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1 Riemann Integration

Throughout these discussions the numbers ε > 0 and δ > 0 should be thought of as very
small numbers. The aim of this part is to provide a working definition for the integral

∫ b
a
f(x)dx

of a bounded function f(x) on the interval [a, b]. We will see that the real number
∫ b
a
f(x)dx

is really the limit of sums of areas of rectangles.

1.1 Partitions and Riemann sums

1.1.1 Definition (Partition Pδ of size δ > 0)

Given an interval [a, b] ⊂ R, a partition Pδ denotes any finite ordered subset having the form

Pδ = [a = x0 < x1 < · · · < xn−1 < xn = b]

where
δ = max[xi − xi−1 | i = 1, · · · , n]

denotes the distance between any two adjacent partition point xi−1 and xi, and where n denotes
the number of subintervals that [a, b] is partitioned into, with n depending on δ so that n = n(δ).
The simplest partitions have uniform spacing between partition points, in which case δ = b−a

n

or conversely, n(δ) = b−a
δ

1.1.2 Definition (Selection of evaluations points zi)

The evaluations points zi are a collection of n points in the interval [a, b] such that

[x0 ≤ z1 ≤ x1 ≤ z2 ≤ x2 ≤ · · · ≤ xn−1 ≤ zn ≤ xn]

Having a partition Pδ of the interval [a, b] and having chosen the set of n evaluation points
z1, z2, · · · , zn, we can now define the so-called Riemann sum.

1.1.3 Definition (Riemann sum for the function f(x))

Given a function f : [a, b] → R, a partition Pδ, and a selection of evaluation points zi, the
Riemann sum of f is denoted by

Sδ(f) =
N∑
i=1

f(zi)(xi − xi−1)

Again, note that since the choice of the evaluation points zi is arbitrary, there are infinitely
many Riemann sums associated with a single function and a partition Pδ.

1.1.4 Definition (Integrability of the function f(x))

The function f : [a, b]→ R is Riemann integrable if for all ε > 0, we can choose δ > 0 sufficiently
small so that

|Sδ(f)− S(f)| < ε

for any Riemann sum Sδ(f) with maximum partition width δ.
Whenever the limit S(f) exists we say that S(f) is the integral of f(x) over the interval [a, b]
and write ∫ b

a

f(x)dx = S(f) = lim
δ→0

Sδ(f)

Thus,
∫ b
a
f(x)dx is just a limit of Riemann sums Sδ(f) whenever such a limit exists.
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1.1.5 Definition (Notation for integrable functions)

We let
R(a, b) = [f : [a, b]→ R | f is Riemann integrable]

1.2 Upper and Lower Riemann Sums

The integrability requirement given above is too general, and we can redefine it so as to make
it more practical. This leads us to the concept of the lower and upper Riemann sum, known
also as the lower and upper Darboux sum. The notion is to fix the selection points zi so as to
select two particular Riemann sums.

1.2.1 Definition (Mi and mi)

Given a partition Pδ, for i = 1, · · · , N(δ), we set

Mi = sup f(x)

x ∈ [xi−1, xi]

and
mi = inf f(x)

x ∈ [xi−1, xi]

1.2.2 Definition (Upper and Lower Riemann Sums)

Given a partition Pδ, we let

Uδ(f) =
N∑
i=1

Mi(xi − xi−1)

and

Lδ(f) =
N∑
i=1

mi(xi − xi−1)

denote the upper and lower Riemann sums respectively.

1.2.3 Definition (Integrability of f(x) in terms of L(f) and U(f))

f ∈ R(a, b) if L(f) = U(f). In this case,∫ b

a

f(x)dx = L(f) = U(f)

While this definition may be different from our former definition, on the other hand, this
definition is much easier to compute with.
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1.2.4 Example (Compute
∫ 1

0
xdx)

We subdivide [0, 1] into n subintervals, with partition width δ = 1
n
. It follows that for i =

1, 2, · · · , n, mi = xi−1 = i−1
n
and Mi = xi = i

n
. Then,

Lδ(f) =
n∑
i=1

i− 1

n

1

n
=

(n− 1)n

2n2

and

Uδ(f) =
n∑
i=1

i

n

1

n
=

(n+ 1)n

2n2

Since L(f) = lim
δ→0

Lδ(f) = 1
2

and U(f) = lim
δ→0

Uδ(f) = 1
2
, we see that

∫ 1

0
xdx = L(f) = U(f) = 1

2

1.2.5 Definition (Refinement of Partitions)

If Pδ ⊂ Qδ, then Qδ is a refinement of Pδ

1.3 Properties of Upper and Lower Sums

1. If f : [a, b]→ R is bounded and Pδ and Qδ are two partitions of [a,b] such that Pδ ⊂ Qδ,
then

Lδ(P ) ≤ Lδ(Q) ≤ Uδ(Q) ≤ Uδ(P )

