloud-to-ground  strike.  Lines  for  silicon,  iron,  and  calcium  were  observed  in
addition  to  lines  for  neutral  atomic nitrogen and  oxygen. These  latter  are  not  surprising and  suggest  that  the
phenomenon is significantly cooler than the parent lightning channel, in the spectrum of which were observed
lines for ionized nitrogen and oxygen. The other elements must surely have come from the soil. But it is hard to
say whether  they played any active role  in  the  ball  lightning  process.  Kapitza (1955)  proposed a  a  model  in
which  microwave radiation  is  trapped  within  a  spherical  cavity.  Other  authors  have  extended  this  idea  (Wu
2016).  Ranada  (2000)  has  pictured  it  as  a  force-free,  topologically entangled,  magnetic  knot  (also  see  (Tsui
2003)).  Different  suggestions  include  black  holes  (Rabinowitz                    2002)  and  Rydberg  matter  (Manykin                et.      al.
2006).  Morrow (2018)  envisions  a  sphere  of  positive ions  that  attracts  burning,  negatively charged,  particles
into it. These account for the ball's luminosity.

The present model concentrates on the thermodynamics of a sphere of very hot air at 1 atm. This prob-
lem  was  examined  by  Lowke  et.  al.  (1969)  who  found  that  such  spheres  would  probably  not  support  their
temperature or luminosity long enough to be viable candidates for ball lightning. Tesla (1899) had speculated
that  a  small  sphere  of  hot,  diaphanous,  air  might  conduct  charge  from  sky  to  ground,  thus  maintaining  its
temperature. Uman et. al. examined a similar idea (1966). 

There  is  considerable evidence to  suggest that  these lightning balls may be charged (Charman                1972).
They  are  sometimes  observed  to  move  towards  or  along  conducting  surfaces.  Very  significantly,  they  have
been  described  as  giving  off  filamentous  or  corona  discharges  as  well  as  hissing  sounds.  Ozone  and  acrid
smells associated with such discharges are also reported. Several people, for instance Georg Richmann (Clarke
1983), seem to have been electrocuted by the phenomenon. We will take this evidence seriously and propose a
model of ball lightning that pictures it as a sphere of very hot, conductive, air bearing an intense charge. The
energy generated by the dissipation of this charge will serve to keep the inside of the ball hot.

2. A Model of Ball Lightning.



2. A Model of Ball Lightning.

When a lightning strike comes down it will certainly create quite a bit of highly heated and partially ionized air
owing to the tremendous energies involved. Suppose that the hot and conductive mass of air produced by this
process manifests  an  imbalance in  its  contained  charge.  (We will  discuss  further  how such a  situation might
come  about  below).  It  is  not  clear,  right  now,  whether  the  excess  charge  should  be  regarded  as  positive  or
negative. We imagine this plasma would start off with a temperature on the order of at least ~ 4, 000 K. (Note
that  we are  not  suggesting that  the  ball  is,  literally, formed out  of  the  lightning  channel  itself.  It  is,  rather,  a
consequence of the channel's striking down.) Ordinarily, such a mass of heated air would be expected to cool in
a very short time (Lowke et. al. 1969). We propose that, because it is highly charged, it remains heated under
the  influence  of  its  own  corona  discharge.  We  will  examine  and  numerically  simulate  this  situation  below.
While no very detailed mechanism can be provided, at this time, to explain the formation of such a region of
hot, highly charged, air it is worth pointing out that a lightning strike generates both charge and highly heated
air in great abundance; these are the only raw materials necessary for our model to work. It requires no external
source  of  power.  The  excess  charges  are,  initially,  trapped by the  interface  between the  very hot  air  and  the
cold, non-conductive, air outside the ball. We speculate that some of these charges will escape, or be neutral-
ized, in a process somewhat reminiscent of thermionic emission. We are not sure yet if these excess charges are
positive  ions  or  electrons.  But  we  assume  them  to  be  distributed  uniformly  throughout  the  ball.  It  might  be
objected  that  these  excess  charge  carriers  would  generate  a  significant  electric  field  and  immediately  be
expelled from the ball by their own electrostatic force. But the air inside the ball is considerably ionized owing
to its  high temperature. The Debye length is  very small. The excess charge carriers will  feel little force from
their companions causing them to move outward. This matter will be examined in greater detail presently.

