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By taking spin away from particles and putting it in the metric, thus following Dirac’s vision, I start my
attempt to formulate an alternative math-phys language, biquaternion based and incorporating Clifford
algebra. At the Pauli level of two by two matrix representation of biquaternion space, a dual base is
applied, a space-time and a spin-norm base. The chosen space-time base comprises what Synge called
the minquats and in the same spirit I call their spin-norm dual the pauliquats. Relativistic mechan-
ics, electrodynamics and quantum mechanics are analyzed using this approach, with a generalized
Poynting theorem as the most interesting result. Then moving onward to the Dirac level, the Möbius
doubling of the minquat/pauliquat basis allows me to formulate a generalization of the Dirac current
into a Dirac probability/field tensor with connected closed system condition. This closed system con-
dition includes the Dirac current continuity equation as its time-like part. A generalized Klein Gordon
equation that includes this Dirac current probability tensor is formulated and analyzed. The usual Dirac
current based Lagrangians of relativistic quantum mechanics are generalized using this Dirac proba-
bility/field tensor. The Lorentz transformation properties the generalized equation and Lagrangian is
analyzed.
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1. Introduction

In this paper, biquaternions are used to deal with relativist physics, including mechanics,
electrodynamics and quantum mechanics. The paper is divided in two parts, the first on the
level of the Pauli spin matrices and the second on that of the Dirac matrices as a double
version of the Pauli ones. The biquaternion basis is represented by two by two complex
matrices in a dual space-time and spin-norm version.

The first part is rather familiar in the context of the many biquaternion approaches that
have been proposed the last hundred or so years. Slight differences are present, making
the biquaternion expose on the Pauli matrices level interesting on its own. Especially the
generalized Poynting theorem shows the power of the biquaternion approach, once the
usual pitfalls have been circumvented. The closed system condition, going back to von
Laue, in biquaternion formulation is the red line throughout the paper. The Klein Gordon
equation is one of its appearances. After concluding that the Pauli matrices in the Klein
Gordon equation analysis aren’t what is preventing a true relativistic approach, the culprit
is found in the spinors.

In the second part, matrices and spinors are treated on the Dirac level in order to arrive
at the relativistic core of quantum mechanics. The Dirac matrices are presented as dual
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versions of the Pauli ones. It is shown that spinors in the Dirac representation can only be
Lorentz transformed on the Dirac level and not on the Pauli level. The analogy between
Poynting’s theorem and the closed system condition for the Dirac current is used to show
that the Dirac current is in reality part of a Dirac probability/field tensor and that the closed
system condition for this tensor contains the continuity equation for the Dirac current as it’s
time-like part. In the meanwhile, the Klein Gorden equation is generalized using this Dirac
tensor environment. The Lorentz transformation of the Dirac matrices is being simplified
due to the method developed in the first Pauli level part of the paper. This simplification
allows for a much shorten and more transparent way to demonstrate the Lorentz invariance
and covariance of the equations and products. The Lorentz transformation properties of
spinors is critically assessed.

2. The Pauli spin level

2.1. A complex quaternion basis for the metric

Quaternions can be represented by the basis (1̂, Î, Ĵ,K̂). This basis has the properties ÎÎ =
ĴĴ = K̂K̂ = −1̂ and 1̂1̂ = 1̂; 1̂K̂ = K̂1̂ = K̂ for Î, Ĵ,K̂; ÎĴ = −ĴÎ = K̂; ĴK̂ = −K̂Ĵ = Î;
K̂Î = −ÎK̂ = Ĵ. A quaternion number in its summation representation is given by A =

a01̂ + a1Î + a2Ĵ + a3K̂, in which the aµ are real numbers . Bi-quaternions or complex
quaternions are given by C = A+ iB = c01̂+ c1Î+ c2Ĵ+ c3K̂ in which the cµ = aµ + ibµ

are complex numbers and the aµ and bµ are real numbers.
This standard biquaternion basis (1̂, Î, Ĵ,K̂) can be used to provide a basis for rela-

tivistic 4-D space-time. One way to do this is by making the time coordinate c0 = b0i
complex only and the space coordinates (c1,c2,c3) = (a1,a2,a3) real only, see [1]. Synge
called these objects Minkowski quaternions or ‘minquats’, Silberstein called them ‘phys-
ical quaternions’ [1]. This however produces confusion regarding the time-like complex
number as the physics gets more complicated. As Synge put it, the intrusion of the imag-
inary element is not trivial [1]. The main reason is that minquats do not form a closed
algebra under addition and multiplication as a subspace inside the wider biquaternion
space, due to the multiplication operation. The reason they are used nevertheless is given
by Synge. For the application of quaternions to Lorentz transformations it is essential to
introduce Minkowskian quaternions [1].

The use of minquats produces language conflicts with almost all of modern physics,
that is Quantum Mechanics and Special and General Relativity, where the space-time co-
ordinates are always a set of four real numbers. So for several reasons, I choose to insert the
time-like complex number of c0 = b0i in the basis instead of in the coordinate. So by using
c01̂ = b0i1̂ = b0T̂ the space-time basis is then given by (T̂, Î, Ĵ,K̂). In this way, the coordi-
nates are always a set of real numbers ∈ R. The space-time basis (T̂, Î, Ĵ,K̂), (a disguised
minquat basis) is not closed under multiplications, as already mentioned by Synge.

A set of four numbers ∈ R is given by Aµ =


a0

a1

a2

a3

, or by Aµ = [a0,a1,a2,a3]. In this
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way, the raising or lowering of the index doesn’t change any sign. Aµ simply is the trans-
pose of Aµ and vise versa. The biquaternion basis can be given as a set Kµ = (T̂, Î, Ĵ,K̂).
Then a biquaternion space-time vector can be written as the product

A = Aµ Kµ = [a0,a1,a2,a3]


T̂
Î
Ĵ
K̂

= a0T̂+a1Î+a2Ĵ+a3K̂ (1)

I apply this to the space-time four vector of relativistic bi-quaternion 4-space R with
the four numbers Rµ = (r0,r1,r2,r3) = (ct,r1,r2,r3), so with r0,r1,r2,r3 ∈R. Then I have
the space-time four-vector as the product of the coordinate set and the basis R = Rµ Kµ =

r0T̂+ r1Î+ r2Ĵ+ r3K̂ = ctT̂+r ·K. I use the three-vector analogue of Rµ Kµ when I write
r ·K. In this notation I have RT = −r0T̂+ r1Î+ r2Ĵ+ r3K̂ = −r0T̂+ r ·K for the time
reversal operator and RP = r0T̂− r1Î− r2Ĵ− r3K̂ = r0T̂− r ·K for the space point mirror
or parity operator, with RP =−RT . In this notation, the transpose of a matrix will be given
by the suffix ‘t’, so Rt

µ = Rµ . The complex transpose of spinors is given by the dagger
symbol, as in ψ†. The complex conjugate of a spinor is given by ψ∗. In this language, the
operators T and P take the role of raising and lowering of indexes in the General Relativity
convention.

2.2. Matrix representation of the quaternion basis

Quaternions can be represented by 2x2 matrices. Several representations are possible, but
most of those choices result in conflict with the standard approach in physics. My choice
is

1̂ =

[
1 0
0 1

]
, T̂ =

[
i 0
0 i

]
, Î =

[
i 0
0 −i

]
, Ĵ =

[
0 1
−1 0

]
,K̂ =

[
0 i
i 0

]
. (2)

I can compare these to the Pauli spin matrices σσσP = (σx,σy,σz).

σσσ x =

[
0 1
1 0

]
,σσσ y =

[
0 −i
i 0

]
,σσσ z =

[
1 0
0 −1

]
. (3)

If I exchange the σx and the σz, I get K = iσσσ and Kµ = i(1̂,σσσ). So in my use of the Pauli
matrices, I use σσσ ≡ (σI ,σJ ,σK) = (σz,σy,σx). So also Î = T̂σσσ I , Ĵ = T̂σσσ J ,K̂ = T̂σσσK and
σσσ I =−T̂Î,σσσ J =−T̂Ĵ,σσσK =−T̂K̂.

With this choice of matrices, a four-vector R can be written as

R = r0

[
i 0
0 i

]
+ r1

[
i 0
0 −i

]
+ r2

[
0 1
−1 0

]
+ r3

[
0 i
i 0

]
. (4)

This can be compacted into a matrix representation of R:

R =

[
r0i+ ir1 r2 + ir3

−r2 + ir3 r0i− ir1

]
=

[
R00 R01

R10 R11

]
(5)

with the numbers R00,R01,R10,R11 ∈ C.
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2.3. Multiplication of vectors as matrix multiplication adds pauliquats to
minquats

In general, multiplication of two vectors A and B follows matrix multiplication, with
Ai j,Bi j,Ci j ∈ C.

AB =

[
A00 A01

A10 A11

][
B00 B01

B10 B11

]
=

[
C00 C01

C10 C11

]
=C. (6)

So we have

C = AB =

[
A00B00 +A01B10 A00B01 +A01B11

A10B00 +A11B10 A10B01 +A11B11

]
=

[
C00 C01

C10 C11

]
. (7)

Of course, vectors A, B and C can be expressed with their aµ ,bµ ,cµ coordinates ∈ R and
if we use them, after some elementary but elaborate calculations and rearrangements we
arrive at the following result of the multiplication expressed in the aµ , bµ and cµ as

c0 =−a0b0−a1b1−a2b2−a3b3

c1K = a2b3−a3b2

c2K = a3b1−a1b3

c3K = a1b2−a2b1

c1σ =−a0b1−a1b0

c2σ =−a0b2−a2b0

c3σ =−a0b3−a3b0 (8)

In short, if we use the three-dimensional Euclidean dot and cross products of Euclidean
three-vectors in classical physics, this gives for the coordinates

c0 =−a0b0−a ·b
cK = a×b (9)

cσ =−a0b−ab0 (10)

And in the quaternion notation we get

C = AB = (−a0b0−a ·b)1̂+(a×b) ·K+(−a0b−ab0) ·σσσ (11)

This matrix multiplication, in which I used T̂T̂=−1̂ and T̂K=−σσσ , implies that the space-
time basis (T̂,K) is being duplicated by a spin-norm basis (1̂,σσσ) by the multiplication
operation.

The physically relevant multiplications of two four-vectors are all in the form C = AT B.
The difference between AB and AT B is in the sign of a0. This results in

C = AT B = (a0b0−a ·b)1̂+(a×b) ·K+(a0b−ab0) ·σσσ (12)

From this it follows that the physically relevant norm of a four-vector, from a relativistic
perspective, is the product AT A and not the product AA:

C = AT A = (a0a0−a ·a)1̂+(a×a) ·K+(a0a−aa0) ·σσσ = (a0a0−a ·a)1̂ = c2a2
τ 1̂. (13)
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The main quadratic form of the metric is dRT dR = (c2dt2− dr2)1̂ = c2dτ21̂ = ds21̂
with ds = cdτ . The quadratic giving the distance of a point R to the origin of its reference
system is given by RT R = (c2t2− r2)1̂ = c2τ21̂ = s21̂ with s = cτ .

The multiplication of two four vectors can also be arranged as the multiplication of two
tensors, a coordinate tensor times a metric tensor using that

(Aµ Kµ)T Bν Kν = Aµ Bν(Kµ)
T Kν =C ν

µ K ν
µ (14)

with the metric tensor as

K ν
µ = (Kµ)

T Kν =
[
−T̂, Î, Ĵ,K̂

]
T̂
Î
Ĵ
K̂

= (15)


−T̂T̂ ÎT̂ ĴT̂ K̂T̂
−T̂Î ÎÎ ĴÎ K̂Î
−T̂Ĵ ÎĴ ĴĴ K̂Ĵ
−T̂K̂ ÎK̂ ĴK̂ K̂K̂

=


1̂ −σI −σJ −σK

σI −1̂ −K̂ Ĵ
σJ K̂ −1̂ −Î
σK −Ĵ Î −1̂

 . (16)

This multiplication product has a norm 1̂ part, a space K part and a spin σσσ part. So the mul-
tiplication of two four vectors AT B =C has this multiplication matrix. The multiplication
combines the properties of symmetric and anti-symmetric in one product.

The inevitable appearance of the spin-norm basis in the multiplication of two Synge
minquats or Silberstein physical quaternions is why the minquats do not form a closed
algebra under multiplication [1]. In my approach, the space-time basis (T̂,K) doesn’t form
a closed algebra under multiplications, it needs a spin-norm complex dual (T̂,K) = i(1̂,σσσ)

to cover all of biquaternion space, while allowing real coordinates for Rµ and Pµ only in
Rµ Kµ and Pµ σσσ µ . The obligation, chosen freely in a Kantian way, to use real coordinates
only produces the dual basis in a unique way.

The physical sphere, the cosmos so to speak, then obtains a dual space-time/spin-norm
basis. This duality will prove to mirror real physics with electric charges or monopoles as
part of space-time and hypothetical magnetic monopoles as spin-norm entities, if at all pos-
sible. Electric currents exist in real space-time (T̂,K) and magnetic monopole currents can
only, if at all, exist in the ‘imaginary’ spin-norm (1̂,σσσ) sphere as will be shown further on
in this paper. If Synge’s minquats are Rµ Kµ biquaternions, then Pµ σσσ µ are pauliquats. The
sum of minquats and pauliquats cover the whole of biquaternion space. The multiplication
of a minquat with a minquat produces a minquat and a pauliquat. Electric currents must
be represented by minquats and magnetic current by pauliquats, if at all. Intrinsic spin is
a pauliquat, its Lorentz dual intrinsic polarization is a minquat. The existence of minquats
and pauliquats defies electromagnetic super-symmetry as is striven for by the magnetic
monopole research community.