2. If f : [a, b]→ R is bounded, then for any two partitions Pδ and Qδ,

Lδ(P ) ≤ Uδ(Q)

3. If f : [a, b]→ R is bounded, then
L(f) ≤ U(f)

1.3.1 Theorem (Cauchy Criterion for Integrability in Terms of Upper and Lower
Sums)

A bounded function f ∈ R(a, b) if for each ε > 0, there exists δ > 0 such that

Uδ(f)− Lδ(f) < ε

1.4 The Riemann Integral is Linear

Since the Riemann integral is defined as the infinite limit of a sequence of finite sums, and as
summation is linear operation, we expect that limiting integral should also be linear.

Suppose f, g ∈ R(a, b). Then

1. f + g ∈ R(a, b) and
∫ b
a
[f(x) + g(x)]dx =

∫ b
a
f(x)dx+

∫ b
a
g(x)dx

2. For all c ∈ R, cf ∈ R(a, b) and
∫ b
a
cf(x)dx = c

∫ b
a
f(x)dx
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1.5 Further Properties of the Riemann Integral

1. If f, g ∈ R(a, b) and f(x) ≤ g(x) for all x ∈ [a, b], then∫ a

b

f(x)dx ≤
∫ b

a

g(x)dx

2. Suppose f : [a, b] → R. Let c be any point in (a,b). If f ∈ R(a, b) and f ∈ R(c, b), then
f ∈ R(a, b) and ∫ b

a

f(x)dx =

∫ c

a

f(x)dx+

∫ b

c

f(x)dx

1.5.1 Theorem (Fundamental Theorem of Calculus)

Let f : [a, b] −→ R be a continuous function. Then f has an anti-derivative, F and

F (b)− F (a) =

∫ b

a

f(x)dx

If G is any other anti-derivative of f , then the identity

G(b)−G(a) =

∫ b

a

f(x)dx

also holds.
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2 Preliminaries

2.1 Definition(An interval)

A connected subset I of the topological space R is called an interval.

2.2 Definition

We shall say that an interval I is

(a) non-degenerate if a < b

(b) open if I = (a, b)

(c) closed if I = [a, b]

(d) bounded if −∞ < a and b <∞

2.3 Definition(Length of Interval)

The length of I = [a, b] will be denoted by |I| = b− a where a < b

2.4 Definition(δ- neighborhood of an Interval)

For an interval I = [a, b] and δ > 0, we shall denote by Iδ, the δ- neighborhood of I:

Iδ = (a− δ, b+ δ)

2.5 Cells

2.5.1 Definition(n-cell)

An n-cell is the Cartesian product of n intervals I = I1 × I2 × I3 × · · · × In.
It is naturally a subset of metric space Rn. A cell is the same as an interval.

2.5.2 Definition

We say that an n-cell is

(a) non-degenerate if each Ij is non-degenerate.

(b) open if each Ij is open.

(c) closed if each Ij is closed.

(d) bounded if each Ij is bounded.
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3 The Riemann Integral In n-Variables
We define the Riemann integral of a bounded function f : R −→ R, where R ⊂ Rn is a
cell. Recall that a partition of an interval I = [a, b] is a finite collection of subintervals. The
I1× I2×· · ·× In of subsets I1, I2, . . . , In of R is the set of points (x1, x2, . . . , xn) in Rn such that
x1 ∈ I1, x2 ∈ I2, . . . , xn ∈ In. For example, the Cartesian product of the two closed intervals

[a1, b1]× [a2, b2] = {(x, y)|a1 ≤ x ≤ b1 , a2 ≤ y ≤ b2}

The Cartesian product of three closed intervals

[a1, b1]× [a2, b2]× [a3, b3] = {(x, y, z)|a1 ≤ x ≤ b1, a2 ≤ y ≤ b2, a3 ≤ z ≤ b3}

If n = 1, 2, 3, . . . , n, then V(R) is, respectively, the length of an interval.
If R = [a1, b1]× [a2, b2]× [a3, b3] and Pr : ar = ar0 < ar1 < ar2 < · · · < arm = br is a partition of
[ar, br], 1 ≤ r ≤ n, then the set of all rectangles in Rn that can be written as