Now  an  obvious  question  comes  to  mind  –  why  is  ball  lightning  round?  Suppose  that  our  mass  of
highly charged air starts out in some irregular shape. Suppose it has a sharp spike or protrusion in some area.
Around such a protrusion the electric field will be extraordinarily high and we expect the rate of charge emis-
sion there will surely be greater. The surface charge density will drop in this region quite rapidly. Also, it will
lose heat more quickly in this area. Likewise, if there were to be a more concave or flat area on the mass, the
electric field there would be weaker. The surface charge density would diminish more slowly in that region. In
this  way the mass would tend to work itself into a situation where its surface charge density was everywhere
the  same.  This,  in  turn,  requires  that  it  be  spherical  in  shape.  But  it  would  not  be  very  stable.  Any  serious
turbulence in the atmosphere would tear it apart. And, if it came into contact with an object, it would rapidly
dissipate. Ball lightning would be favored in areas of calm wind. It would stand a better chance of lasting if it
formed rather far away from any objects it might encounter. Such a ball – having almost no density – would be
quite buoyant. But it would also, as a charged object, be influenced by local electric fields which might draw it
downwards  (vide  infra).  Only under  those  happy circumstances where  everything works out  right  do  we see
ball lightning. In most cases it probably floats away or crashes into the ground unnoticed.

We assume that the pressure here is everywhere P0  = 1 atm (101, 000 N/m2). Η (the number density) =

P0/k  T always. We assume that   Β  k T is  the average energy of any particular particle. The initial  conditions

inside the ball, at t = 0, are taken to be those of air at 1 atm pressure and 4, 000 K. It may well have been hotter
to begin with.  But above about 8, 000o  the ball  will  cool very quickly due to its  emission of light.  And even
much  above  6, 000o  it  would  glow  too  brightly  to  be  a  realistic  ball  lightning.  At  4, 000o  it  would  consist,
primarily, of partially ionized nitrogen and oxygen molecules. Outside will be an area of corona discharge.

Let us suppose that a lightning strike has come down and deposited such a hot sphere with a radius R0

and an initial charge Q0. Outside this charged sphere will be an electric field – perhaps very strong. This will

produce some ionization in the air around it.  If the sphere is negatively charged electrons will leak away and
escape from it. If it is positively charged electrons will flow to it from infinity. This will produce further elec-
trons and positivelycharged ions outside the ball. Some of these will eventually fall back upon the sphere, thus

reducing its  charge. Some electrons will  neutralize positive ions. There will  also be chemical reactions taking

place between the  various  gas  molecules and  ions  in  this  very energetic  region.  We have no  reliable way of
estimating just how fast these processes will occur. But they all seem more-or-less related to the electric field
strength at the surface of the ball. So let us guess that ¶t QHtL = - Α QHtL where Α is some unknown constant and

Q(t)  is  the  charge of  the  ball.  Α  measures the  rate  of  corona discharge as  a  function  of  the  ball's  net  charge.
Thus we will assume Q(t) = Q0 ã-Α t. 

Now we imagine that  each unit  of  charge generated as a  result  of  this  complicated process makes its
way from the ball's surface to r = ¥ , or vice-versa, at a sort-of constant drift velocity and that it does so very
quickly in relation to the ball's lifetime; the energy it gains from the ball's electrical potential mostly goes into
heating the gas it passes through. One can simply picture surrounding the ball with shells of radii (r, r+dr) and
asking  how  much  energy  the  charge  gives  out  in  moving  through  each.  One  must  also  consider  how  many
particles there are in each shell that will have to share this energy. Considering Β, one can easily find the local
rate of temperature increase. This will be greatest near the ball's surface and much less significant far away. But

the local temperature will also change at a rate DHT Hr, tLL Ñ2T Hr, tL in consequence of thermal diffusion where
we write the thermal diffusivity as a function of temperature. We find:

1)   ¶t T Hr, tL =
- H¶t QHtL L QHtL
16 Π2 Ε0 r4 Β k Η

 + DHT Hr, tLL Ñ2T Hr, tL.
We suppose that ¶t QHtL » - Α QHtL. The local temperature will also change owing to the motion of the air in our

model  as  it  expands  and  contracts.  This  term,  -  v  ·  ÑT Hr, tL, is reduced in Lowke  et.  al.  (1969)  to  -  r-2

¶r T@r, tD Ù0

r 1
Cp

 ¶T H1 � ΡL ¶r' Ir '2 Κ ¶r' T@r ', tDM â r '.  This,  in  turn,  is  based on (Christmann 1967).  If  we make the

simplifying approximation that CP is roughly constant we find:

2)   ¶t T Hr, tL =
Α Q0

2
 e-2 Αt

16 Π2 Ε0 r4 Β P0
T(r, t) + D (T(r, t)) [ Ñ2T Hr, tL - H¶r T  Hr, tLL2/T(r, t)].

We cannot neglect cooling due to radiative losses. We designate this term W(T(r, t))  (W/m3).  Therefore:

3)   ¶t T Hr, tL =
Α Q0

2
 e-2 Αt

16 Π2 Ε0 r4 Β P0
T(r, t) + D (T(r, t)) [ Ñ2T Hr, tL - H¶r T  Hr, tLL2/T(r, t)] - 

WHT Hr, tLL
P0 Β

 T(r, t).

We do not care, at this stage, whether the excess charge is positive or negative since the net energetics are the
same in both cases. 
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We do not care, at this stage, whether the excess charge is positive or negative since the net energetics are the
same in both cases. 

3. Numerical Simulations.

In order to see whether Equation 3) describes any interesting physics it must be solved numerically. In order to
do  this  we  need  expressions for  D(T(r,  t))  and  W(T(r, t))  that  are  both  reasonably accurate  and  simple  for  a
computer to work with. D(T(r, t)) can be estimated by fitting the thermal conductivity (Κ ) of very hot air from
(Yos 1963 and Engineeringtoolbox.com) to a curve and recalling that D(T(r, t)) = Κ / (Ρ CP). 

4)   D(T) =  Exp[.0010724 T - 9.7457] provides a fairly good approximation. (Its units are m2/sec.)

For W(T(r, t)) data can be extracted from figures in (Lowke et. al. 1969) and fit rather well to a simple curve
(see Supplementary Material Mathematica). We will employ 

5)   W(T) = Exp@.00115 T + 1.5567D for the energy lost to light by our model. (Its units are W/m3.) 

These expressions work only in the temperature ranges we are dealing with.  (The thermal conductivity of air
behaves very differently, for instance, above about 9, 000 K.) This is not a problem, however, since we are only
simulating temperatures below about 4000 K.  We will  set Β  = 3.3 since this a normal value for air under our
circumstances. We obtain:

6)    ¶t T Hr, tL =
Α Q0

2
 e-2 Αt

16 Π2 Ε0 r4 3.3 P0
T(r, t) U(r - R0) + D (T(r, t)) A Ñ2 T Hr, tL -  H¶r T  Hr, tLL2 � T Hr, tLE  -

WHT Hr, tLL
P0 3.3

 T(r, t)

where U represents the unit step function. In this way we take account of the fact that energy production is only
taking place outside the ball. R0  denotes the radius within which the charge was originally deposited. It is true

that the ball will contract a bit as it cools. This effect is relatively insignificant, however, so we ignore it in the
interest of convenience. Equation 6) leaves us only three parameters to adjust – Α,  Q0, and R0; everything else

is set rigidly by Nature. 
The  numerical  solution  of  this  non-linear  PDE  is  not  very  difficult.  The  results  shown  here  were

obtained  using  Mathematica  running  on  an  ordinary  computer.  The  solutions  seldom  take  more  than  a  few
minutes to obtain. They have been checked and found to be reasonably robust in  the sense that small, physi-
cally  inconsequential,  changes  to  the  initial  conditions  do  not  materially  change  the  results;  we  are  likely
looking at real solutions, not artifacts. The details are described in Supplementary Material Mathematica. This
PDE can also be solved using FlexPDE. FlexPDE employs the finite element method as opposed to the method
of lines which is used by Mathematica.  This results in a much more accurate simulation of the step function-
like  behavior of  our  initial  conditions.  The  solutions  provided by each  agree to  within  fairly minimal  errors.
These details are described in Supplementary Material Flex PDE.