2.4. The Lorentz transformation

A normal Lorentz transformation between two reference frames connected by a relative
velocity v in the x− or Î-direction, with the usual γ = 1/

√
1− v2/c2, β = v/c and r0 = ct,
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can be expressed as [
r′0
r′1

]
=

[
γ −βγ

−βγ γ

][
r0

r1

]
=

[
γr0−βγr1

γr1−βγr0

]
. (17)

We want to connect this to our matrix representation of R as in Eq.(5) which gives

R′00 = ir′0 + ir′1 = iγr0− iβγr1 + iγr1− iβγr0 (18)

R′11 = ir′0− ir′1 = iγr0− iβγr1− iγr1 + iβγr0. (19)

Now we want to introduce rapidity or hyperbolic Special Relativity in order to integrate
Lorentz transformations into our matrix metric. In [2] I gave a brief history of rapidity in its
relation to the Thomas precession and the geodesic precession. For this paper we only need
elementary rapidity definitions. If we use the rapidity ψ as eψ = coshψ+ sinhψ = γ+βγ ,
the previous transformations can be rewritten as

R′00 = ir′0 + ir′1 = (γ−βγ)(ir0 + ir1) = R00e−ψ (20)

R′11 = ir′0− ir′1 = (γ +βγ)(ir0− ir1) = R11eψ . (21)

As a result we have

RL =

[
R′00 R′01
R′10 R′11

]
=

[
R00e−ψ R01

R10 R11eψ

]
=U−1RU−1. (22)

In the expression RL =U−1RU−1 we used the matrix U as

U =

[
e

ψ

2 0
0 e−

ψ

2

]
. (23)

But this means that we can write the result of a Lorentz transformation on R with a
Lorentz velocity in the Î-direction between the two reference systems as

RL = r0

[
ie−ψ 0

0 ieψ

]
+ r1

[
ie−ψ 0

0 −ieψ

]
+ r2

[
0 1
−1 0

]
+ r3

[
0 i
i 0

]
. (24)

This can be written as

RL = r0U−1T̂U−1 + r1U−1ÎU−1 + r2Ĵ+ r3K̂ = r0T̂L
+ r1ÎL

+ r2Ĵ+ r3K̂. (25)

But because we started with Eq.(17), we now have two equivalent options to express the
result of a Lorentz transformation

RL = r′0T̂+ r′1Î+ r2Ĵ+ r3K̂ = r0T̂L
+ r1ÎL

+ r2Ĵ+ r3K̂, (26)

either as a coordinate transformation or as a basis transformation.
This result only works for Lorentz transformation between vx-, v1- or Î-aligned refer-

ence systems. Reference systems which do not have their relative Lorentz velocity aligned
in the Î-direction will have to be space rotated into such an alignment before the Lorentz
transformation in the form RL =U−1RU−1 is applied. In principle, such a rotation in order
to achieve the Î alignment of the primary reference frame to a secondary reference frame is
always possible as an operation prior to a Lorentz transformation. This unique alignment
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between two frames of reference S and S′, needed to match the physics with the algebra,
is analyzed by Synge in [1, p. 41-48] and focuses on the concept of a communal photon.
The requirement of reference system alignment is also the reason for the appearance of the
Thomas precession and the Thomas-Wigner rotation if the axis are not aligned; the notion
that two Lorentz transformations in different directions in space can always be substituted
by the subsequent application of one space rotation and one single Lorentz transformation,
see [2]. The communal photon of Synge is the one for which the relativistic Doppler shift
between S and S′results in ν ′ = νe±ψ . The minquat algebra requires inertial observers to
align their principal axis along such a communal photon, my notation the Î axis.

The Lorentz transformation of the coordinates can be written as

(Rµ)L =


r′0
r′1
r′2
r′3

= Λ
µ

ν Rν =


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1




r0

r1

r2

r3

=


γr0−βγr1

γr1−βγr0

r2

r3


So the Lorentz transformation of R = Rµ Kµ = Kµ Rµ can be presented as

RL = Kµ(Rµ)L = Kµ Λ
µ

ν Rν = (Kµ Λ
µ

ν )Rν = (Kν)
LRν =U−1KνU−1Rν =

U−1Kν RνU−1 =U−1RU−1 (27)

This implies the identity Kµ Λ
µ

ν = U−1KνU−1, an identity that isn’t possible for the co-
ordinates only. The matrix representation of the basis is key to this identity, because the
relativistic Doppler factor e±ψ appears differently attached to the matrix elements. As is the
Î alignment of the two involved reference frames during the Lorentz transformation. Given
that Kµ = iσσσ µ , the identity Kµ Λ

µ

ν =U−1KνU−1 can also be seen as an instruction for the
Lorentz transformation of the Pauli spin matrices as a norm-spin four set σσσ µ = (1̂,σσσ).

The Lorentz transformation of AT is also interesting, due to the importance of the
product C = AT B and therefore the Lorentz transformation CL. Given the inverse Lorentz
transformation as

AL−1 ≡UAU (28)

one can prove (
AT )L−1

=U
(
AT )U =

(
U−1AU−1)T

=
(
AL)T

(29)

and (
AT )L

=U−1 (AT )U−1 = (UAU)T =
(

AL−1
)T

. (30)

The result
(
AL
)T

=UATU will be used in several important derivations in this paper, when
the Lorentz transformation of a product and the possible invariance or Lorentz covariance
has to be investigated, as in the next example.

Given A and B in reference system S1 and their product in S1 as C = AT B. Then in
reference system S2 one has AL and BL and their product CL =

(
AL
)T BL. We then have

CL =
(
AL)T

BL =
(
AT )L−1

BL =U
(
AT )UU−1BU−1 =UAT BU−1 =UCU−1. (31)
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As a result, it is easy to prove that the quadratic AT A = c2a2
τ 1̂ is Lorentz invariant. We

have

(AL)T AL = (AT )−LAL =UATUU−1AU−1 =UAT AU−1 =

U(c2a2
τ)1̂U−1 =UU−1(c2a2

τ)1̂ = c2a2
τ 1̂ = AT A. (32)

So both quadratics RT R and dRT dR are Lorentz invariant scalars, as has been shown
for every quadratic of four-vectors.

2.5. Adding the dynamic vectors

If we want to apply the previous to relativistic electrodynamics and to quantum physics, we
need to develop the mathematical language further. We start by adding the most relevant
dynamic four vectors. The basic definitions we use are quite common in the formulations
of relativistic dynamics, see for example [3]. We start with a particle with a given three
vector velocity as v, a rest mass as m0 and an inertial mass mi = γm0, with the usual
γ =(

√
1− v2/c2)−1. We use the Latin suffixes as abbreviations for words, not for numbers.

So mi stands for inertial mass and Up for potential energy. The Greek suffixes are used as
indicating a summation over the numbers 0, 1, 2 and 3. So Pµ stands for a momentum
four-vector coordinate row with components (p0 =

1
cUi, p1, p2, p3). The momentum three-

vector is written as p and has components (p1, p2, p3).
We define the coordinate velocity four vector as

V =Vµ Kµ =
d
dt

Rµ Kµ = cT̂+v ·K = v0T̂+v ·K. (33)

The proper velocity four vector on the other hand will be defined using the proper time
τ = t0, with t = γt0 = γτ , as

U =Uµ Kµ =
d

dτ
Rµ Kµ =

d
1
γ
dt

Rµ Kµ = γVµ Kµ = u0T̂+u ·K. (34)

The momentum four vector will be, at least when we have the symmetry condition p=miv,

P = Pµ Kµ = miVµ Kµ = miV = m0Uµ Kµ = m0U. (35)

The four vector partial derivative ∂ = ∂µ Kµ will be defined using the coordinate four set

∂µ =

[
−1

c
∂t ,∇1,∇2,∇3

]
= [∂0,∂1,∂2,∂3] . (36)

The electrodynamic potential four vector A = Aµ Kµ will be defined by the coordinate four
set

Aµ =

[
1
c

φ ,A1,A2,A3

]
= [A0,A1,A2,A3] (37)

The electric four current density vector J = Jµ Kµ will be defined by the coordinate four
set

Jµ = [cρe,J1,J2,J3] = [J0,J1,J2,J3] , (38)
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with ρe as the electric charge density. The electric four current with a charge q will be also
be written as Jµ and the context will indicate which one is used.

Although we defined these fourvectors using the coordinate column notation, we will
often use the matrix or summation notation, as for example with P = Pµ Kµ , written as

P = p0T̂+ p1Î+ p2Ĵ+ p3K̂ = p0T̂+p ·K

=

[
ip0 + ip1 p2 + ip3

−p2 + ip3 ip0− ip1

]
=

[
P00 P01

P10 P11

]
. (39)

The flexibility to use either of these notations is a strength of the math-phys language as
developed in this paper. There are cases where one needs to go all the way to the inter-
nal scalar matrix notation to solve issues as for example the product rule in calculating a
derivative, after which one returns to the more compact notation to evaluate the outcome.

2.6. The EM field in our language

I we apply the matrix multiplication rules to the electromagnetic field with four derivative
∂ and four potential A, with ∂0 =− 1

c ∂t and A0 =
1
c φ , we get B = ∂ T A as

B = ∂
T A = (− 1

c2 ∂tφ −∇∇∇ ·AAA)1̂+(∇∇∇×AAA) ·K+
1
c
(−∂tAAA−∇∇∇φ) ·σσσ . (40)

If we apply the Lorenz gauge B0 =− 1
c2 ∂tφ−∇∇∇ ·AAA = 0 and the usual EM definitions of the

fields in terms of the potentials we get

B = ∂
T A = BBB ·K+

1
c

EEE ·σσσ . (41)

Using σσσ =−T̂K =−iK, this can also be written as

B = ∂
T A = (BBB− i

1
c

EEE) ·K =
−→
B ·K. (42)

The use of B= BBB− i 1
c EEE dates back to Minkowski’s 1908 treatment of the subject [4].

Using B we can write B as

B = B1Î+B2Ĵ+B3K̂ =
−→
B ·K =

[
iB1 B2 + iB3

−B2 + iB3 −iB1

]
=

[
B00 B01

B10 B11

]
. (43)

For the Lorentz transformation of B we can apply the result of the previous section to
get BL = (∂ L)T AL = (∂ T )−LAL =U(∂ T )UU−1AU−1 =U(∂ T A)U−1 =UBU−1, so

BL =

[
e

ψ

2 0
0 e−

ψ

2

][
B00 B01

B10 B11

][
e−

ψ

2 0
0 e

ψ

2

]
=

[
B00 B01eψ

B10e−ψ B11

]
(44)

which, when written out with EEE and BBB leads to the usual result for the Lorentz transforma-
tion of the EM field with the Lorentz velocity in the x-direction. But it can also be written
as a transformation of the basis, while leaving the coordinates invariant:

BL =UBU−1 = B1U ÎU−1 +B2U ĴU−1 +B3UK̂U−1 =

B1Î+B2ĴL
+B3K̂L

= B1

[
i 0
0 −i

]
+B2

[
0 eψ

−e−ψ 0

]
+B3

[
0 ieψ

ie−ψ 0

]
. (45)
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The Lorentz transformation of the EM field can be performed by internally twisting the
(Ĵ,K̂)-surface perpendicular to the Lorentz velocity and in the process leaving the EM-
coordinates invariant.

That the above equals the usual Lorentz transformation of the EM field can be shown
by going back to [4], where he wrote the transformation in a form equivalent toB′1B′2

B′3

=

1 0 0
0 γ iβγ

0 −iβγ γ

B1

B2

B3

=

 B1

γB2 + iβγB3

γB3− iβγB2

 (46)

So we have

B′01 = B′2 + iB′3 = γB2 + iβγB3 + iγB3 +βγB2 (47)

and

B′10 =−B′2 + iB′3 =−γB2− iβγB3 + iγB3 +βγB2. (48)

If we use the rapidity ψ as eψ = coshψ + sinhψ = γ +βγ , this can be rewritten as

B′01 = B′2 + iB′3 = (γ +βγ)(B2 + iB3) = B01eψ (49)

and

B′10 =−B′2 + iB′3 = (γ−βγ)(−B2 + iB3) = B10e−ψ , (50)

which leads to Eqn. (44).

2.7. The Maxwell Equations and the Lorentz force law

The Maxwell equations in our language can be given as, using J = ρV , ∂B = µ0J and the
Lorentz force law, with a four force density F , as JB = F . Maxwell’s inhomogeneous
wave equations can be written as (−∂ T ∂ )B = −µ0∂ T J and with the Lorentz invariant
quadratic derivative,

−∂
T

∂ = (∇∇∇2− 1
c2 ∂

2
t )1̂ (51)

we get the homogeneous wave equations of the EM field in free space in the familiar form
as

(−∂
T

∂ )B = ∇∇∇
2B− 1

c2 ∂
2
t B = 0. (52)

I will look at ∂B = µ0J first. The underlying structure then also applies to the Lorentz
Force Law and the inhomogeneous part of the wave equation. I start with

B = ∂
T A = BBB ·K+

1
c

EEE ·σσσ . (53)

Then ∂B is given by

∂B =

(
−1

c
∂t T̂+∇∇∇ ·K

)(
BBB ·K+

1
c

EEE ·σσσ
)
=

−(∇∇∇ ·BBB)1̂+ 1
c
(∇∇∇ ·EEE)T̂+(∇∇∇×BBB− 1

c2 ∂tEEE) ·K+
1
c
(∇∇∇×EEE +∂tBBB) ·σσσ (54)
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If we interpret this result using the knowledge regarding the inhomogeneous Maxwell
equations, we get an interesting result. First of all, the part of the Maxwell Equation with
the dimension of the norm 1̂ is zero and so is the part with the dimension of spin σσσ . The
space-time parts K and T̂ equal the space-time parts of the four current µ0J. So we get

∂B =−(∇∇∇ ·BBB)1̂+ 1
c
(∇∇∇ ·EEE)T̂+(∇∇∇×BBB− 1

c2 ∂tEEE) ·K+
1
c
(∇∇∇×EEE +∂tBBB) ·σσσ =

01̂+µ0cρT̂+µ0JJJ ·K+0σσσ = µ0J. (55)

So the spin-norm part of the Maxwell Equations equals zero and the space-time part equals
the space-time four current density times µ0. In the line of this interpretation, magnetic
monopoles and the correlated magnetic monopole current should be searched in the pauli-
quat dimensions of spin-norm, not in the minquat dimensions of space-time.

As for the Lorentz covariance of the Maxwell Equations, this can be demonstrated
quite easily. Given the four-vectors ∂ , A and J in reference system S1, with the Maxwell
Equations as ∂ (∂ T A) = µ0J, then in reference system S2 we have the four-vectors ∂ L, AL

and JL and the covariant Maxwell Equations given as ∂ L(∂ L)T AL = µ0JL. In S2 this can be
proven through

∂
L(∂ L)T AL = ∂

L(∂ T )L−1
AL =U−1

∂U−1U(∂ T )UU−1AU−1 =

U−1
∂ (∂ T )AU−1 =U−1

∂BU−1 =U−1
µ0JU−1 = µ0JL. (56)

So if we have ∂B = µ0J in one frame of reference, this transforms as ∂ LBL = µ0JL in
another frame of reference, which means that the equation maintains its form, it is Lorentz
covariant. We have form-invariance of the equations.