[a1,ji−1
, a1j1 ]× [a2,j2−1 , a2j2 ]× · · · × [an,jn−1 , anjn ], 1 ≤ jr ≤ mr, 1 ≤ r ≤ n

is a partition of R. We denote this partition by P = P1 × P2 × · · · × Pn and define its norm to
be the maximum of the norms of P1, P2, . . . , Pn,as defined in the previous section; thus,

||P || = max{||P1||, ||P2||, . . . , ||Pn||}

If P = P1 × P2 × · · · × Pn and P ′ = P ′1 × P ′2 × · · · × P ′n are partitions of the same rectangle,
then P ′ is a refinement of P. If P ′1 is a refinement of Pi, 1 ≤ i ≤ n, as defined in the previous
section.
Suppose that f is a real-valued function defined in Rn, P = {R1, R2, . . . , Rk} is a partition of
R, and Xj is an arbitrary point in Rj, 1 ≤ j ≤ k. Then

σ =
k∑
j=1

f(Xj)V (Rj)

is a Riemann sum of f over P. Since Xj can be chosen arbitrarily in Rj, there are infinitely
many Riemann sums for a given function f over any partition P of R.

3.1 Definition

Let f be a real-valued function defined on a rectangle R in Rn. We say that f is Riemann
integrable if there is a number L with the following property:
For every ε > 0, there is a δ > 0 such that |σ − L| < ε if σ is any Riemann sum of f over a
partition P of R such that ||P || < δ. In this case, we say that L is the Riemann integral of f
over R, and write ∫

R

f(x)dX = L

If R is degenerate, it implies that
∫
R
f(x)dX = 0 for any function f defined on R. Therefore,

it should be understood henceforth that whenever we speak of a rectangle in Rn we mean a
non-degenerate rectangle, unless it is stated to the contrary.
The integral

∫
R
f(x)dX is also written as∫

R

f(x, y)d(x, y) (n = 2),

∫
R

f(x, y, z)d(x, y, z) (n = 3)

or ∫
R

f(x1, x2, . . . , xn)d(x1, x2, . . . , xn) (n arbitrary)
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3.2 Upper and Lower Integrals

3.2.1 Theorem

If f is unbounded on the non-degenerate rectangle R in Rn, then f is not integrable on R.

3.2.2 Theorems

Let f be bounded on a rectangle R and let P be a partition of R.
Then

(a) The upper sum S(P) of f over P is the supremum of the set of all Riemann sums of f over
P:

(b) The lower sum s(P) of f over P is the infimum of the set of all Riemann sums of f over P

Theorem

If f is integrable on a rectangle R, then∫
R

f(X)dX =

∫
R

f(X)dX =

∫
R

f(X)dX

Theorem

If f is integrable on a rectangle R, then∫
R

f(X)dX =

∫
R

f(X)dX = L,

then f is integrable on R, and ∫
R

f(X)dX = L,

Theorem

A bounded function f is integrable on a rectangle R if and only if∫
R

f(X)dX =

∫
R

f(X)dX,

Theorem

If f is bounded on a rectangle R, then f is integrable on R if and only if for every ε > 0, there
is a partition P of R such that

S(P )− s(P ) < ε.

Theorem

If f is continuous on a rectangle R in Rn, then f is integrable on R.
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3.3 Properties of Riemann Integral in n Variables

(a) If f and g are integrable, then so is f + g, and∫
(f + g)(X)dX =

∫
f(X)dX +

∫
g(X)dX

(b) If f is integrable and c is a constant, then cf is integrable S, and∫
(cf)(X)dX = c

∫
f(X)dX

(c) If f and g are integrable and f(X) ≤ g(X) for X, then∫
f(X)dX ≤

∫
g(X)dX

(d) If f is integrable, then so is |f |, and

|
∫
f(X)dX| ≤

∫
|f(X)|dX

(e) If f and g are integrable, then so is the product fg

3.4 Iterated Integrals and Multiple Integrals

Except for very simple examples, it is tedious to evaluate multiple integrals from definitions.
Fortunately, this can usually be accomplished by evaluating n successive ordinary integrals. To
build the method, let us first assume that f is continuous on R=[a,b] x [c,d]. Then, for each y
in [c,d], f(x,y) is continuous with respect to x on [a,b], so the integral

F (y) =

∫ b

a

f(x, y)dx

exists. Moreover, the uniform continuity of f on R implies that F is continuous and therefore
integrable on [c, d]. We say that

I1 =

∫ d

c

F (y)dy =

∫ d

c

(∫ b

a

f(x, y)dx

)
dy

is an iterated integral of f over R. We will usually write it as

Ic =

∫ d

c

dy

∫ b

a

f(x, y)dx

Another iterated integral can be defined by writing

G(x) =

∫ d

c

f(x, y)dy , a ≤ x ≤ b

and defining

I2 =

∫ b

a

G(x)dx =

∫ b

a

(

∫ d

c

f(x, y)dy)dx

which we usually write as

I2 =

∫ b

a

dx

∫ d

c

f(x, y)dy
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3.4.1 Example

Let f(x, y) = x+ y and R = [0, 1]× [1, 2].