We have no idea what value to select for Α but we do know that it is related to the ball's lifetime. Sup-
pose our ball starts with a radius of .1 m (which is not atypical of many reported cases). Such a ball might be

expected to last on the order of 10 sec. So let us choose Α = .1 sec-1 just to see if anything reasonable happens.
We assume the initial temperature is 4000o inside the ball and 300o outside. Guessing at values for Q0, we find

the most interesting results occurring when Q0  is about .0015 C. Much below this there is simply not enough

charge to heat the ball sufficiently to prolong its life – the ball quickly cools and dies (fig. 1). It produces little
visible light.  For Q0  = .0015 the ball quickly cools but then remains close to 3000o,  and easily visible, for at

least 10 sec which brings it well within the range reported by witnesses. Below is plotted its temperature profile
as a function of time (fig. 2). We plot the decay of the ball's core temperature with and without charge (fig. 3).
(See Supplementary Material Mathematica.)  Its maximum luminosity is about 1.6 W. This would correspond
to the visible light output from a 80 W incandescent light bulb, assuming these are about 2% efficient (Arma-
roli et. al. 2011). This is not unlike what many witnesses report. Since a lightning strike is believed to usually
bring down about 10 C of charge (Uman 1969), a figure of Q0  = .0015 C is hardly unreasonable. If the initial

charge had to be 1000 C we would wonder where that much charge came from.
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do  this  we  need  expressions for  D(T(r,  t))  and  W(T(r, t))  that  are  both  reasonably accurate  and  simple  for  a
computer to work with. D(T(r, t)) can be estimated by fitting the thermal conductivity (Κ ) of very hot air from
(Yos 1963 and Engineeringtoolbox.com) to a curve and recalling that D(T(r, t)) = Κ / (Ρ CP). 

4)   D(T) =  Exp[.0010724 T - 9.7457] provides a fairly good approximation. (Its units are m2/sec.)
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5)   W(T) = Exp@.00115 T + 1.5567D for the energy lost to light by our model. (Its units are W/m3.) 
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Α Q0
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 e-2 Αt
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where U represents the unit step function. In this way we take account of the fact that energy production is only
taking place outside the ball. R0  denotes the radius within which the charge was originally deposited. It is true

that the ball will contract a bit as it cools. This effect is relatively insignificant, however, so we ignore it in the
interest of convenience. Equation 6) leaves us only three parameters to adjust – Α,  Q0, and R0; everything else

is set rigidly by Nature. 
The  numerical  solution  of  this  non-linear  PDE  is  not  very  difficult.  The  results  shown  here  were
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These details are described in Supplementary Material Flex PDE.

We have no idea what value to select for Α but we do know that it is related to the ball's lifetime. Sup-
pose our ball starts with a radius of .1 m (which is not atypical of many reported cases). Such a ball might be

expected to last on the order of 10 sec. So let us choose Α = .1 sec-1 just to see if anything reasonable happens.
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visible light.  For Q0  = .0015 the ball quickly cools but then remains close to 3000o,  and easily visible, for at
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as a function of time (fig. 2). We plot the decay of the ball's core temperature with and without charge (fig. 3).
(See Supplementary Material Mathematica.)  Its maximum luminosity is about 1.6 W. This would correspond
to the visible light output from a 80 W incandescent light bulb, assuming these are about 2% efficient (Arma-
roli et. al. 2011). This is not unlike what many witnesses report. Since a lightning strike is believed to usually
bring down about 10 C of charge (Uman 1969), a figure of Q0  = .0015 C is hardly unreasonable. If the initial

charge had to be 1000 C we would wonder where that much charge came from.
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                                            fig. 1

The calculated temperature profile (K) of an R0 = . 1 m, Q0 = 0 C ball as a function of radius (m) plotted for t = 0 (black), 2 (red),

5 (green), 10 (blue-green), 20 (blue), 30 (purple) sec.
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The calculated temperature profile (K) of an R0  = . 1 m, Q0  = .0015 C, Α = .1, ball as a function of radius (m) plotted for t = 0

(black), 2 (red), 5 (green), 10 (blue-green), 20 (blue), 30 (purple) sec.
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                                            fig. 3

The calculated core temperature (K) of an R0 = . 1 m, Q0 = .0015 C (red) and Q0 = 0 (blue), ball as a function of time (sec).