I will look at JB = F now, with J = qV . The underlying structure for the Lorentz Force
Law is the same as for the Maxwell equations. So JB is given by

JB =
(
cqT̂+ JJJ ·K

)(
BBB ·K+

1
c

EEE ·σσσ
)
=

−(JJJ ·BBB)1̂+ 1
c
(JJJ ·EEE)T̂+(JJJ×BBB+qEEE) ·K+(

1
c

JJJ×EEE− cqBBB) ·σσσ (57)

If we interpret this result using the knowledge regarding the Lorentz Force Law, we get an
interesting result. First of all, the part of the Lorentz force law with the dimension of the
norm 1̂ is zero and so is the part with the dimension of spin σσσ . The space-time parts K and
T̂ equal the space-time parts of the four force F . Thus we get

JB =−(JJJ ·BBB)1̂+ 1
c
(JJJ ·EEE)T̂+(JJJ×BBB+qEEE) ·K+(

1
c

JJJ×EEE− cqBBB) ·σσσ =

01̂+
1
c

PT̂+FFF ·K+0σσσ = F. (58)

So the spin-norm pauliquat part of the Lorentz Force Law equals zero and the space-time
minquat part equals the space-time four force.

In both cases, ∂B and BJ, we get a dual spin-norm and space-time product, with the
spin-norm equal zero and the non-zero space-time leading to the inhomogeneous four-
vectors of current and force. Speculations about magnetic monopoles are connected to
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these spin-norm parts, the set spanned by pauliquats. In my analysis, if spin-norm is the
twin dual of space-time and as such an integral aspect of the metric as foreseen in [5], then
searches for magnetic monopoles should focus on this spin-norm aspect of the vacuum.

But from a purely geometric perspective, the product of three four-vectors like in BJ =

∂ T AJ = F , we can separate the coordinate four sets ∂µ , Aν , and Jµ from the metric basis,
as in , BJ = ((∂µ Aν)Jµ)((KT

µ Kν)Kµ) and focus on the metric product alone. We then get

K ν
µ Kµ = (KT

µ Kν)Kµ =


−T̂T̂ ÎT̂ ĴT̂ K̂T̂
−T̂Î ÎÎ ĴÎ K̂Î
−T̂Ĵ ÎĴ ĴĴ K̂Ĵ
−T̂K̂ ÎK̂ ĴK̂ K̂K̂




T̂
Î
Ĵ
K̂

= (59)


−T̂T̂T̂+ ÎT̂Î+ ĴT̂Ĵ+ K̂T̂K̂
−T̂ÎT̂+ ÎÎÎ+ ĴÎĴ+ K̂ÎK̂
−T̂ĴT̂+ ÎĴÎ+ ĴĴĴ+ K̂ĴK̂
−T̂K̂T̂+ ÎK̂Î+ ĴK̂Ĵ+ K̂K̂K̂

=


T̂− T̂− T̂− T̂

Î− Î+ Î+ Î
Ĵ+ Ĵ− Ĵ+ Ĵ

K̂+ K̂+ K̂− K̂

 , (60)

with no norm-spin (1̂,σσσ) product in the end result. The product of three four-vectors in this
metric/geometry environment should produce a space-time four vector only, as is reflected
in the Maxwell equations and the Lorentz Force Law. In other words, the multiplication
of three minquats produces a pure minquat, not a pauliquat or a sum of a pauliquat and
a minquat. Looking for magnetic monopoles as ‘symmetric completion’ of the Maxwell
Equations and the Lorentz Force Law makes no sense in the metric/geometry developed in
this paper because it implies looking for non-zero (1̂,σσσ) results from K ν

µ Kµ . The metric
(T̂,K);(1̂,σσσ) dimensionality analysis implies that only non-zero (T̂,K) results are possible
and that excludes magnetic monopole four forces and four currents.

2.8. Invariant EM field energies and the generalized Poynting theorem

As for the electromagnetic energy density of a pure EM field, we have the two products BB
and BT B. These product are structurally different from the previous ∂ T A and ∂B = ∂∂ T A
because it now involves the multiplication of four four-vectors as in BB = ∂ T A∂ T A.

For BB the antisymmetric part eliminates and we get the norm-time product

BB =

(
BBB ·K+

1
c

EEE ·σσσ
)(

BBB ·K+
1
c

EEE ·σσσ
)
= (

1
c2 EEE2−BBB2)1̂+(2

1
c

BBB ·EEE)T̂, (61)

which, with a complex uEB = uE −uB +2i√uBuE , can be written as

1
2µ0

BB = (uE −uB)1̂+(2
√

uBuE)T̂ = uEB1̂. (62)

The fact that the product BB is Lorentz invariant follows from BL = UBU−1 and the fact
that BB result in a complex scalar value, so

BLBL =UBU−1UBU−1 =UBBU−1 = 2µ0uEBU 1̂U−1 = 2µ0uEB1̂ = BB. (63)
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We also have the interesting product 2∂uEB = ∂ ( 1
µ0

BB), the four divergence of this Lorentz
invariant EM energy related product. Using the Maxwell equations ∂B = µ0J and the
Lorentz force density law JB = F , we get

∂uEB = ∂ (
1

2µ0
BB)' 2

2µ0
(∂B)B = JB = F , (64)

resulting in ∂uEB = F .
For the second EM energy related product BT B the antisymmetric part survives and we

get the spin-norm product

BT B =

(
BBB ·K− 1

c
EEE ·σσσ

)(
BBB ·K+

1
c

EEE ·σσσ
)
=−( 1

c2 EEE2 +BBB2)1̂− (2
1
c

EEE×BBB) ·σσσ =

−2µ0uEM 1̂−2µ0
1
c

SSS ·σσσ =−2µ0c
(

1
c

uEM 1̂+
1
c2 SSS ·σσσ

)
=−2µ0c

(
1
c

uEM 1̂+ggg ·σσσ
)
.(65)

In the last equation, I used the Poynting vector SSS = 1
µ0

EEE×BBB, the EM momentum density
ggg = 1

c2 SSS and the EM energy as 2µ0uEM = BBB2 + 1
c2 EEE2. The last part can also be written as

BT B =−2µ0c
(

1
c

uEM 1̂+ggg ·σσσ
)
= 2iµ0c

(
1
c

uEMT̂+ggg ·K
)
= 2iµ0cG. (66)

Thus we get the usual EM four momentum density G and the four EM energy current
density S as

G =
1
c2 S =

−i
2µ0c

BT B =
1
c

uEMT̂+ggg ·K, (67)

in which G has the appearance of a good relativistic space-time four vector. But according
to our analysis it isn’t a space-time four vector but a spin-norm four vector. That makes this
product an interesting case for studying the characteristics of the spin-norm dual or twin
dimension of space-time, as manifesting aspects of the Dirac vacuum or Dirac Æther.

For the Lorentz transformation of BT B, one has to go to the Lorentz transformation of
the primary constituting four vectors. We have BT B = (∂ T A)T (∂ T A) = (∂AT )(∂ T A). The
Lorentz transformation of BT B then results in

∂
L(AL)T (∂ L)T AL = ∂

L(AT )L−1
(∂ T )L−1

AL =U−1
∂U−1U(AT )UU(∂ T )UU−1AU−1 =

U−1(∂AT )UU(∂ T A)U−1 =U−1BTUUBU−1 = (BT )L−1
BL = (BL)T BL(68)

This means that we have Lorentz covariance for the equation G = − i
2µ0c BT B. So in

Eqn.(67) the EM four momentum density G and the four EM energy current density S
are defined in a Lorentz covariant way.

The product ∂ T G is interesting too, being the divergence of the EM momentum density
BT B. It brings us at the level of the product of five original four-vectors. It should give a
Maxwell-Lorentz structured complex force. We get

∂
T G =

−i
2µ0c

∂
T BT B =

−i
2µ0c

(∂BBT )T ' −i
2µ0c

(2µ0JBT )T =
−i
c
(JT B) = F (69)
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implying that we returned to a product of three four-vectors with as a necessary result a
Maxwell Equation, Lorentz Force Law structured outcome. The main difference is in the
appearance of the complex number i, JT B = icF , stemming from T̂ = i1̂, which turns
space-time into spin-norm and vice versa. The second related difference is coming from
the time reversal in J in JT B.

Calculating −i
c JT B gives

−i
c

JT B =
−i
c

(
−cqT̂+ JJJ ·K

)(
BBB ·K+

1
c

EEE ·σσσ
)
=

1
c
(JJJ ·BBB)T̂+

1
c2 (JJJ ·EEE)1̂+

1
c
(JJJ×BBB−qEEE) ·σσσ − (

1
c2 JJJ×EEE +qBBB) ·K (70)

We see that the spin-norm and space-time switch places due to i and that the sign of q
changes due to T (not the sign of JJJ). The other part ∂ T G leads to

∂
T G = (− 1

c2 ∂tuEM−∇∇∇ ·g)1̂+(∇∇∇×g) ·K+
1
c
(∂tg+∇∇∇uEM) ·σσσ . (71)

The norm 1̂ part of the equation ∂ T G = −i
c (JT B) contains the relativistic Poynting’s theo-

rem:
1
c2 ∂tuEM +∇∇∇ ·g =− 1

c2 JJJ ·EEE (72)

so using S = c2g we get the relativistic Poynting theorem for EM energy density conserva-
tion

∂tuEM +∇∇∇ ·S =−JJJ ·EEE. (73)

The equation ∂ T G=− i
c (J

T B) can be perceived as the generalizes Poynting theorem. In the
derivation, the step (∂BBT )T ' (2(∂B)BT )T = (2µ0JBT )T does need further evaluation,
but that is a topic for another time. It’s details don’t influence the result regarding the
presented derivation of the Poynting theorem.

Two issues are relevant for the present paper. The first point to make is that the Poynting
continuity equation refers to an open system when a charge is moving in an electric field.
Without the current one has the EM field energy density continuity equation for a closed
system

∂
T
µ Sµ = ∂tuEM +∇∇∇ ·S = 0. (74)

The second issue is that this continuity equation has its origin in the norm-like part of the
momentum closed system condition ∂ T G = 0 of Eqn.(71)

∂
T
µ Gµ =

1
c2 ∂tuEM +∇∇∇ ·g = 0. (75)

The other closed system conditions are the space-like absence of vorticity condition

∇∇∇×g = 0 (76)

and the spin-like

∂tg+∇∇∇uEM = 0. (77)
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The last part can be written as the spin-like conserved force condition

∂tg =−∇∇∇uEM. (78)

This pattern will repeat itself for the Dirac current. In the Dirac level part of this paper,
the Dirac current will shown to be a probability/field tensor and the continuity equation for
the Dirac current will turn out to be the time-like part of the closed system condition for
this probability/field tensor.

As for the Lorentz covariance of invariance of Poynting’s theorem including the JJJ ·EEE
term, it clearly isn’t. What is Lorentz covariant is the generalized Poynting theorem or law
∂ T G=− i

c (J
T B). In [12], Meyers stated that Poynting’s theorem should be Lorentz covari-

ant. This requirement is too strict and obviously runs into trouble, as shown in [12]. See
[13] for an updated critical analysis of the Lorentz transformation properties of Poynting’s
theorem.

2.9. Relativistic mechanics

Angular momentum is given by LLL = rrr× ppp so let’s try to generalize it with the four vector
action product RT P. We get

RT P= (Uit−rrr · ppp)1̂+(rrr× ppp) ·K+(ct ppp− 1
c

Uirrr) ·σσσ = S1̂+LLL ·K+ZZZ ·σσσ = S1̂+(ZZZ− iLLL) ·σσσ .

(79)
In this one single product we can recognize the scalar action S, the Pauli-level spin-orbit in-
teraction iLLL ·σσσ , but also the angular momentum six-vector (ZZZ− iLLL) of Frenkel, de Broglie,
Kramer and Dirac [6,7,8,9]. Clearly ZZZ = ct ppp−micrrr represents the barycentric momentum
of de Broglie and the sixvector completion of angular momentum with Frenkel, Kramers
and Dirac, as a part of the six-vector LLL− iZZZ.

In SR and GR, Laue’s condition for the conservation of energy-momentum in a closed
system is ∂ν T ν

µ = 0 [10,11,3]. In our language we have a comparable but not identi-
cal ∂ T P = 0 condition as a starting point of our alternative relativistic mechanics. In the
case of electrodynamics, when we have the canonical P = qA, we have ∂ T A = B 6= 0.
So in circumstances analogous to a nonzero anti-symmetric EM field, the condition
∂ T P = q∂ T A = qB = 0 is not fulfilled. In the previous section, we saw other conditions in
the EM context where the closed system condition is not satisfied due to charges (moving)
in EM fields.

The mechanic condition ∂ T P = 0 leads to

∂
T P = (− 1

c2 ∂tUi−∇∇∇ ·p)1̂+(∇∇∇×p) ·K+
1
c
(∂tp+∇∇∇Ui) ·σσσ = 0. (80)

so to three subconditions

1
c2 ∂tUi +∇∇∇ ·p = 0 (81)

∇∇∇×p = 0 (82)

∂tp =−∇∇∇Ui. (83)
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The first one is the continuity equation, the second means that we have zero vorticity and
the third that the related force field can be connected to a potential energy. Due to the
second condition, the time derivative of ∇∇∇×p must be zero, giving the secondary conserved
force field condition

∇∇∇×F = 0. (84)

The first condition can also be written as

∂tmi +∇∇∇ · (miv) = 0, (85)

so the continuity equation for inertial mass.
If we have ∂ T P = 0 in one system of reference, then in another system of reference we

have

(∂ L)T PL = (∂ T )L−1
PL =U∂

TUU−1PU−1 =U∂
T PU−1 = 0, (86)

proving that the condition is Lorentz covariant.
With ∂ T P = 0 we have a relativistic condition of a mechanical system representing a

central force. It is best characterized as the extended continuity condition, it’s relativistic
completion: the generalized continuity equation. It has as a norm 1̂ condition the continuity
equation, as a space K condition the absence of vorticity and as a spin σσσ condition the con-
served force condition. This will become crucial in relativistically extending the conserved
Dirac current condition in RQM.

