
Quantum metalanguage and the new cognitive synthesis 

Alexey V. Melkikh, 

Ural Federal University, Yekaterinburg, 620002, Mira str. 19, Russia, 

melkikh2008@rambler.ru 

Andrei Khrennikov,  

International Center for Mathematical Modelling in Physics and Cognitive 

Sciences, Linnaeus University, Växjö, S-35195, Sweden, and 

National Research University of Information Technologies, Mechanics and 

Optics (ITMO), St. Petersburg 197101, Russia 

 andrei.khrennikov@lnu.se 

Roman V. Yampolskiy 

Computer Engineering and Computer Science 

Speed School of Engineering 

University of Louisville 

roman.yampolskiy@louisville.edu 

 

Problems with mechanisms of thinking and cognition in many ways remain 

unresolved. Why are a priori inferences possible? Why can a human understand 

but a computer cannot? It has been shown that when creating new concepts, 

generalization is contradictory in the sense that to be created concepts must exist a 

priori, and therefore, they are not new. The process of knowledge acquisition is 

also contradictory, as it inevitably involves recognition, which can be realized only 

when there is an a priori standard. Known approaches of the framework of 

artificial intelligence (in particular, Bayesian) do not determine the origins of 

knowledge, as these approaches are effective only when “good” hypotheses are 

made. The formation of “good” hypotheses must occur a priori. To address these 
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issues and paradoxes, a fundamentally new approach to problems of cognition that 

is based on completely innate behavioral programs is proposed. The process of 

cognition within the framework of the concept of a quantum metalanguage 

involves the selection of adequate a priori existing (innate) programs (logical 

variables and rules for working with them) that are most adequate to a given 

situation. The quantum properties of this metalanguage are necessary to implement 

such programs. 

 Key words: Knowledge acquisition, Chinese Room, understanding, 

metalanguage, quantum decision making, generalization. 

 

Understanding is not a psychic process, but an action according to the rule 

L. Wittgenstein 

 

Introduction 

Problems of mechanisms of thinking in many ways remain unresolved. An 

answer to Kant's question "How can synthetic judgments be a priori?" posed 240 

years ago has not yet been found. Indeed, despite significant progress made in the 

creation of artificial intelligence systems, these systems still cannot understand, 

acquire knowledge, create new concepts, etc. These properties are most 

fundamental to intellect and represent the greatest limitation of artificial systems. 

A number of authors believe that this challenge is not surmountable in principle 

and that a strong AI (completely coinciding with human intellect) will never be 

created. 

Consideration of artificial intelligence in this regard is fundamentally 

important, as in this case we are dealing with systems, the structures of which we 

know. In regard to human thinking, the situation is different - we do not know 

exactly which structures store information and how such information is processed. 



This has given rise to the most important problem of what is innate and what is 

not. 

Problems of cognition and thinking are at the intersection of different 

sciences (see for example, Miller 2003) (Fig. 1). 

 

Fig. 1. 

However, the synthesis of these sciences in relation to problems of 

cognition has not yet taken place. Scientists of various cognitive sciences such as 

linguistics, epistemology, the philosophy of science, artificial intelligence, etc. do 

not often refer to one another's work. In particular, there is no single approach to a 

major cognitive problem - the problem of knowledge acquisition. Thus, a new 

cognitive synthesis is needed. 

Several approaches to the problem of cognition have been developed. A 

number of these approaches are based on the idea of the brain as a special structure 

that cannot be realized within the framework of any computing system. One 

objection to strong AI is Gödel's incompleteness theorem. A number of articles 

(see, for example, Penrose, 1994) state that a human understands, which is not 

provable, and that the difference between a human's thinking and a computer 



system is based on Gödel's incompleteness theorem, which concludes that thinking 

uses non-computable means. Another objection to strong AI is Searle's Chinese 

Room (1980), which is also related to the term understanding, with which, in the 

author's opinion, no formal artificial system is endowed. At the same time, the term 

understanding is poorly defined by the authors. Thus, a certain indeterminate 

property (or a set of properties such as the ability to acquire knowledge, to make 

generalizations, etc.) is attributed to a human, but proving anything under these 

conditions is difficult. 

A potentially radical solution to the problem of acquiring knowledge is 

rooted in an assumption of innateness (partial or complete). Within the framework 

of the philosophy of science, this line of reasoning is connected to Fodor (1983). 

Chomsky, based on other considerations, came to a similar conclusion on innate 

language (Chomsky 1957, 2014). However, this approach requires justification 

with the use of models and generalizations on thinking in the broadest sense of the 

word. 