Below (fig. 4) we plot the luminosity profile of this ball as a function of time. As a witness might
observe it, it would have no well-defined or hard-edged boundary. Most of the light would come from inside
the ball, however. This is generally consistent with reports (Charman               1972). 
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                                            fig. 4

The calculated luminosity profile (W/m3) of an R0  = . 1 m, Q0  = .0015 C ball plotted for t = 0 (black), 2 (red), 5 (green), 10

(blue-green), 20 (blue), 30 (purple) sec.

For Q0 = .0015 and Α = .01 the ball is far less effective at heating its outside environment. It never achieves any

noticeable brightness. If Α is increased to 1 the ball rapidly dissipates it charge. It glows brightly but only over
about 3 sec (see Supplementary Material Mathematica). 

Consider the Q0 = .0015 C case. Examining the electric field immediately beyond this ball's surface (at

t = 0) we find that it is about 1.4X109  V/m – an enormous value ~3 orders of magnitude greater than the
breakdown field strength for normal air. This condition would exist out to several meters beyond the ball. In
some ways this is a good result – we are, at least, guaranteed a vigorous corona discharge to keep the ball hot.
Of course, we do not think that the actual field inside the corona discharge is likely to be quite so high. It is,
probably, screened somewhat by ions within the discharge itself. Owing to the strong field produced by the
ball, there will always tend to be a net excess of oppositely charged ions close to the ball and more like-charged
ions farther  away. We have no reliable means of calculating just  how much the  effective field would be
reduced. But it would have to still be quite large. (If it became too small there would no longer be a sufficient
electric field to promote the creation of ions in the corona and this region would then fully re-experience the
ball's unscreened field and ionize again.) This is problematic in that, were the ball to get too close to any object
(e.g. a grounded conductor) onto which it could release its excess charge, the result would likely be a mini-
lightning strike and the quick and violent destruction of our ball. This may explain the explosive deaths of
some ball lightnings. No wonder ball lightning is so rare and fleeting – very favorable circumstances would
have to exist for it to live out its 10 sec lifetime. 

 In light of the diminution of the effective field within the region of corona discharge our simulations
can be looked upon as giving unrealistically long-lived solutions – being weaker, the real field would not allow
the current flow to give up so much heat-energy. Not knowing how to model the corona we can only look upon
our numerical simulation as a kind of best-case scenario. We can also consider a worst-case scenario in which
the effective E field outside the ball is so well-screened that it is at only about the breakdown field for air

(which we will take to be 3X106 V/m) out to some rather large distance from the ball's surface. This field is

only ca. 10-3 that assumed above. The energy produced by the escaping charges is, therefore, reduced by this
factor. Hence Α Q0 might have to be roughly 1000 times that employed before or the ball would cool much too

quickly. As discussed above, there is only so large Α can become. Assuming  Α = .1 we find Q0 » 1 C in this

case; this is an unrealistic number, even given the total charge a lightning strike brings down. But we can
calculate the results for a ball of this kind. We get a solution that is physically reasonable for as little as Q0 =

.03 C (fig. 5). This is because heat generation now drops off only as 1
r2 . The ball expands to about twice its

original size and lasts over 20 sec. Obviously, both scenarios are unrealistically extreme, and the latter one not
strictly possible mathematically. The truth must lie somewhere in between. 
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                                            fig. 5

The calculated temperature profile (K) of an R0  = . 1 m, Q0  = .03 C, Α = .1, ball with a constant external field as a function of

radius (m) plotted for t = 0 (black), 2 (red), 5 (green), 10 (blue-green), 20 (blue), 30 (purple) sec.