In the Laue condition ∂ν T ν
µ = 0 the stress-energy density tensor is T ν

µ = V ν Gµ . In
our math-phys language we would get the not exact analog T =V T G and ∂T = 0, but that
would imply a full homogeneous Maxwell-Lorentz structure with the product ∂V T G = 0.
Our stress energy density ‘tensor’ T is given by

T =V T G = (ui−v ·g)1̂+(v×g) ·K+ c(g− 1
c2 uiv) ·σσσ . (87)

This tensor analog contains all the elements of T ν
µ = V ν Gµ , with the difference that the

cross product v×g appears directly in our T =V T G whereas ony half of it is in the usual
tensor and the anti-symmetric tensor product is needed to get the full cross product.

In the case of a symmetric situation v has the same direction as g, resulting in

T = (ui−v ·g)1̂ = u01̂ (88)

v×g = 0 (89)

g =
1
c2 uiv. (90)

The third equation contains the mass-energy density equivalence ui = ρic2, but it also
implies the absence of linear stresses. The second equation implies the absence internal
pressures. The first equation equals the scalar Lagrangian density, the trace of the Laue
mechanical stress-energy density tensor. A symmetric T can be written as T = 1

ρ
GT G in

the mass density formulation and as T = 1
m0

PT P in the mass formulation.
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The divergence of the symmetric T has the space-like part and the spin-like part equal
to zero and only the norm-like part possibly non-zero. This leads to a four force density as

F =−∂T =−∂
1
ρ

GT G =−∂u01̂ =
1
c

∂tu0T̂−∇∇∇u0 ·K. (91)

The direct parallel in electromagnetics would be that
−→
B = 0 with a Coulomb gauge for

the field and that TEM = JT A = ρ0φ01̂, with F = −∂ρ0φ0. In the rest system this would
produce a Coulomb force density and a Coulomb force power, which, for a static potential,
would be zero. Thus in our relativistic dynamics, in the symmetric case the electromagnetic
parallel would only produce a Coulomb force situation.

Only if v doesn’t have the same direction as g will there be an anti-symmetric com-
ponent present that is analog to the structure of the Maxwell-Lorentz electromagnetic
field/force situation. The Lorentz force is given as JB = F , which can be written as
qV ∂ T A = F which, by using P = qA, results in the mechanical analog V ∂ T P = F . This
still isn’t the full ∂V T P = −F . The Lorentz force law analog in our relativistic dynamics
implies that ∂ T P 6= 0, so that m0∂ TU 6= 0. If we look closer at V ∂ T , we see that it contains
the three parts, norm 1̂, spin σσσ and space K respectively,

(− ∂

∂ t
−v ·∇∇∇)1̂≡− d

dt
1̂ (92)

v×∇∇∇ (93)

c∇∇∇+
1
c

v∂t . (94)

So the product−V ∂ T is our variant of the absolute derivative, with d
dt 1̂ as the scalar norm 1̂

part of it. Thus if we go from ∂ T P = 0 to V ∂ T P = F , we move in our relativistic mechanics
from a closed Coulomb only force structure or environment to an open Lorentz Force Law
one, related to a move from a partial four derivative ∂ to an absolute four derivative product
V ∂ T . That area of mechanics is outside the scope of this paper.

2.10. The Quantum, Pauli level Klein-Gordon condition

The basic scalar Klein-Gordon wave equation in Quantum Mechanics is

(∇∇∇2− 1
c2 ∂

2
t )Ψ = 0 (95)

In our environment it can be written as

−∂
T

∂Ψ = (∇∇∇2− 1
c2 ∂

2
t )1̂Ψ = 0 (96)

but then we have a two column spinor as wave-function

Ψ =

[
Ψ0

Ψ1

]
(97)

instead of the scalar spinor of Schrödinger- and standard Klein-Gordon QM. But it would
result in two identical equations, so a degenerate situation in which the two valued spinor
equation can be reduced to a single one.
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Thus far, only Lorentz transformation could act on the matrix internal aspect of our
basis. And even then, a coordinate interpretation was always possible, leaving the basis
inert. So up until now, the matrix part of the basis has been practical but not essential.
Spinors on the Pauli and Dirac level change that situation. Spinor wave functions interact
with the internal elements, the matrix aspect, of the metric (T̂, Î, Ĵ,K̂).

The Klein-Gordon Equation has its roots in the quadratic energy-momentum condition

PT P = (
1
c2 U2

i − p2)1̂ =
1
c2 U2

0 1̂, (98)

which, as done by [14,21] in the Dirac context, can be linked to the symmetric energy-
momentum matrix

T =V T P =
1

γm0
PT P =

1
γ

U01̂ =−L1̂. (99)

If you take the density version, by dividing it by a volume, this volume has one of its
lengths Lorentz contracted, which then compensates for the γ in L to produce a Lorentz
invariant rest-energy density. In Quantum Mechanics this volume is included in the proba-
bility density so Ψ†LΨ = u0

In Wave Mechanics this is the basis for the introduction of the eigenvalue wave equation

PT PΨ = (
1
c2 U2

i − p2)1̂Ψ =
1
c2 U2

0 1̂Ψ. (100)

With the operator convention P̂ = −ih̄∂ we can switch from energy-eigenvalue condition
to operator-wave equation

P̂T P̂Ψ =
1
c2 U2

0 1̂Ψ. (101)

We can make this canonical by applying the replacement P→ P+qA and P̂→ P̂+qA
or ∂ → D = ∂ + i q

h̄ A. We get the canonical Klein-Gordon wave equation in a biquaternion
metric

DT DΨ =
U2

0

c2h̄2 1̂Ψ. (102)

This equation includes the Pauli-spin EM-field interaction term. One issue with the canon-
ical version is the rest energy term U0 is the question what it should all include. For the
moment that question is ignored. But the issue is related to the open or closed system
context. A closed system has constant rest energy and thus it has

∂
1

m0
PT P = 0. (103)

An open system doesn’t have its divergence equal zero. Electromagnetic fields with mov-
ing charges are notoriously open systems. That affects the canonical wave equations of
Quantum Mechanics.

The DT DΨ part can be expanded as

DT DΨ = ∂
T

∂Ψ+ i
q
h̄

∂
T AΨ+ i

q
h̄

AT
∂Ψ− q2

h̄2 AT AΨ. (104)
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Now, the first and the last terms give scalar quadratics but the two middle terms must be
examined more carefully. By writing out the two matrix products and applying the standard
differentiation rule to the scalars in these matrixes, one can show that

∂
T AΨ+AT

∂Ψ = BΨ+2(
1
c2 φ∂t +A ·∇∇∇)1̂Ψ (105)

This gives us for DT DΨ =
U2

0
c2h̄2 1̂Ψ the equation

∂
T
µ ∂

µ 1̂Ψ− q2

h̄2 AT
µ Aµ 1̂Ψ−2i

q
h̄

AT
µ ∂

µ 1̂Ψ =−
U2

0

c2h̄2 1̂Ψ+ i
q
h̄

BΨ, (106)

with

∂
T

∂ = (
1
c2 ∂

2
t −∇∇∇

2)1̂ =−∂
T
µ ∂

µ 1̂, (107)

AT A = (
1
c2 φ

2−A2)1̂ =−AT
µ Aµ 1̂, (108)

AT
µ ∂

µ = (
1
c2 φ∂t +A ·∇∇∇). (109)

The only non-degenerate part in this equation is i q
h̄ BΨ. In our units we have the Bohr

magneton µB = eh̄
2m0

and if we multiply the equation by h̄2

2m0
we get the non-degenerate

term as iµBBΨ. This can be written as

iµBBΨ = iµb
−→
B ·KΨ =−µb

−→
B ·σσσΨ =−µbB ·σσσΨ+ iµb

1
c

E ·σσσΨ, (110)

with the remark that we exchanged the Pauli σx and σz, as σI = σz and σK = σx. So by
putting spin in the metric we get a canonical Klein Gordon equation that includes Pauli-
spin EM field interaction terms. Now, we have the spin magnetic moment µµµs = µBσσσ . We
can further interpret the relativistic companion of the intrinsic magnetic moment as the
intrinsic zitter-effect polarization πππs =

eλ c
2 σσσ , we get

iµBBΨ =−B ·µµµsΨ+ iE ·πππsΨ (111)

The complete wave equation on the Pauli-spin spinor-level, in which a spinor consists
of two complex variables, will then be

− h̄2

2m0
1̂∇∇∇

2
Ψ+

h̄2

2m0c2 1̂∂
2
t Ψ+

q2

2m0
A21̂Ψ− q2φ 2

2m0c2 1̂Ψ (112)

+
ih̄qφ

m0c2 1̂∂tΨ+
iqh̄
m0

A ·∇∇∇1̂Ψ (113)

=
U0

2
1̂Ψ+B ·µµµsΨ− iE ·πππsΨ, (114)

The first term with ∇∇∇
2 is the kinetic term, the AAA2 part is know as the diamagnetic part of the

Pauli equation, the A ·∇∇∇ part as the paramagnetic part, and with the Coulomb gauge this
part can also be rearranged into the orbital or angular momentum term causing the Zeeman
effect [23, p. 144 and 190]. The B · µµµs term is the spin magnetic moment term connected
to the anormal Zeeman effect. The other terms are either simply ignored, as for example
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the E ·πππs term, or somehow reduced to a term for the potential and a term for the constant
energy.

It is interesting to observe that we have a quadratic time derivative as is usual in the
Klein-Gordon equation, but that we also have a linear time derivative. It is my impres-
sion that that linear term, together with the intrinsic zitter polarization term constitutes the
relativistic complement of the JJJ = LLL+ SSS total angular momentum. The relativistic origin
of total angular momentum JJJ = LLL+ SSS lies in the two cross-products of the square of the
canonical momentum

∂
T AΨ+AT

∂Ψ = BΨ+2(
1
c2 φ∂t +A ·∇∇∇)1̂Ψ. (115)

With the use of iµBBΨ =−B ·µµµsΨ+ iE ·πππsΨ, this can be split into the familiar JJJ = LLL+SSS
parts as

iB ·µµµsΨ+2µBA · 1̂∇∇∇Ψ. (116)

and the ignored part as

E ·πππsΨ+
qφ h̄
m0c2 1̂∂tΨ. (117)

With the intrinsic zitter-effect polarization πππs =
eλ c

2 σσσ and the orbital zitter-effect Compton-
level polarization as πo = eλ c this last term can be written as

E ·πππsΨ+
πoφ

c
1̂∂tΨ (118)

and then interpreted as the total zitter-effect Compton-level polarization.
This zitter-polarization linear in time derivative might well be the damping part of the

canonical Klein-Gordon equation and then be responsible for the quantum jumps. It is also
possible that these two terms, scaled to the reduced Compton wavelenght of the electron λ c,
are responsible for the electric counterparts of the normal Zeeman effect and the anormal
Zeeman effect, ie linear Stark effect and anormal Stark effect. It seems outdated to just
ignore the parts of the equation that one cannot connect to some physical experimental
phenomena, as Dirac did with the intrinsic polarization term of his equation. But perhaps
some of those terms only appear in this analysis due to the non-commutative character of
the math-language used/developed.

It is also possible to interpret

E ·πππsΨ+
qφ h̄
m0c2 1̂∂tΨ. (119)

for stationary states with constant energy as

E ·πππsΨ+V 1̂∂tΨ. (120)

with V = qφ and ∂tΨ = iU0
h̄ Ψ. With this stationary state interpretation, the term with the

linear time derivative turns out to produce the standard potential energy term, and its energy
levels are then the usual Coulomb energy levels. The E ·πππsΨ term then produces a zitter-
like Compton reduced wavelength scale smearing out of the principal orbits. Such an effect
has been observed for the most inner S-orbits.
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So with the equation DT DΨ =
U2

0
c2h̄2 1̂Ψ we are able to treat Pauli spin relativistically,

provided that the spinor Ψ Lorentz transforms as ΨL =UΨ. That however is only the case
for the spinors in the Weyl representation and not for spinors in the Dirac representation.
The Lorentz transformation of spinors in the Dirac representation can only be achieved at
the Dirac spinor level, so with four variable spinors. A two variable Pauli spinor in the
Dirac representation cannot be Lorentz transformed on its own, that is, without its Dirac
twin. On the Weyl level, a Lorentz transformation of a Pauli spinor is possible, but the
transformation to its Dirac representation is impossible without its Weyl twin spinor. In
a modern interpretation, this implies that understanding the intrinsics of a quantum jump
as a damping term effect is impossible without introducing anti-particles and the related
quantum field interpretation, even in atoms. If so, then we should introduce Feynman di-
agram like analysis in atomic physics’s attempts to grasp the intrinsics of quantum jumps
of electrons in atoms. It is however impossible to prove this at the Pauli spin level. In the
context of atomic physics at the Pauli level of two variable spinors, quantum jumps are and
will remain a mystery, without proof why that is. Just like line beings will never understand
angles and surface restricted beings will never be able to understand volumes.

3. The Dirac spin level

3.1. The Dirac environment metric matrices

In the nineteen twenties, the quadratic relativistic scalar Klein-Gordon wave equation
couldn’t be applied to the relativistic electron. Dirac linearized the Klein-Gordon equa-
tion by going to four by four matrices instead of the two by two Pauli matrices. In his two
seminal 1928 papers he introduces the Clifford four set (β ,ααα) and, using what were later
called the gamma matrices, the covariant Clifford four set (β ,γγγ) [24,25]. The Pauli ma-
trices are incorporated in these matrices. Weyl later found a third covariant Clifford four
set, which relates to the Dirac covariant set as low velocity relativistic to high velocity
relativistic gamma matrices Clifford four set.

All these matrices can be represented as two by two matrices of the biquaternion pauli-
quat basis (1̂,σσσ ). But using the biquaternion basis (1̂,σσσ ) as a basis of the space-time metric
is already highly problematic, as indicated by Synge [1]. Duplicating this spin-norm basis
by going from the Pauli spinor level to the Dirac spinor level is even more so. As a conse-
quence, using the Clifford four set gamma matrices written as γµ = (γ0,γγγ), as a basis for
the space-time metric or as space-time four vectors on their own right is truly questionable.
It is my opinion that the (T̂,K) biquaternion minquat basis will provide a more solid foun-
dation for connecting the Clifford four sets of Relativistic Quantum Mechanics to ordinary
relativistic Minkowski space-time.

3.1.1. The Dirac and Weyl matrices in dual pauliquat norm-spin mode

In the following I present the Dirac and Weyl matrices using my reversed order of the Pauli
spin matrices, with σI = σz, σJ = σy, σK = σx and σσσ = (σI ,σJ ,σK). This implies that the
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order of the gamma matrices are reversed correspondingly, with γ1 = γI = γz, γ2 = γJ = γy,
γ3 = γK = γx and γγγ = (γ1,γ2,γ3) = (γI ,γJ ,γK)).