Then

f(y) =

∫ 1

0

f(x, y)dx =

∫ 1

0

(x+ y)dx = (
x2

2
+ xy) |1x=0=

1

2
+ y

and

I1 =

∫ 2

1

f(y)dy =

∫ 2

1

(
1

2
+ y)dy = (

y

2
+
y2

2
) |21= 2

Also,

G(x) =

∫ 2

1

(x+ y)dy = (xy +
y2

2
) |2y=1= (2x+ 2)− (x+

1

2
) = x+

3

2

and

I2 =

∫ 1

0

G(x)dx =

∫ 1

0

(x+
3

2
)dx = (

x2

2
+

3x

2
)|10 = 2

In this example, I1 = I2

3.4.2 Corollary

If f is integrable on [a, b]× [c, d], then∫ b

a

dx

∫ d

c

f(x, y)dy =

∫ d

c

dy

∫ b

a

f(x, y)dx

provided that
∫ d
c
f(x, y)dy exists for a ≤ x ≤ b and

∫ b
a
f(x, y)dx exists for c ≤ y ≤ d. In

particular, these hypotheses hold if f is continuous on [a, b]× [c, d].

3.4.3 Theorem

Suppose that f is integrable on R = [a, b] × [c, d] and F (y) =
∫ b
a
f(x, y)dx exists for each y in

[c,d]. Then F is integrable on [c,d] and∫ d

c

F (y)dy =

∫
R

f(x, y)d(x, y).

That is, ∫ d

c

dy

∫ b

a

f(x, y)dx =

∫
R

f(x, y)d(x, y)

Proof : Let

P1 : a = x0 < x1 < · · · < xr = b and P2 : c = y0 < y1 < · · · < ys = d

be partitions of [a,b] and [c,d], and P = P1 × P2. Suppose that

yj−1 ≤ ηj ≤ yj , 1 ≤ j ≤ s

so

σ =
r∑
j=1

f(ηj)(yj − yj−1)
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is a typical Riemann sum of f over P2. Since

F (ηj) =

∫ b

a

f(x, ηj)dx =
r∑
i=1

∫ x

xi−1

f(x, ηj)dx

=⇒Mij = sup{f(x, y)|xi−1 ≤ x ≤ xi, yj−1 ≤ y ≤ yj}

and
mij = inf{f(x, y)|xi−1 ≤ x ≤ xi, yj−1 ≤ y ≤ yj}

then
r∑
i=1

mij(xi − xi−1) ≤ f(ηj) ≤
r∑
i=1

Mij(xi − xi−1)

Multiplying this by yj − yj−1 and summing from j = 1 to j = s yields

s∑
j=1

r∑
i=1

mij(xi − xi−1)(ys − ys−1) ≤
s∑
j=1

f(ηj)(yj − yj−1) ≤
s∑
j=1

r∑
i=1

Mij(xi − xi−1)(yi − yi−1)

which can be written as
sf (P ) ≤ σ ≤ Sf (P )

Since f is integrable on R, there is for each ε > 0 a partition P of R such that Sf (P )−sf (P ) < ε.
It remains to verify that there is for each ε > 0, a δ > 0 such that

|
∫ d

c

F (y)dy − σ| < ε if ||P || < δ

In consequence,

sf (P )− ε <
∫ d

c

F (y)dy < Sf (P ) + ε , ||P || < δ

=⇒
∫

R

f(x, y)d(x, y)− ε ≤
∫ d

c

F (y)dy ≤
∫

R

f(x, y)d(x, y) + ε

Since ∫
R

f(x, y)d(x, y) =

∫
R

f(x, y)d(x, y)

and ε can be made arbitrarily small.
Then, by interchanging x and y in the theorem, we see that∫ b

a

dx

∫ d

c

f(x, y)dy =

∫
R

f(x, y)d(x, y)
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4 Note

A more detailed note was submitted with the lecturer in charge of the course which can be
requested for at the Department of Mathematics, University of Ibadan, Ibadan, Oyo State,
Nigeria.
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