This ball, having little mass, would feel an upward force of about 5X10-2 N. But there could very well
be ambient electric fields in its environment that might counteract this. The ball is a (highly) charged object
and will be subject to these fields. Such balls as are observed are, necessarily, somewhat close to the ground. If

a .0015 C ball attracted about 1.3X10-8  C of charge in the ground below it it would remain stable at about a
height of 2 m. There might also be other E fields around that might help stabilize it. In any case, the ball's
charge must be distributed uniformly throughout it; otherwise it would be torn apart. It may be objected that, as
the ball's charge decays away, there will be less downward force holding it in place. True enough. But, while
this process is occurring, the ball will generally be cooling and becoming less buoyant. Also, it will have had
additional time to attract more charges into the ground beneath it. This may further help it not to convect away
and dissipate. (Interestingly, the electric field at the Earth's surface, under normal circumstances, is ca. 100
V/m which is just about enough to keep the .0015 C ball in place assuming that it is positively charged.)

We must say that ball lightning occurs only under rather fortunate circumstances where the electric
field in the surrounding environment balances off its natural buoyancy. But it is significant that we are, at least,
able to say this. Not every model of ball lightning that proposes it to be hot can explain its not floating away.
And the Cen spectra indicate clearly that these balls are hot indeed. We have to consider the possibility that the
formation of hot, charged, masses of air is a rather common phenomenon occurring when lightning strikes
down. Ball lightning would be uncommon only because unusual conditions are required for its survival. This
possibility is not, necessarily, untestable. Perhaps what we see as ball lightning represents only the most energet-
ically extreme manifestation of a more general phenomenon. Cooler, less highly charged, balls might well form
even more easily and frequently. But these would be invisible to the naked eye. It is possible to trigger light-
ning strikes using model rockets attached to wires and attempts to create ball lightning in this way have been
made (Hill et al. 2010). If the aftermath of such strikes could be filmed using highly sensitive night-vision or
thermal-imaging equipment we might detect the frequent formation of such "sub-critical" balls.

Larger and smaller balls can be modeled in the same way. Equation 6) is non-linear and no simple
scaling arguments can be made regarding its behavior – each case must be considered individually. We exam-
ine a ball with R0  = 1 m. This is close to the largest size reported. If Q0 = 0 the ball cools over about 90 sec.

Interesting results are observed for Q0  = .1 C (fig. 6). For this value it initially swells. Its luminosity is very

great.
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                                            fig. 6

The calculated temperature profile (K) of an R0 = 1 m, Q0 = .1 C, Α = .1, ball as a function of radius (m) plotted for t = 0 (black),

10 (red), 20 (green), 40 (blue-green), 60 (blue), 90 (purple) sec.

An uncharged small ball with an initial radius of .01 m stays above 2000o only about .02 sec. For  Q0 =

.00006 C it lives about 5 sec and achieves a luminosity of ~ .0025 W (fig. 7). (See Supplementary Material
Mathematica.) Its radius also swells quickly.
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                                            fig. 7

The calculated temperature profile (K) of an R0 =  .01 m, Α =. 1, Q0 = .00006 C ball as a function of radius (m) plotted for t = 0

(black), 1 (red), 2 (green), 3 (blue-green), 5 (blue), 10 (purple) sec.
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The calculated temperature profile (K) of an R0 =  .01 m, Α =. 1, Q0 = .00006 C ball as a function of radius (m) plotted for t = 0

(black), 1 (red), 2 (green), 3 (blue-green), 5 (blue), 10 (purple) sec.

4. Discussion.

 If the charge of the ball is .0015 C there will be about 1016 charge carriers to begin with. It is, of course, quite
arbitrary which particles we choose to call "charge carriers." They are just any ions or electrons that happen to
be in excess. If the initial radius of the ball is .1 m, and if these are uniformly distributed and confined within

this radius, the average distance between them and their nearest neighbors will be about 10-6 m. If the tempera-
ture in this region is about 4, 000 K  the oxygen molecules (which we concentrate on since O2  has the lowest

ionization energy) are about 10-4  % ionized (as follows from the Saha equation). The predominant charged

species will be O2
+ and electrons (Bauer 1990). The Debye length is therefore about 5X10-6 m. It is reasonable

to invoke this mechanism to the extent that the number density of screening ions in the environment exceeds