In my (1̂,σσσ ) norm-spin basis the Dirac set αµ = (/1,ααα) can be represented as

αµ = (/1,ααα) =

([
1̂ 0
0 1̂

]
,

[
0 σσσ

σσσ 0

])
. (121)

The most straightforward doubling of the Pauli level norm-spin set (1̂,σσσ ) is the Dirac
level norm-spin set Σµ = (/1,ΣΣΣ) defined as

Σµ = (/1,ΣΣΣ) =

([
1̂ 0
0 1̂

]
,

[
σσσ 0
0 σσσ

])
. (122)

The set of gamma matrices in the Dirac representation, γµ = (β ,γγγ) = (γ0,γγγ), can be
defined as

γµ = (β ,γγγ) = (γ0,γγγ) =

([
1̂ 0
0 −1̂

]
,

[
0 σσσ

−σσσ 0

])
(123)

The set of gamma matrices in the Weyl representation, γµ = (γ0,γγγ), can be defined as

γµ = (γ0,γγγ) =

([
0 1̂
1̂ 0

]
,

[
0 σσσ

−σσσ 0

])
(124)

The last matrix we need to define in this environment is the γ5 matrix as

γ5 =

[
0 1̂
−1̂ 0

]
. (125)

The most important product needed to understand the genius of Dirac’s two 1928 Dirac
equation papers is the Dirac gamma product

γ0γµ = (γ0γ0,γ0γγγ) = (1̂,ααα) = αµ . (126)

This product is key towards understanding the Dirac four current and the related continuity
equation. This product eventually leads to the definition of the Dirac adjoint as Ψ = Ψ†γ0,
the Dirac probability current as

Jµ = cΨγµ Ψ = cΨ
†
γ0γµ Ψ = cΨ

†
αµ Ψ (127)

and the Dirac current continuity equation as

∂µ Jµ = c∂µ Ψγ
µ

Ψ = c∂µ Ψ
†
γ0γ

µ
Ψ = c∂µ Ψ

†
α

µ
Ψ = 0. (128)

The main innovative result of the Dirac level part of this paper is the conclusion that the
elements of this probability current four vector can be interpreted as part of a metric proba-
bility tensor and that the continuity equation has its origin in the time like part of the closed
system condition of that metric probability tensor, as in

∂ν Φ
ν

µ ≡ ∂ν Ψ
†
γµ γ

ν
Ψ = 0. (129)

In order to make this consistent as a space-time metric probability condition, I need to
introduce the Dirac and Weyl related matrix representations in the time-space minquat
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basis (T̂,K), what I will call the bèta matrices, instead of gamma matrices in the norm-
spin pauliquat basis (1̂,σσσ).

In my treatment of RQM, the Weyl representation in the time-space basis (T̂,K) will
prove to be like Machiavelli’s “return to the banner” when coherence is fading. In my
context, it is the most simple point of departure possible, from where almost all the rest
can be derived. To return to the space-time basis, (T̂,K) and the related Weyl βµ as its dual-
parity version will prove its strategic worth. But the Dirac representation has proven it’s
worth for almost all practical, experimental area’s of interest, so to understand the operator
that switches between them is as important.

3.1.2. The transformation from the Dirac to the Weyl representation and vice versa

The transformation from the Weyl to the Dirac representation and vice versa is an operator
that is usually written as S. Two possible versions of S are being used. The most common
one is

S =
1√
2

[
1̂ 1̂
1̂ −1̂

]
(130)

and the one I prefer is the less common

S =
1√
2

[
1̂ 1̂
−1̂ 1̂

]
(131)

The reason I will only use the second version is that it has the property γ0S = S−1γ0 and
the directly related Sγ0 = γ0S−1.

The switch from the Weyl γν
w to the Dirac γν

d is then given by γν
d = Sγν

wS−1 and the
switch from the Dirac to the Weyl representation by the inverse γν

w = S−1γν
d S. This also

applies to the αν matrices, which are almost always given in their Dirac representation,
but who can also be written in the Weyl representation as

α
ν
w = S−1

α
ν
d S =

([
1̂ 0
0 1̂

]
,

[
−σσσ 0

0 σσσ

])
. (132)

As a logical consequence one has

γ
w
0 γ

w
ν = (γw

0 γ
w
0 ,γ

w
0 γγγ

w) = (1̂,αααw) = α
w
ν . (133)

A Weyl adjoint can be defined as Ψ
w
= Ψ†wγw

0 and a Weyl current as Jw
ν = Ψ

w
γw

ν Ψw. This
Weyl current is exactly the same as the Dirac current, due to the transformation properties
of the spinors under the Dirac to Weyl representation transformation, given as Ψw = S−1Ψd

and Ψ†
w = Ψ

†
dS. On has

Jw
ν = Ψ

w
γ

w
ν Ψ

w = Ψ
†w

γ
w
0 γ

w
ν Ψ

w = Ψ
†w

α
w
ν Ψ

w = Ψ
†dSS−1

α
d
ν SS−1

Ψ
d = Ψ

†d
α

d
ν Ψ

d = Jd
ν .

(134)
The Dirac level norm-spin set Σµ = (/1,ΣΣΣ) has it’s Weyl representation given by the un-
changed

Σ
w
ν = S−1(/1,ΣΣΣ)S =

([
1̂ 0
0 1̂

]
,

[
σσσ 0
0 σσσ

])
. (135)
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3.1.3. The closed system condition for the Dirac probability current tensor

The derivative of the probability density tensor in its closed system condition,

∂ν Φ
ν

µ ≡ ∂ν Ψ
†
γµ γ

ν
Ψ = 0, (136)

can be retraced to the Klein Gordon equation on the Dirac level as

∂ν Ψ
†/V /PΨ = ∂ν

1
m0

Ψ
†/P/PΨ = ∂ν Ψ

†U0/1Ψ =U0∂ν Ψ
†
Ψ = 0. (137)

which includes the proof of the closed system condition for the symmetric tensor /T = /V /P
as ∂ν /T = 0. This closed system condition applies to both the Dirac representation as the
Weyl representation, as long as it is clear that not only γ0 but also ααα and Ψ have a Dirac
representation and a Weyl representation. The gamma tensor γ ν

µ ≡ γµ γν is given by

γµ γ
ν =

[
γ0 γ1 γ2 γ3

]
γ0

γ1

γ2

γ3

=


γ0γ0 γ1γ0 γ2γ0 γ3γ0

γ0γ1 γ1γ1 γ2γ1 γ3γ1

γ0γ2 γ1γ2 γ2γ2 γ3γ2

γ0γ3 γ1γ3 γ2γ3 γ3γ3

=


/1 −α1 −α2 −α3

α1 −/1 −iΣ3 iΣ2

α2 iΣ3 −/1 −iΣ1

α3 −iΣ2 iΣ1 −/1

 .(138)

The probability density tensor is then given by

Φ
ν

µ = Ψ
†
γ

ν
µ Ψ =


Ψ†/1Ψ −Ψ†α1Ψ −Ψ†α2Ψ −Ψ†α3Ψ

Ψ†α1Ψ −Ψ†/1Ψ −Ψ†iΣ3Ψ Ψ†iΣ2Ψ

Ψ†α2Ψ Ψ†iΣ3Ψ −Ψ†/1Ψ −Ψ†iΣ1Ψ

Ψ†α3Ψ −Ψ†iΣ2Ψ Ψ†iΣ1Ψ −Ψ†/1Ψ

 . (139)

The time-like part of ∂ν Φ ν
µ = 0 is given by

1
c

∂tΨ
†/1Ψ+∇1Ψ

†
α1Ψ+∇2Ψ

†
α2Ψ+∇3Ψ

†
α3Ψ =

1
c

∂tΨ
†/1Ψ+∇∇∇Ψ

†
αααΨ = 0 (140)

This can be abbreviated as the Dirac current continuity equation

c∂ν Ψ
†
α

ν
Ψ = c∂ν Ψγ

ν
Ψ = ∂ν Jν = 0. (141)

This proves that the Klein Gordon equation on the Dirac level includes the continuity
equation for the probability current as part of a much stronger closed system condition
for the probability density (current-)tensor. That connects the Klein Gordon at Dirac level
environment to the Laue closed system condition, which in turn is a basic axiom of or
prerequisite for General Relativity’s symmetric stress energy density tensors T =V G.

The space-like derivatives of ∂ν Φ ν
µ = 0 can be split into a complex part and a real

part. The complex part gives

∇∇∇×Ψ
†
ΣΣΣΨ = 0. (142)

The real part gives

∂tΨ
†
αααΨ = c∇∇∇Ψ

†/1Ψ (143)

which can be multiplied by the constants m0c, and using the Dirac adjoint, to give

∂tm0cΨγγγΨ = ∇∇∇m0c2
Ψγ0Ψ. (144)
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The last two conditions show that the closed system condition for the probability den-
sity tensor is a stronger condition than the continuity equation on its own. The above two
conditions can be connected to the earlier ∇∇∇× ppp = 0 and the ∂t ppp = −∇∇∇Ui as there prob-
ability/field analogues. The first prohibits a probability/field vorticity in the closed system
condition, the second implies a conserved force-field condition for the probability/field,
connecting the time-rate of change of the current to the space divergence of the related
density.

Given the fact that all Lagrangians of the Standard Model’s Dirac fields are based upon
the Dirac current, the Dirac adjoint and the use of the Dirac equation to prove the continuity
equation for the Dirac current, it’s generalization into a Dirac probability or field tensor
with connected much stronger closed system condition and a prove of its validity based
upon the Dirac level Klein Gordon equation should have some impact. The recognition that
the Dirac current is just a part of a tensor and that the Dirac current continuity equation
is just the time-like part of a space-time closed system condition of that tensor will close
the gap with General Relativity considerably, given the relation of both to the Laue closed
system condition ∂ν T ν

µ = 0. I propose to use tensor Lagrangians based on

L =
1

m0
Ψ

† /̂P/̂PΨ, (145)

which then contain the inertial probability or inertial field tensor

m ν
µ c2 = m0Φ

ν
µ c2 = m0Ψ

†
γµ γ

ν
Ψc2, (146)

as a relativistic generalization of the usual Dirac current with Dirac adjoint based La-
grangians of the Standard Model.

3.1.4. The Dirac and Weyl matrices in dual minquat time-space mode as bèta
matrices

What is absent in the above treatments is the Lorentz transformation and the check if all
relations that are given are Lorentz invariant or at least Lorentz covariant. The Lorentz
transformation of the matrices, the four vectors and the spinors are most elementary in the
time-space (T̂,K) Weyl representation. I will call these time-space Weyl-Dirac matrices
the bèta matrices.

In my math-phys language and with a Möbius kind of doubling in mind I can define
matrices through the application of parity or point reflection P and time reversal or present
reflection T as [

P P
PP PT

]
=

[
P P
−PT PT

]
=

p0

[
T̂ T̂
T̂ −T̂

]
+ p1

[
Î Î
−Î Î

]
+ p2

[
Ĵ Ĵ
−Ĵ Ĵ

]
+ p3

[
K̂ K̂
−K̂ K̂

]
=

p0

[
T̂ T̂
T̂ −T̂

]
+p ·

[
K K
−K K

](
= ip0

[
1̂ 1̂
1̂ −1̂

]
+ ip ·

[
σσσ σσσ

−σσσ σσσ

])
. (147)
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The norm of this matrix is simply 2PT P = 2U0/1.
I split this into Pµ β µ +Pµ ξ µ by defining

/P = Pµ β
µ =

[
0 P
−PT 0

]
= p0

[
0 T̂
T̂ 0

]
+p ·

[
0 K
−K 0

]
= p0β0 +p ·βββ =

p0

[
0 T̂
T̂ 0

]
+ p1

[
0 Î
−Î 0

]
+ p2

[
0 Ĵ
−Ĵ 0

]
+ p3

[
0 K̂
−K̂ 0

]
(148)

with /P = Pµ β µ = p0β0 + p1β1 + p2β2 + p3β3, and

Pµ ξ
µ =

[
P 0
0 PT

]
= p0

[
T̂ 0
0 −T̂

]
+p ·

[
K 0
0 K

]
= p0ξ0 +p ·ξξξ =

p0

[
T̂ 0
0 −T̂

]
+ p1

[
Î 0
0 Î

]
+ p2

[
Ĵ 0
0 Ĵ

]
+ p3

[
K̂ 0
0 K̂

]
(149)

with Pµ ξ µ = p0ξ0 + p1ξ1 + p2ξ2 + p3ξ3.
If I use T̂ = i1̂ and K = iσσσ I get

βµ = (β0,βββ ) =

([
0 i1̂
i1̂ 0

]
,

[
0 iσσσ
−iσσσ 0

])
= (i1̂, iγγγ) = iγµ (150)

which relates the parity dual βµ to the Weyl gamma representation. The Dirac representa-
tion mixes the bèta and the xi representation and thus represents a PT dual. I nevertheless,
using the gamma tradition, use the bèta and Feynman slash symbols for both representa-
tions in the time-space (T̂,K) basis. This gives for the Dirac bèta representation

/P = Pµ β
µ = p0

[
T̂ 0
0 −T̂

]
+p ·

[
0 K
−K 0

]
= p0β0 +p ·βββ =

p0

[
T̂ 0
0 −T̂

]
+ p1

[
0 Î
−Î 0

]
+ p2

[
0 Ĵ
−Ĵ 0

]
+ p3

[
0 K̂
−K̂ 0

]
. (151)

As with the Weyl representation, in the Dirac representation we have βµ = iγµ .
The transformation matrix S remains unchanged. But its interpretation can be enriched.

It isn’t just a neutral change of representations, it changes a parity only Weyl dual repre-
sentation of space-time into a combined parity, time reversal Dirac dual representation of
space-time (and vice versa). The transformation operation S adds or removes time reversal
from the dual, it is a time reversal transformation.

3.2. The Dirac and Weyl equations in the space-time bèta matrices environment

The trick in formulating equations in the Dirac environment is that they have to be re-
ducible to the Klein Gordon energy condition PT P = E21̂ with E = U0

c = m0c. We have
three equations that match this demand, but only the first two use a Clifford four set. The
third equation uses tricks to compensate for the limitations of a Clifford three set in a 4-D
environment. In the Weyl and Dirac equations we can split −E2/1 using the ξ matrix, as
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/E2
= (Eξ )2 =−E2/1, with the eigen time matrix ξ , defined as

ξ =

[
T̂ 0
0 T̂

]
. (152)

The Weyl or chiral equation stems from the quadratic /P/P = /E /E in the space-time Weyl
representation.