Some authors (see, for example, Aerts et al. 2011; Aerts et al. 2013; Pothos 

and Busemeyer 2013, Khrennikov 1999, Khrennikov 2010a, Basieva et al. 2017) 

believe that a number of problems related to thinking can be solved within the 

framework of quantum mechanics. Korf (2014) considered potential quantum 

effects on brain activity in a neurobiological context. The author considered three 

types of theories according to which the working of the brain is related to quantum 

mechanics. The first states that quantum mechanics are involved in the behaviors 

of molecules but are not related to higher brain functions or consciousness. The 

second states that the brain is viewed as part of a world based on quantum 

mechanics (Hameroff and Penrose, 2014, Smith 2006, 2009). The third uses 

quantum mechanics to model mental processes and can be classified as quantum-

like, as the authors view quantum mechanics as a convenient formalism for solving 

a number of decision-making problems. 



One of the motivations of applying quantum mechanics to processes of 

thinking was experiments on decision making. Such experiments examine, for 

example, the Elsberg paradox, the breaking of the sure-thing principle, and other 

phenomena. In (de Barros 2012, Khrennikov 2011, Aerts et al. 2011, Basti et al. 

2017) it was shown that the formalism of quantum mechanics can help explain 

these paradoxes. However, a question remains as to how this quantum(-like) 

behavior is realized. Which structures of the brain are responsible for it? 

Thus, quantum mechanics has proven useful for modeling the workings of 

cognitive functions. The purpose of this article is to go further and show that 

quantum mechanics can be used to solve the most fundamental problems of 

thinking, such as those of knowledge acquisition, understanding, new concept 

generation, etc. The very phenomenon of thinking is systemic in nature, and thus a 

systems approach must be applied to problems of thinking in general and to 

problems of acquiring knowledge in particular. 

The problem of human consciousness is not considered in this work. This, 

while related to the problem of knowledge acquisition, is another matter to which 

the great literature is devoted (Chalmers 1996, Dennett 2005). 

 

1. Searle’s Chinese room, objections to strong AI and the problem of 

knowledge acquisition 

Central to the problem of cognition is understanding. 

There are two different aspects of understanding. The first is related to 

adequate actions that show that a human (the intellectual system) really 

understands what is in front of him or her. The second is related to consciousness 

and to feelings about what one sees. Feelings (qualia) are thus attributed only to 

humans and not to an arbitrary intellectual system. In this article we only consider 

the first aspect of understanding. It is this aspect that has a direct bearing on the 



problem of knowledge acquisition, which is the main focus of this article. For the 

second aspect, research on it has a long history and several articles have been 

devoted to it (see for example, Yampolskiy 2017). Studying and modeling this 

second aspect is difficult because it is difficult to measure in an objective and 

human-independent manner. 

By understanding we of course refer to an understanding of something 

new. Otherwise we are considering an already known object, in relation to which 

we can act adequately, i.e., its understanding is a priori present. 

One of the key thought experiments conducted on this topic was Searle’s 

Chinese Room experiment. 

In 1980, Searle (1980), with the help of a thought experiment entitled "The 

Chinese Room", put forward a serious objection to the existence of strong AI. In 

fact, this objection is critical to understanding thinking as such. In the mental 

experiment, a human in a room could communicate with the outside world only 

with instructions written in Chinese, which he did not know. Comments made on 

the instructions were written in English. However, the instructions were designed 

in such a way that they could be executed with the help of comments but without 

understanding what exactly is being done. 

As a result, Searle concludes that while such a system can pass a Turing 

test, no understanding of the language of the system is given, meaning that the 

Turing test is not an adequate test of cognitive abilities. Searle's arguments are 

aimed at criticizing the view of "strong" artificial intelligence, according to which 

computers equipped with a corresponding program can understand natural 

language and possess other mental abilities peculiar to people. The hypothesis of 

weak artificial intelligence only suggests that computers are capable of imitating a 

human's mental abilities, which corresponds to the mental experiments conducted 

by Searle. 



As Searle noted, syntax is not sufficient for semantics. 

The problem here is that within the framework of this thought experiment 

the term understanding is poorly defined. The author believes that this is 

something that is taken for granted. However, the absence of a definition given 

explicitly does not allow us to conclude whether an artificial intelligence system is 

able to understand or whether it merely imitates this process. 

A large number of articles have been published on the problem of the 

Chinese Room (see for example Chalmers 1996, Barsalou 1999, Bishop et al. 