that of the 'charge carriers.' Here they are about the same (6X1017 and 2.5X1018 m-3, respectively). Also, the
presence of so many positive ions or electrons will tend to suppress somewhat the ionization of O2. This further
compromises our screening mechanism. If, however, we imagine that the air inside the ball contains even a
very small number of atoms with low ionization energies (e.g. sodium) the number density of 'screening parti-
cles' will be increased greatly. The effect of such contaminants on uncharged balls has been studied by Lowke
et. al. (1969). A sodium atom concentration of about .01% would provide more than enough 'screening parti-

cles' to ensure the stability of the ball. They would contribute a number density of around 7X1019 m-3  to the
'screening particles.' This concentration is considerably less than those examined by Lowke. (The presence of
such impurities may also serve to affect the ball's color.) We must also think about this in a somewhat different
way (Chen, 1974) and estimate the number of 'screening particles' – those present owing to the Saha equation –

inside a sphere of radius the Debye length. This is (4 Π/3) J Ε0 k

e2 N3�2
 T3�2 Η-1�2 (where Η is the number density of

the 'screening particles') and it must be quite a bit greater than one for effective Debye screening to be possible.
We find it is > ~40 for our .0015 C example during the time when heat production is mostly taking place (with
or without the highly ionizable atoms). It is also necessary that some degree of local thermodynamic equilib-
rium prevail. It is true that the screening becomes less effective as the ball cools. But, as it cools, the 'charge
carriers' themselves are escaping and becoming fewer in number. Well-screened, the charge carriers will only
feel repulsive forces from other charges very nearby them. And these forces might just as easily push them
towards the center of the ball as outwards. As long as the charge carriers, however defined, remain well-
screened the charge will not all immediately fly away to infinity. It enjoys a natural mechanism of containment. 

Positively charged ions have small mean free paths (~7X10-8  m) and are hugely massive – they just
cannot go very far by diffusion. A nitrogen molecule in air at STP travels about 7 mm in 1 sec and 21 mm in 10
sec which is insignificant in the context of our problem (though maybe less so for the .01 m ball considered
above). They will go a bit farther in hotter air but this will not alter our conclusions very drastically; by the time
these charge carriers move very far in relation to the ball's size most of the excess charge will have been
expended anyway and heat production will have largely ceased. We do not much care what happens to them
afterwards. This justifies our treatment of the unit step function in Equation 6) if we conclude that the ball is
positively charged. It is harder to estimate the mean free path for electrons but it is generally at least 100 times
that of ions and molecules. If the excess charge carriers are electrons they will quickly diffuse into the region
where the electric field is largely unscreened and be propelled away to infinity. This would necessarily result in
a situation where Α would be quite large. This is not compatible with our mechanism, as has been noted above.
If the ball is positively charged the electrons will be attracted back towards it. 

While  the  screening mechanism outlined  above seems adequate  to  confine  the  number  of  'charge
carriers' we require, it does appear fairly stretched to its limit. There is only so hot the ball can be and only so
many highly ionizable atoms it can plausibly contain. It is difficult to imagine how our ball could confine a
charge that was an order of magnitude or more greater than the .0015 C assumed above. To contain similarly an
initial charge that was tenfold greater would require a concentration of highly ionizable atoms that was roughly
1% which is rather enormous. The additional light produced by this many atoms, were they sodium, would also
cause the  ball  to  cool more rapidly (Lowke et.  al.  1969).  Furthermore,  the  Chen factor mentioned above
becomes smaller as we add more ionizable atoms which reduces the viability of our screening mechanism. To
contain much more charge would require concentrations that are plainly impossible. Thus our theory precludes
the formation of incredibly bright and intense balls. If Q0 were even .015 C the temperature would increase to

over 9, 000 K out to .2 m in 0.3 sec! Clearly, such phenomena are never reported. 
The high field strength around the ball is difficult to understand. We have already observed that it may

be screened somewhat. But it would have to be quite large for the ball to sustain itself according to our mecha-

nism. Very large electric fields, some probably exceeding 3X106  V/m, undoubtedly exist between thunder-
clouds and the ground. But the entire sky does not break down instantaneously. The circumstances around our
ball may be similar – its quasi-stable state only exists as long as it cannot find anything onto, or any way in
which, which to release its charge. When it does, it dies explosively. In the meantime it releases what charge it
can through a positive corona discharge. And for a positively charged ball to explode it has to be hit by a mini-
lightning strike coming from a source of electrons that may be far away where the field is small. This process
may have a more difficult  time occurring than were the ball negatively charged; then the electrons would
already be in an area where the field was intense. 