/P/P =

[
0 P
−PT 0

][
0 P
−PT 0

]
=

[
−PPT 0

0 −PT P

]
=

[
−E21̂ 0

0 −E21̂

]
=−E2/1= /E /E (153)

So we have /P/P− /E /E = 0. This leads to (/P− /E)(/P+ /E) = 0. If we split this into two
equations, /P− /E = 0 and /P+ /E = 0, then only the trivial all zero solution is possible. But
if we add the Dirac spinors, then non zero solutions are possible. We get Ψ†(/P− /E)(/P+
/E)Ψ = 0, which can be split into Ψ†(/P− /E) = 0 and (/P+ /E)Ψ = 0. By interpreting the
spinors as waves or wave-like fields all the solutions of those equations can be interpreted
as eigenvalue solutions of related operators and we get the Weyl wave equations as

/̂PΨ = /EΨ (154)

/̂PΨ =−/EΨ (155)

if we use /̂P =−ih̄/∂ and a four column dual spinor Ψ.
The Dirac equation stems from the quadratic (p0β0 +p ·βββ )2 =−E2/1.

/P/P =

[
p0T̂ p ·K
−p ·K −p0T̂

][
p0T̂ p ·K
−p ·K −p0T̂

]
=

[
(−p2

0 +p2)1̂ 0
0 (−p2

0 +p2)1̂

]
=−E2/1 (156)

This leads to the two options for the Dirac equations

(p̂0β0 + p̂ ·βββ )Ψ = E/1Ψ (157)

(p̂0β0 + p̂ ·βββ )Ψ =−E/1Ψ (158)

if we use P̂ =−ih̄∂ and a four column spinor Ψ.
So in the space-time representation we have the Weyl /P as

/Pw =

[
0 P
−PT 0

]
(159)

and the Dirac /P as

/Pd =

[
p0T̂ p ·K
−p ·K −p0T̂

]
(160)

and the transformation between them as /Pw = S−1/PdS and /Pd = S/PwS−1.
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3.3. Lorentz transformations of the vectors in the Dirac and Weyl representation
environments

In the Pauli level part of this paper I developed the (T̂,K) relativistic approach. This re-
sulted in the Lorentz transformation of a four vector P = (p0T̂, ppp ·K) as PL = U−1PU−1

and the Lorentz transformation of its time reversal PT as (PL)T = (PT )L−1
=UPTU with

U as

U =

[
e

ψ

2 0
0 e−

ψ

2

]
(161)

and the rapidity ψ . The Lorentz transformation of its time reversal PT was (PL)T =

(PT )L−1
=UPTU . The quadratic PT P then is automatically a Lorentz invariant scalar U2

0
c2 1̂

with the dimension of the norm 1̂. If in the space-time representation we have the Weyl /P
in a reference system S as

/P =

[
0 P
−PT 0

]
(162)

then in reference system S′ we have PL and so also the Weyl /PL as

/PL
=

[
0 PL

−(PL)T 0

]
=

[
0 U−1PU−1

−UPTU 0

]
(163)

The question then is how to generate this result. The obvious answer is

/PL
w = Λ

−1/PwΛ =

[
U−1 0

0 U

][
0 P
−PT 0

][
U 0
0 U−1

]
=

[
0 U−1PU−1

−UPTU 0

]
(164)

with the Lorentz transformation matrix

Λ =

[
U 0
0 U−1

]
(165)

and its obvious inverse Λ−1.
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As for the generator of Λ, we have

Λ =

[
U 0
0 U−1

]
=


e

ψ

2 0 0 0
0 e−

ψ

2 0 0
0 0 e−

ψ

2 0
0 0 0 e

ψ

2

=


cosh

(
ψ

2

)
0 0 0

0 cosh
(

ψ

2

)
0 0

0 0 cosh
(

ψ

2

)
0

0 0 0 cosh
(

ψ

2

)
+


sinh

(
ψ

2

)
0 0 0

0 − sinh
(

ψ

2

)
0 0

0 0 −sinh
(

ψ

2

)
0

0 0 0 sinh
(

ψ

2

)
=

cosh
(

ψ

2

)[ 1̂ 0
0 1̂

]
+ sinh

(
ψ

2

)[
σI 0
0 −σI

]
=

/1 cosh
(

ψ

2

)
−αI sinh

(
ψ

2

)
= /1e−αI(ψ

2 ) (166)

with the αI in its Weyl representation. The inverse is then obviously given by Λ−1 =

/1eαI(ψ

2 ).
The Klein Gordon equation’s Lorentz invariance or covariance depends on the products

/PL/PL. Using the previous result, we have for the Lorentz transformation of the product /P/P
in the Weyl representation

/PL/PL
= Λ

−1/PΛΛ
−1/PΛ = Λ

−1/P/PΛ = Λ
−1/E /EΛ =−E2/1Λ

−1
Λ =−E2/1= /P/P, (167)

so a Lorentz invariant product. This proof then included that /EL/EL
= /E /E. This ensures the

Lorentz invariance of the Klein Gordon condition /P/P = /E /E in the Weyl representation.
In the Dirac version, where /P = p0β0 +p ·βββ , things get more complicated. We have

to start with the Dirac /Pd in the primary reference system and we want to end up with /PL
d

in the secondary reference system. We know how to transform between the Dirac and the
Weyl representations and we know how to Lorentz transform the Weyl /Pw. This means we
have to go from Dirac to Weyl in the primary reference system, then Lorentz transform the
Weyl four vector to the secondary reference system and then transform back from the Weyl
to the Dirac representation, three operations in total. The total result gives

/PL
d = SΛ

−1S−1/PdSΛS−1. (168)

For the Klein Gordon equation in the Dirac representation, we get the Lorentz invariance
through

/PL
d/P

L
d = SΛ

−1S−1/PdSΛS−1SΛ
−1S−1/PdSΛS−1 = SΛ

−1S−1/PdSΛΛ
−1S−1/PdSΛS−1 =

SΛ
−1S−1/PdSS−1/PdSΛS−1 = SΛ

−1S−1/Pd/PdSΛS−1 = SΛ
−1S−1/Ed /EdSΛS−1 =

−E2/1SΛ
−1S−1SΛS−1 =−E2/1SΛ

−1
ΛS−1 =−E2/1SS−1 =−E2/1= /Pd/Pd .(169)
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The Lorentz transformation of the Dirac representation momentum four vector goes as

/PL
d = SΛ

−1S−1/PdSΛS−1. (170)

In details, with rapidity ψ , the operator SΛ−1S−1 is given as

SΛ
−1S−1 =

[
cosh(ψ

2 )1̂ sinh(ψ

2 )σI

sinh(ψ

2 )σI cosh(ψ

2 1̂

]
= /1 cosh(

ψ

2
)+αI sinh(

ψ

2
) = /1e(αI

ψ

2 ), (171)

with /1e(αI
ψ

2 ) as the generator of the Lorentz boost. The operator SΛS−1 is given as

SΛS−1 =

[
cosh(ψ

2 )1̂ − sinh(ψ

2 )σI

− sinh(ψ

2 )σI cosh(ψ

2 1̂

]
= /1 cosh(

ψ

2
)−αI sinh(

ψ

2
) = /1e−(αI

ψ

2 ). (172)

If we look at the generator for a Lorentz transformation along the Î-axis, containing αI

and a rapidity ψ as the boost parameter, the generator language might be generalized into
the product of a matrix γ ν

µ and a parameter matrix ω ν
µ resulting in the Poincaré group

generator of boosts α , rotations iΣ and length gauges /1

/1e−(γ ν
µ ω ν

µ ). (173)

Each single Poincaré operation/transformation may contain only one non-zero parameter
in ω ν

µ at a time. And in order to avoid the Thomas precession complication, it is advised to
align reference systems along the Î-axis using rotations before performing a Lorentz boost.
The generator formalism using γ ν

µ works identically in both the Weyl representation as
in the Dirac representation, with gamma-matrices as well as with bèta matrices, the last
because β ν

µ =−γ ν
µ .

In the transformation of the four vector we have /Pd = Pµ β µ . Because the operators
only work on the matrix aspect of β µ the Lorentz transformation can also be written as

/PL
= e(αI

ψ

2 )/Pe−(αI
ψ

2 ) = SΛ
−1S−1Pµ β

µ SΛS−1 = Pµ SΛ
−1S−1

β
µ SΛS−1 (174)

and we can focus on

(β µ)L = SΛ
−1S−1

β
µ SΛS−1 (175)

thus interpreting the Lorentz transformation as a boost of the metric. Using the Lorentz
transformation expression of the operator combinations SΛ−1S−1 and SΛS−1 in terms of
the rapidity and the hyperbolic trigonometric expressions, we can calculate the result on
the bèta matrices of the SΛ−1S−1 and SΛS−1 operators. After some calculations this results
in

(β µ)L = SΛ
−1S−1

β
µ SΛS−1 = Λ

ν
µ β

µ = β
ν (176)

with, given the usual Lorentz boost γ = 1√
1−β 2

and β = v
c ,

(β µ)L =


β0

β1

β2

β3


L

= Λ
ν

µ β
µ =


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1




β0

β1

β2

β3

=


γβ0−βγβ1

γβ1−βγβ0

β2

β3

= β
ν .(177)



October 23, 2018 12:51 WSPC/INSTRUCTION FILE EPJdeHaas˙RQM˙BQ˙v4

A generalized Klein Gordon equation with a closed system condition for the Dirac-current probability tensor 31

The Lorentz transformation of /P can then be given as

/PL
= Pµ SΛ

−1S−1
β

µ SΛS−1 = Pν(Λ
ν

µ β
µ) = Pν β

ν . (178)

This result allows us to return to the original interpretation of the Lorentz transformation
as a change of the coordinates against the background of a fixed metric, because

/PL
= Pν(Λ

ν
µ β

µ) = (Pν Λ
ν

µ )β µ = Pµ β
µ . (179)

In the space-time Weyl representation the results were the same, giving

(β µ)L = Λ
−1

β
µ

Λ = Λ
ν

µ β
µ = β

ν (180)

The ease of the Lorentz transformation and proving Lorentz covariance of invariance
in the developed math-phys environment can be contrasted with the usual approach as
critically analyzed and alternatively presented in [15]. The relation SΛ−1S−1β µ SΛS−1 =

Λ ν
µ β µ for the Dirac matrices in this paper has been derived based on the derivation of the

same relation for the Weyl bèta matrices. In the usual approach, this relationship is formu-
lated as a requisite in order to have a Lorentz covariant Dirac equation, see for example [16,
p. 147, Eqn. 5.102] and [17, p. 138, Eqn. 3.34]. The operator S in [16, p. 147, Eqn. 5.102]
and equals my operator SΛ−1S−1. In the words of Greiner: To find S means solving (3.34).
Stone described the procedure as The Lorentz covariance of the Dirac equation is guaran-
teed if there exists a matrix representation S(L) of the Lorentz group so that for any Lorentz
transformation Lµ

ν there exists a matrix S(L) such that S(L)γµ S−1(L) = (L−1)
µ

ν γν [18,
p. 73]. A similar reasoning is given in [19, p. 42] and in [20, p. 93]. That means they have
to solve SΛ−1S−1β µ SΛS−1 = Λ ν

µ β µ for S, a relation that I constructed and proved in-
stead of solved, mainly because of its very close connection to the Lorentz transformation
approach in the biquaternion representation of the Pauli level physics.

My approach confirms the claim that the gamma matrices transform like a regular four-
vector, as long as one realizes that in the /P = Pµ γµ notation, the Lorentz transformation
is either performed on Pµ or on γµ . So when the dual pauliquat gamma-matrices (or my
dual minquat bèta matrices) are used to Lorentz transform /P, then the coordinates Pµ are
invariant and vice versa. Either the metric is Doppler twisted or the coordinates are, but not
both.

3.4. Lorentz transformations of the spinors in the Dirac and Weyl representation
environments

As for the Lorentz transformation of a Weyl 4-spinor, we have the requirement that we
want the Lagrangian density element L = 1

m0
Ψ†/P/PΨ to be Lorentz covariant (or invariant

if possible). To arrive at this requirement of covariance I start with

L L =
1

m0
(ΨL)†/PL/PL

Ψ
L =

1
m0

(ΨL)†
Λ
−1/PΛΛ

−1/PΛΨ
L =

1
m0

(ΨL)†
Λ
−1/P/PΛΨ

L(=?)
1

m0
(Ψ†)/P/PΨ (181)
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This implies first that we would like to have

ΛΨ
L = Ψ (182)

so

Ψ
L = Λ

−1
Ψ. (183)

Inserting this into the Lagrangian’s Lorentz transformation gives us

L L =
1

m0
(ΨL)†

Λ
−1/P/PΛΛ

−1
Ψ =

1
m0

(ΨL)†
Λ
−1/P/PΨ, (184)

which, through the detail (/P/PΨ)L = Λ−1/P/PΨ, shows that the spinor /P/PΨ behaves as Ψ

under a Lorentz transformation. From ΨL = Λ−1Ψ we can derive the relation

(ΨL)† = (Λ−1
Ψ)† = Ψ

†
Λ
−1, (185)

due to the fact that Λ is diagonal real and thus equal to its conjugate transpose. Inserting
this into the result we had thus far gives

L L =
1

m0
(ΨL)†

Λ
−1/P/PΨ =

1
m0

Ψ
†
Λ
−1

Λ
−1/P/PΨ =

1
m0

Ψ
†e−αIψ /P/PΨ (186)

This result has an interesting interpretation: the factor e−αIψ represents a full Doppler
shift of the probability/field density. A single spinor obtains half a Doppler shift with Λ−1

and its square Ψ†Ψ obtains a full Doppler shift as the result of a Lorentz boost. With this
interpretation, a ‘solution’ as for example in the form of the introduction of a Dirac adjoint,
isn’t wanted because the outcome is what should be hoped for. We are working on the Dirac
level of a dual Maxwell-Lorentz structured environment, so a full relativistic Doppler shift
as the result of a Lorentz boost of wave-like density is a welcomed result that doesn’t need
a fix. Thus the result

(Ψ†
Ψ)L = (ΨL)†(ΨL) = (Λ−1

Ψ)†(Λ−1
Ψ) = Ψ

†
Λ
−1

Λ
−1

Ψ = Ψ
†e−αIψ

Ψ =

Ψ
†
Ψ cosh(ψ)+Ψ

†
αIΨ sinh(ψ) = Ψ

†
Ψγ +Ψ

†
αIΨγβ , (187)

with Lorentz boost γ = cosh(ψ) and γβ = sinh(ψ), is what should be expected and
wanted. It doesn’t need a fix. A relativistic Doppler shift of a wave phenomenon should be
a desired outcome of the Lorentz boost of that phenomenon, given the Maxwell-Lorentz
structured environment.

The conditon ΨL = Λ−1Ψ gives

Ψ
L
w = Λ

−1
Ψw =

[
U−1 0

0 U

][
Ψ1

w
Ψ2

w

]
=

[
U−1Ψ1

w
UΨ2

w

]
. (188)

Important in this last equation is the result that the bispinors Ψ1 and Ψ2 do not mix in the
Lorentz transformation in the space-time Weyl representation.

The same line of reasoning will give us the Lorentz transformation rules for the spinors
in the space-time Dirac representation, respectively

Ψ
L
d = SΛ

−1S−1
Ψd (189)
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and

(ΨL)†
d = (Ψ†

d)SΛ
−1S−1, (190)

so with the same ‘problem’ for the Λ−1’s but now including the S operator. The result is

(Ψ†
dΨd)

L = (ΨL)†
dΨ

L
d = (Ψ†

d)SΛ
−1S−1SΛ

−1S−1
Ψd = (Ψ†

d)SΛ
−2S−1

Ψd . (191)

In the Dirac representation, we have to calculate SΛ−2S−1 in order to be able to evaluate
the result. In details, with rapidity ψ , the operator SΛ−2S−1 is given as

SΛ
−2S−1 =

[
cosh(ψ)1̂ sinh(ψ)σI

sinh(ψ)σI cosh(ψ)1̂

]
= /1cosh(ψ)+αI sinh(ψ) = /1e(αIψ), (192)

with /1e(αIψ) as the generator of the Lorentz boost delivered Doppler shift of the probabil-
ity/field density, as

(Ψ†
Ψ)L = Ψ

†e(αIψ)
Ψ = Ψ

†
Ψcosh(ψ)+Ψ

†
αIΨsinh(ψ). (193)

Zooming in further, we get for the Dirac representation and using cosh(ψ) = γ and
sinh(ψ) = γβ

(Ψ†
Ψ)L =

[
Ψ∗1 Ψ∗2 Ψ∗3 Ψ∗4

]
γ 0 γβ 0
0 γ 0 −γβ

γβ 0 γ 0
0 −γβ 0 γ




Ψ1

Ψ2

Ψ3

Ψ4

 (194)

= γΨ
∗
1Ψ1 + γβΨ

∗
1Ψ3 + γΨ

∗
2Ψ2− γβΨ

∗
2Ψ4 (195)

+γΨ
∗
3Ψ3 + γβΨ

∗
3Ψ1 + γΨ

∗
4Ψ4− γβΨ

∗
4Ψ2. (196)

We see that in the Dirac representation, boosting the probability density mixes the spinors
and thus the particles and the anti-particles, the electrons and the positrons. In the Weyl
representation, boosting the probability density doesn’t mix the spinors because then we
have a diagonal matrix in the Lorentz boost operator, as

(Ψ†
Ψ)L =

[
Ψ∗1 Ψ∗2 Ψ∗3 Ψ∗4

]
γ− γβ 0 0 0

0 γ + γβ 0 0
0 0 γ + γβ 0
0 0 0 γ− γβ




Ψ1

Ψ2

Ψ3

Ψ4

 (197)

= γΨ
∗
1Ψ1− γβΨ

∗
1Ψ1 + γΨ

∗
2Ψ2 + γβΨ

∗
2Ψ2 (198)

+γΨ
∗
3Ψ3 + γβΨ

∗
3Ψ3 + γΨ

∗
4Ψ4− γβΨ

∗
4Ψ4 = (199)

Ψ
∗
1Ψ1e−ψ +Ψ

∗
2Ψ2eψ +Ψ

∗
3Ψ3eψ +Ψ

∗
4Ψ4e−ψ (200)

What we get is that the wave equations with only Ψ, so without Ψ†, behave as Lorentz
covariant spinors. But the action of multiplying this spinor by its adjoint in order to arrive
at an observable seems observer specific. The trick of the Dirac adjoint doesn’t solve this
issue, it just hides it deeper in the formalism. It shouldn’t be that much of a surprise to find
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out that the observables, the observable probabilities of measuring specific eigenstates, in
relativistic quantum mechanics are observer specific. So the waves are covariant spinors,
the reduction of such a wave to an observable is reference frame specific, expressed math-
ematically in the appearance of the factor Λ2 = /1e−αIψ , representing a full Doppler shift.
In terms of the structure, we have a Lorentz invariant /P/P, Lorentz covariant γ ν

µ and γ ν
µ Ψ

but not a covariant Φ ν
µ = Ψ†γ ν

µ Ψ. We do however have a procedure to arrive at (Φ ν
µ )L,

a recipe so to speak, that is Lorentz covariant: we add a Doppler shift and get

(Φ ν
µ )L =

1
m0

Ψ
†e−αIψ

β
ν

µ Ψ = (Φ ν
µ ) cosh(ψ)+(

1
m0

Ψ
†
αIβ

ν
µ Ψ) sinh(ψ). (201)

That allows for the translation of results of quantum measurements on the Dirac level
between reference systems connected by a Lorentz boost Λ and a relativistic Doppler shift
eψ . The result that relativistic quantum fields behave relativistically as EM radiation/photon
fields should be highly satisfying.

The operator SΛ−1S−1 for the Lorentz transformation of the Dirac spinor Ψ exactly
matches the one in [21]. The structure of these transformations look familiar. If we define
γ ′ = cosh(ψ

2 ) and γ ′β ′ = sinh(ψ

2 ), we get the Lorentz transformation of Ψ as

Ψ
L =

[
γ ′1̂ γ ′β ′σI

γ ′β ′σI γ ′1̂

][
Ψ1

Ψ2

]
=

[
γ ′1̂Ψ1 + γ ′β ′σIΨ

2

γ ′1̂Ψ2 + γ ′β ′σIΨ
1

]
. (202)

In the hyperbolic formulation, the details of the Lorentz transformation of Ψ gives

Ψ
L =

[
(Ψ1)L

(Ψ2)L

]
=

[
cosh(ψ

2 )1̂ sinh(ψ

2 )σI

sinh(ψ

2 )σI cosh(ψ

2 1̂

][
Ψ1

Ψ2

]
=

[
cosh(ψ

2 )1̂Ψ1 + sinh(ψ

2 )σIΨ
2

cosh(ψ

2 )1̂Ψ2 + sinh(ψ

2 )σIΨ
1

]
.

(203)
What we see here is that the Lorentz transformation of the Dirac spinor mixes the two
twin Pauli spinors Ψ1 and Ψ2. As a consequence, one cannot Lorentz transform a single
Pauli spinor in the Dirac representation, so a Lorentz transformation of the Pauli equation
without the full Dirac twin is impossible. The Pauli equation on its own cannot possibly
be relativistic, not because of the Pauli spin matrices, as is usually thought [22], but due
to the spinors involved. At the end of the first Pauli-level part of this paper, I showed that
the Pauli-spin energy terms can be derived at the Pauli-level of two by two matrices in a
fully relativistic approach, except for the spinors. The spinor representing the Pauli electron
with spin up or down can on its own only represent stationary states because in isolation
it cannot be boosted. Where the Pauli equation describes an electron in either spin up or
spin down situation, its Dirac twin does the same with the positron in either spin up or
spin down. In the Dirac representation giving an electron as a spinor a relativistic boost,
thus mixing the two spinors after the boost, necessarily involves the positron. Giving an
electron a boost can be done by letting it absorb a photon, thus realizing a quantum jump.
So the quantum jump of the electron necessarily involves its antiparticle, the positron. As
a consequence, in the Schrödinger and the Pauli environment quantum jumps must remain
a mystery. In other words, it is rather a waist of time to try to fully understand and analyze
the intrinsic aspects of quantum jumps in the Schrödinger and the Pauli theories. This can
only be achieved on the Dirac level, by including both Ψ1 and Ψ2 (and Aν , as for example
in the form of a Feynman vertex).
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3.5. The Klein Gordon spinor equation in its Dirac level full potential

Given the general Lagrangian density L = 1
m0

Ψ†(/̂P/̂P− /E /E)Ψ in the space-time Dirac
representation one gets the Klein Gordon equation from

∂L

∂Ψ† −∂µ

(
∂L

∂ (∂ µ Ψ†)

)
= 0 (204)

resulting in

1
m0

(/̂P/̂P− /E /E)Ψ = 0. (205)

In the canonical version we get

1
m0

(/̂P+q/A)(/̂P+q/A)Ψ =
1

m0
/E /EΨ. (206)

leading to

1
m0

/̂P/̂PΨ+
q

m0
/̂P/AΨ+

q
m0

/A/̂PΨ+
q2

m0
/A/AΨ =−U0/1Ψ (207)

and using /̂P =−ih̄/∂ we get

− h̄2

m0
/∂ /∂Ψ− iqh̄

m0
/∂ /AΨ− iqh̄

m0
/A/∂Ψ+

q2

m0
/A/AΨ =−U0/1Ψ (208)

and, including a multiplication by a factor 1
2 ,

− h̄2

2m0

(
∇∇∇

2− 1
c2 ∂

2
t

)
/1Ψ− iqh̄

2m0

(
/∂ /AΨ+ /A/∂Ψ

)
+

q2

2m0

(
AAA2− 1

c2 φ
2
)
/1Ψ =−1

2
U0/1Ψ.

(209)
The

(
/∂ /AΨ+ /A/∂Ψ

)
part of the equation needs detailed examining. Using the chain rule for

the derivation, we get (
/∂ /AΨ+ /A/∂Ψ

)
=
(
(/∂ /A)Ψ+~/∂ /AΨ+ /A/∂Ψ

)
(210)

in which the arrow in~/∂ means that the derivation skips /A and only applies to Ψ. Due to the
non-commutative character of the math, this is the best way to encode the chain rule.

The term /∂ /A produces the electromagnetic field leading to

/∂ /A =

[
− 1

c ∂t T̂ ∇∇∇ ·K
−∇∇∇ ·K 1

c ∂t T̂

][ 1
c φ T̂ AAA ·K
−AAA ·K − 1

c φ T̂

]
= (211)[

( 1
c2 ∂tφ +∇∇∇ ·AAA)1̂− (∇∇∇×AAA) ·K − 1

c ∂tAAA · T̂K− 1
c ∇∇∇φ · T̂K

− 1
c ∂tAAA · T̂K− 1

c ∇∇∇φ · T̂K ( 1
c2 ∂tφ +∇∇∇ ·AAA)1̂− (∇∇∇×AAA) ·K

]
= (212)[

−BBB ·K 1
c EEE · T̂K

1
c EEE · T̂K −BBB ·K

]
=−BBB ·

[
iσσσ 0
0 iσσσ

]
+

1
c

EEE ·
[

0 −σσσ

−σσσ 0

]
=−iBBB ·ΣΣΣ− 1

c
EEE ·ααα. (213)

The terms~/∂ /AΨ+ /A/∂Ψ leads to a cancellation of all the parts that are anti-commutative
and a doubling of the commutative parts. In the above, that would mean cancellation of the
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EM field and retaining the Lorenz gauge part. It result in the survival of the norm 1̂ parts,
so to

/A/∂ =

[ 1
c φ T̂ AAA ·K
−AAA ·K − 1

c φ T̂

][
− 1

c ∂t T̂ ∇∇∇ ·K
−∇∇∇ ·K 1

c ∂t T̂

]
= (214)[

( 1
c2 φ∂t +AAA ·∇∇∇)1̂ 0

0 ( 1
c2 φ∂t +AAA ·∇∇∇)1̂

]
= (215)

and so

~/∂ /AΨ+ /A/∂Ψ = 2
1
c2 φ /1∂tΨ+2/1AAA ·∇∇∇Ψ. (216)

The result of the closer analysis is that we have

− iqh̄
2m0

(
/∂ /AΨ+ /A/∂Ψ

)
=− iqh̄

2m0

(
−iBBB ·ΣΣΣΨ− 1

c
EEE ·αααΨ+2

1
c2 φ /1∂tΨ+2/1AAA ·∇∇∇Ψ

)
=(217)

− qh̄
2m0

BBB ·ΣΣΣΨ+
iqh̄

2m0c
EEE ·αααΨ− iqh̄

m0c2 φ /1∂tΨ−
iqh̄
m0

/1AAA ·∇∇∇Ψ =(218)

−BBB ·µµµsΨ+ iEEE ·πππsΨ−
iqh̄

m0c2 φ /1∂tΨ−
iqh̄
m0

/1AAA ·∇∇∇Ψ(219)

The complete Klein Gordon equation then results in

− h̄2

2m0
/1∇∇∇

2
Ψ+

h̄2

2m0c2
/1∂

2
t Ψ− iqh̄

m0c2 φ /1∂tΨ−
iqh̄
m0

/1AAA ·∇∇∇Ψ (220)

+
q2

2m0
AAA2/1Ψ− q2φ 2

2m0c2
/1Ψ =−1

2
U0/1Ψ+BBB ·µµµsΨ− iEEE ·πππsΨ. (221)

This can be rearranged into

− h̄2

2m0
/1∇∇∇

2
Ψ+

q2

2m0
AAA2/1Ψ− iqh̄

m0
/1AAA ·∇∇∇Ψ−BBB ·µµµsΨ = (222)

q2φ 2

2m0c2
/1Ψ+

iqh̄
m0c2 φ /1∂tΨ−

h̄2

2m0c2
/1∂

2
t Ψ− 1

2
U0/1Ψ− iEEE ·πππsΨ. (223)

This wave equation has a probability tensor for which the closed system condition is met,
one that includes the Dirac current continuity equation. It has a linear in time derivative
damping term, it has a quadratic in time derivative harmonic term and it has a Hooke’s law
term. In the above arrangement one has the familiar terms on the left and the terms that are
ignored, misrepresented or that have never been derived on the right. In case of a stationary
state, we get

iqh̄
m0c2 φ /1∂tΨ =−Uqφ

m0c2
/1Ψ'−qφ /1Ψ =−V /1Ψ (224)

Using this we can now rearrange the equation into

− h̄2

2m0
/1∇∇∇

2
Ψ+

q2

2m0
AAA2/1Ψ− iqh̄

m0
/1AAA ·∇∇∇Ψ−BBB ·µµµsΨ+V /1Ψ = (225)

q2φ 2

2m0c2
/1Ψ− h̄2

2m0c2
/1∂

2
t Ψ− 1

2
U0/1Ψ− iEEE ·πππsΨ. (226)
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In the classic interpretation, all the terms on the right hand side are reduced to EΨ, giving

− h̄2

2m0
/1∇∇∇

2
Ψ+

q2

2m0
AAA2/1Ψ− iqh̄

m0
/1AAA ·∇∇∇Ψ−BBB ·µµµsΨ+V /1Ψ = EΨ. (227)

The left hand side is then dubbed the Hamiltonian of the system and that abbreviates the
equation to ĤΨ = EΨ.