It is, also, rather easier to understand the formation of a positively charged ball. If the initial mass of
hot, ionized, air were to find itself around some positively charged object some of its electrons, which have
great mobility, might be drawn away, thus leaving it with a net positive charge. We could even imagine some-
thing like a very brief mini-lightning strike carrying away the electrons by providing a conducting path between
the nascent ball and the object.
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The high field strength around the ball is difficult to understand. We have already observed that it may

be screened somewhat. But it would have to be quite large for the ball to sustain itself according to our mecha-

nism. Very large electric fields, some probably exceeding 3X106  V/m, undoubtedly exist between thunder-
clouds and the ground. But the entire sky does not break down instantaneously. The circumstances around our
ball may be similar – its quasi-stable state only exists as long as it cannot find anything onto, or any way in
which, which to release its charge. When it does, it dies explosively. In the meantime it releases what charge it
can through a positive corona discharge. And for a positively charged ball to explode it has to be hit by a mini-
lightning strike coming from a source of electrons that may be far away where the field is small. This process
may have a more difficult  time occurring than were the ball negatively charged; then the electrons would
already be in an area where the field was intense. 

It is, also, rather easier to understand the formation of a positively charged ball. If the initial mass of
hot, ionized, air were to find itself around some positively charged object some of its electrons, which have
great mobility, might be drawn away, thus leaving it with a net positive charge. We could even imagine some-
thing like a very brief mini-lightning strike carrying away the electrons by providing a conducting path between
the nascent ball and the object.

5. Conclusion.

The strongest argument in favor of the above-described model is its ability to produce results that agree fairly
well with what has been reported in spite of being rather inflexible – it has only three adjustable parameters,

R0, Q0 and Α. And its agreeable results only come about when these parameters are in what would seem to be a

physically reasonable range. Everything else is  determined by the relatively straightforward physics of the
model and by numbers that can be looked up in, or extrapolated from, the literature. Also, it does not require
any external source of power; its energy comes only from the heat and charge that were in the lightning channel
that created the ball. Moreover, it provides an explanation for the spherical shape of the phenomenon. The
ball's charge provides a mechanism whereby its natural buoyancy may be counteracted. The presence of NI and
OI lines in the Cen ball lightning spectra is consistent with this model (although it is consistent with some other
models as well).  This model also explains the lack of a sharply-defined boundary to the ball – something
eyewitnesses have mentioned. It explains the reported hissing and corona discharges associated with the phe-
nomenon – something very few other models do. It explains why some people have been shocked, and even
killed, by the phenomenon and why it is frequently observed to explode. It is also important to point out that we
are able to provide a rough mechanism whereby the ball's excess charge is, mostly, contained within its initial
radius. This is only possible owing to some fortuitous results from the Saha and Debye equations as they apply
to our situation. There is no obvious reason why such favorable coincidences should have occurred acciden-
tally. This model also places a limit on just how large Q0 can be, thus ruling out bizarre, super-bright, balls.

A shortcoming of this model is its inability to predict Α – there is, admittedly, something circular about

assuming that Α = .1 sec-1  because ball lightning lasts about 10 sec. But, still, it is significant that we get

physically plausible solutions for Α in this range; if the model only worked for Α = 107 or 10-15 sec-1 we would
have to say it was nonsense. The surprisingly high electric field strength immediately outside the ball is some-
what perplexing. Knowing of no reliable way to simulate such a situation, we have contented ourselves with a
simple model that deals only with the net energetics of each unit of charge that leaves the ball and departs to
infinity. We pay no attention to the details of its departure. And the assumption that the ball's charge decays
exponentially with time is, itself, arbitrary. But this is not really a bad assumption. Regardless of the details of
the corona discharge process, we know two things with certainty: The ball's charge will decay away and it will
do so over some fairly definite period of time (which we may as well call 1/Α). Modeling this process crudely
as Q(t) = Q0 ã-Α t, or trying to simulate Q(t) more realistically, might not produce very different or more reli-

able answers given the approximate way in which we approach the problem and in which computers solve
PDEs.
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