For stationary states it is also possible to reduce another term as

− iqh̄
m0

/1AAA ·∇∇∇Ψ =−qppp
m0
·AAA/1Ψ'−qvvv ·AAA/1Ψ =−JJJ ·AAA/1Ψ (228)

In a stationary magnetic field for which AAA =− 1
2 rrr×BBB, this term can also be rewritten as

− iqh̄
m0

/1AAA ·∇∇∇Ψ =− q
2m0

/1LLL ·BBBΨ, (229)

see [23, p. 144].
The two first order derivative terms can be combined into

− iqh̄
m0c2 φ /1∂tΨ−

iqh̄
m0

/1AAA ·∇∇∇Ψ = qφ /1Ψ− JJJ ·AAA/1Ψ = Jµ Aµ /1Ψ. (230)

These terms are the particle field interaction terms. Together with Ψ† we get an interaction
probability term as

Ψ
†Jµ Aµ /1Ψ. (231)

Together with the BBB and EEE terms we have the charge-EM-field interaction terms

− iqh̄
2m0

(
/∂ /AΨ+ /A/∂Ψ

)
=−BBB ·µµµsΨ+ iEEE ·πππsΨ+qφ /1Ψ− JJJ ·AAA/1Ψ (232)

=−BBB ·µµµsΨ+ iEEE ·πππsΨ+ Jµ Aµ /1Ψ (233)

We have the two terms

− iqh̄
m0

/1AAA ·∇∇∇Ψ−BBB ·µµµsΨ =− q
2m0

/1LLL ·BBBΨ− q
m0

BBB ·SSSΨ = (234)

−/1µµµL ·BBBΨ−BBB ·µµµsΨ =−BBB · (µµµL/1+µµµs)Ψ (235)

with orbital magnetic momentum µµµL and spin magnetic momentum µµµs, so with total mag-
netic momentum µµµJ = µµµL/1+µµµs [23, p. 188]. These are the known terms. But parallel to
these we have

qφ /1Ψ+ iEEE ·πππsΨ (236)

as integral part of the relativistic
(
/∂ /AΨ+ /A/∂Ψ

)
. In the Hydrogen atom, the first term

determines the main quantum number n, and the second term should be that radius plus
or minus the reduced Compton wavelength. As a two valued zitter variation on the main
quantum number. If a constant external electric field is applied, these two terms should be
observable as the linear Stark effect. In the same line of reasoning, the diamagnetic term
containing AAA2 should have its quadratic Stark effect term containing q2φ 2 as its relativistic
companion.
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Interestingly, the main quantum number term V Ψ = qφ /1Ψ was derived from the
original damping term − iqh̄

m0c2 φ /1∂tΨ. Quantum jumps might then be connected to

−Ψ† iqh̄
m0c2 φ /1∂tΨ, when interpreted in a Feynman manner. A quantum jump as a relativistic

boost of spinors and enclosed four vectors should be analyzed using the complete Klein
Gordon Lagrangian at the Dirac level, as L = 1

m0
Ψ†(/̂P/̂P− /E /E)Ψ. Such a quantum jump

of an electron, even inside the Hydrogen atom, should include the positron at some level.
A quantum jump should always be fast enough to allow virtual positrons to participate in
the process of emitting or absorbing a photon. It is my opinion that a fusion of relativis-
tic QFT and the usual Schrödinger-Pauli analysis of atomic physics should be realized in
order to get a grip on the internal dynamics of quantum jumps. On the Schrödinger-Pauli
level of two by two spin matrices and two valued spinors, the intrinsics of quantum jumps
will remain a mystery.

Quantum jumps in the Hydrogen atom should be analyzed intrinsically on a relativistic
quantum field level using the Lagrangian L = 1

m0
Ψ†(/̂P/̂P− /E /E)Ψ and the related iner-

tial probability/field tensor Φ ν
µ = Ψ†γµ γν Ψ with inertial probability/field closed system

condition

∂ν Φ
ν

µ = ∂ν Ψ
†
γµ γ

ν
Ψ = 0. (237)

Of course, a quantum jump implies an open system, due to its photon exchange and its
inevitable momentary virtual positron appearance and disappearance, a consideration that
should temper expectation. A system with a primary electron that includes the photon that
is being emitted or absorbed during a time interval in which a positron appears on the scene
as well might again be considered closed.

What should be avoided at all times in the fermion domain is to reduce the Klein
Gordon equation as derived in this section to a Pauli level equation or a scalar equation
on the Schrödinger level. On the Pauli level, the spinors cannot be properly boosted, only
stationary states are allowed and the intrinsics of the quantum jumps will be lost.

4. Conclusion regarding the proposed generalization of the Dirac current into
a probability tensor with a closed system condition

As for the Lorentz transformation of the usual Lagrangian current density element L =

Ψ/PΨ = Ψ†γ0/PΨ, this is part of the general Lagrangian density element L = 1
m0

Ψ†/P/PΨ,
the Lorentz transformation properties have been demonstrated. Given the Lorentz covari-
ance of the general L , the Lorentz covariance of the closed system condition for the gen-
eral Lagrangian density ∂νL = 0 is obvious, because ∂ν is a four-vector in all reference
systems. This includes the Lorentz covariance of the continuity equation for the Dirac cur-
rent as m0c∂ν Ψγν Ψ = 0, as its time-like part.

The gamma tensor γµ γν is given by

γµ γ
ν =

[
γ0 γ1 γ2 γ3

]
γ0

γ1

γ2

γ3

=


γ0γ0 γ1γ0 γ2γ0 γ3γ0

γ0γ1 γ1γ1 γ2γ1 γ3γ1

γ0γ2 γ1γ2 γ2γ2 γ3γ2

γ0γ3 γ1γ3 γ2γ3 γ3γ3

=


/1 −α1 −α2 −α3

α1 −/1 −iΣ3 iΣ2

α2 iΣ3 −/1 −iΣ1

α3 −iΣ2 iΣ1 −/1

 .(238)



October 23, 2018 12:51 WSPC/INSTRUCTION FILE EPJdeHaas˙RQM˙BQ˙v4

A generalized Klein Gordon equation with a closed system condition for the Dirac-current probability tensor 39

The probability density tensor is given by

Φ
ν

µ = Ψ
†
γµ γ

ν
Ψ =


Ψ†/1Ψ −Ψ†α1Ψ −Ψ†α2Ψ −Ψ†α3Ψ

Ψ†α1Ψ −Ψ†/1Ψ −Ψ†iΣ3Ψ Ψ†iΣ2Ψ

Ψ†α2Ψ Ψ†iΣ3Ψ −Ψ†/1Ψ −Ψ†iΣ1Ψ

Ψ†α3Ψ −Ψ†iΣ2Ψ Ψ†iΣ1Ψ −Ψ†/1Ψ

 . (239)

In the space-time bèta matrices representation, we have βµ = iγµ , so βµ β ν = iγµ iγν =

−γµ γν . So in the space-time representation, we have

Φ
ν

µ = Ψ
†
βµ β

ν
Ψ =−Ψ

†
γµ γ

ν
Ψ (240)

For the proper velocity, we know that /U /U =−c2/1. Using /U =Uµ β µ we can write this
as

/U /U =Uµ β
µUν β

ν =UµUν
βµ β

ν =−UµUν
γµ γ

ν =−c2/1 (241)

So we have

Ψ
† /U /UΨ =−UµUν

Ψ
†
γµ γ

ν
Ψ =−UµUν

Φ
ν

µ =−c2
Ψ

†
Ψ (242)

The Dirac current can be arrived at by using the coordinate velocity’s rest system co-
ordinates as V ν to get

Jν = Φ
ν

µ V µ =


Ψ†/1Ψ −Ψ†α1Ψ −Ψ†α2Ψ −Ψ†α3Ψ

Ψ†α1Ψ −Ψ†/1Ψ −Ψ†iΣ3Ψ Ψ†iΣ2Ψ

Ψ†α2Ψ Ψ†iΣ3Ψ −Ψ†/1Ψ −Ψ†iΣ1Ψ

Ψ†α3Ψ −Ψ†iΣ2Ψ Ψ†iΣ1Ψ −Ψ†/1Ψ




c
0
0
0

=


cΨ†/1Ψ

cΨ†α1Ψ

cΨ†α2Ψ

cΨ†α3Ψ

 .
(243)

The generalized Lagrangian probability density element L = 1
m0

Ψ†/P/PΨ can be writ-
ten as

L =
1

m0
Ψ

†/P/PΨ = Ψ
† /U/PΨ = m0Ψ

† /U /UΨ =−m0c2
Ψ

†
Ψ (244)

but then we also have the stress-energy probability density Lagrangian product

L =
1
mi

Ψ
†/P/PΨ = Ψ

†/V /PΨ =−1
γ

m0c2
Ψ

†
Ψ = Ψ

†LΨ =Vµ Pν
Φ

ν
µ = T ν

µ Φ
ν

µ . (245)

Because I already proved the Lorentz covariance of this Lagrangian density, the Lorentz
covariance of Φ ν

µ is now proven too, and thus also the Lorentz covariance of the closed
system condition. For completeness however, the Lorentz transformation of the probabil-
ity/field tensor in the Dirac bèta representation is given by(

Φ
ν

µ

)L
=
(
Ψ

L)† (
βµ

)L
(β ν)

L
(Ψ)L = (246)(

Ψ
†SΛ

−1S−1)(SΛ
−1S−1

βµ SΛS−1)L (
SΛ
−1S−1

β
ν SΛS−1)L (

SΛ
−1S−1

Ψ
)
= (247)

Ψ
†
Λ
−1

Λ
−1

β
ν

µ Ψ = Ψ
†eαIψ

β
ν

µ Ψ = Φ
ν

µ cosh(ψ)+Ψ
†
αIβ

ν
µ Ψ sinh(ψ), (248)

thus demonstrating that the probability/field density undergoes a full Doppler shift under a
Lorentz boost. And because in the product L = T ν

µ Φ ν
µ one either Lorentz transforms the
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coordinates in T ν
µ , leaving the matrices in Φ ν

µ invariant or the matrices in Φ ν
µ , leaving

the coordinates in T ν
µ invariant, the appearance of a full Doppler shift in L as the result

of a Lorentz boost is also proven. The Lorentz covariance of the Doppler shifted condition
∂ν Φ ν

µ = 0 follows.
Back to this Lagrangian, we also get

∂L

∂ (Pµ)
=Vν Φ

ν
µ , (249)

∂L

∂ (Vν Φ ν
µ )

= Pµ (250)

and
∂L

∂Φ ν
µ

= T ν
µ . (251)

For a system with external forces applied, the last equation also leads to

∂ν

(
∂L

∂Φ ν
µ

)
= ∂ν T ν

µ = Fµ . (252)

And for closed systems we get

∂ν

(
∂L

∂Φ ν
µ

)
= ∂ν T ν

µ = 0. (253)

We can reverse the order for closed systems and get

∂ν

(
∂L

∂T ν
µ

)
= ∂ν Φ

ν
µ = 0. (254)

The created environment, including the closed system condition for the above product,
closes in on General Relativity’s concepts and basic elements, as the symmetric stress-
energy tensor density and its closed system condition is.

The Klein Gordon probability equation in my space-time bèta matrices environment is

Ψ
†(/P/P− /E /E)Ψ = Ψ

†(/P− /E)(/P+ /E)Ψ = 0 (255)

and can be split into two Dirac equations as

Ψ
†(/P− /E) = 0 (256)

(/P+ /E)Ψ = 0 (257)

These two equations have the same solutions, but, in the Weyl representation, the roles of
the twin spinors are reversed. In terms of the Dirac fields, the role of particle and anti-
particle are reversed. If one then goes from the Weyl representation to the Dirac repre-
sentation using the S operator, the particle and anti-particle fields will be mixed in both
Dirac spinor twins. In terms of the space-time basis, the S operator adds a time-reversal to
one half of the dual space-time basis. The lower version is the standard Dirac equation. Its
Lagrangian then is usually given as

L = Ψ
†
γ0(/P+ /E)Ψ = Ψ(/P+ /E)Ψ (258)
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with the Dirac adjoint. In the standard approach, the γ0 is added in order to produce a
Dirac probability current and a Dirac probability current continuity equation with realistic
properties for its probability and its Lorentz covariance. Due to the peculiar role of γ0 in
the Dirac adjoint and in all those proves and demonstrations, it has the appearance of being
somewhat forced. After all, the γ0 is the supposed to be the time-like part of a supposedly
space-time four vector γµ , so why and how should their product γ0γµ have Lorentz invariant
or covariant properties? In my environment, the γ0 and the γµ are part of the pauliquat dual
spin-norm sphere, which complicates thing even more. In the perspective developed in this
paper, the γ0 in the Dirac adjoint has the positive property to connect to the first column
of the probability tensor and the negative property to hide the true Lorentz transformation
properties of the absolute value of spinors, that is that Ψ†Ψ Doppler shifts under a Lorentz
boost as Ψ†eαIψ Ψ.

The Lagrangian L = Ψ(/P+ /E)Ψ is like the primary hub of the Standard Model. By
going backwards in this section, this primary hub can be generalized into a Lagrangian
that closes in on gravity. In the process, the Dirac current is generalized into a probabil-
ity/field density tensor and the Dirac current continuity condition is encapsulated in the
closed system condition for this tensor. The use of the Dirac adjoint is in need of a critical
assessment, due to the questionable role given to the time-like γ0 in this adjoint.
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