2013). Quantum versions of the Chinese Room have also been developed. For 

example, Maruyama (2016) considered another argument of Searle based upon the 

observer-relativity of computation. According to the author, calculations are 

dependent on the observer but human intellect is not. Therefore, intellect cannot be 

simulated through calculations. Calculations must instead be interpreted by 

someone (that is, understood). The author considered the quantum mechanics of 

categories, from which quantum linguistics arose. 

A definition of understanding can be given based on experiments that 

determine whether a system (human) behaves appropriately after receiving 

information from outside or not. What does it mean, for example, to understand the 

term "electrical socket"? It means that a human can use this tool to perform certain 

actions (turn on a table lamp, etc.). If this term is written, for example, in 

Vietnamese, which the person does not know, then the actions of the human will 

not be adequate, i.e., actions are given no value as a result of receiving such a 

message. 

Here, it is necessary to note the importance of the recognition procedure, 

which has typically received little attention in reference to the context of the 

problem under consideration. This procedure in its most general form involves the 

comparison of an image obtained by receptors to some standard. As a result, two 

options may be available: the image may coincide with the standard (correspond to 



it) or not. For the first case, it is known what the image is, as a priori programs 

work with this standard and generate adequate results, etc. Rather, the first case 

corresponds to the achievement of understanding. However, in this case we do not 

understand something new. In the second case, when an image is not recognized, 

no a priori programs are involved, adequate behavior is not realized, and no 

understanding is achieved. This is a general procedure (which underlies large 

subject - pattern recognition) that is not directly related to image processing 

methods, information transferring, physical media, etc. That is, such a procedure 

should be used in both living and artificial systems. If the Chinese language is not 

determined based on standards within an artificial intellectual system, then it 

cannot act adequately in this regard, i.e., the system does not understand it. 

When a human is able to understand (as manifested in adequate actions) 

what is written in Chinese (never having studied it before), then this is possible 

only in one version - when this language nevertheless is a priori embedded in our 

consciousness as a standard. The application of this possibility is discussed in 

Section 7. 

Other objections to strong AI have been put forward by Penrose (1994). 

Penrose also believes that intellect is an understanding that involves consciousness. 

In the opinion of the author, a distinction must be made between true intellect and 

attempts to model it. Penrose argues that understanding is not computable. As 

proof, he uses Gödel's incompleteness theorem and concludes that conscious 

thinking has a non-computable component. The author, however, concludes that 

when the ability to understand is non-algorithmic, then it can be simply and easily 

explained through natural selection. As a means to solve this problem Penrose 

suggested that quantum events occurring in the microtubules of neurons are not 

computable. 

Here, we would like to note that understanding does not have to involve 

consciousness. When an intelligent system of an arbitrary nature is capable of 



adequately responding to a certain set of symbols, we must conclude that it 

understands them. To ensure that it is conscious of them is quite difficult from an 

experimental point of view. The very concept of "consciousness" does not have a 

clear definition. 

If understanding is considered in this context (as an adequate behavior), 

then different forms of understanding must occur at the molecular level (including 

neurons). Any cell, in addition to transforming and transporting substances, at the 

same time processes information. For example, in (Gorlich et al. 2011) the cell is 

considered a semantic system. The authors consider the codes that organize the 

semantic dimension of molecular information. Such operations implicitly involve 

recognition. If, for example, a membrane receptor recognizes an external signal 

(i.e., a reaction occurs between it and a certain molecule according to the key-lock 

principle), this results in the further processing of this signal, in its amplification, 

etc. We can state that the cell has "understood" the signal. This understanding is 

expressed as the cell’s adequate response to a certain change in the environment. 

However, in this case, the signal cannot be new for the cell or for an arbitrary 

system. 

Thus, on one hand, the argument of the Chinese Room is important in the 

sense that it is possible to show through this framework that understanding (and as 

will be shown below its consequences such as the formation of new concepts, 

abstractions, etc.) cannot be obtained based on any formal procedures or programs 

developed accordingly. On the other hand, the Chinese Room itself is nothing 

special relative to other situations, as a human perceives the world around him or 

her only through receptors (senses). In this sense, we are all partially in the 

Chinese Room. How then do we understand anything new? If a child has learned a 

language, how does he manage to understand it? The assertions of many authors 

that a child is taught by trial and error cannot be accepted as satisfactory, as a 

computer can also act in such a way. In this case, an equally important question 



arises as to how many trials and errors are required? This question is considered 

below. 

Objections like the Chinese Room are closely related to the problem of 

knowledge acquisition. As it was noted above, when a human or an intellectual 

system recognizes an environment with the help of receptors, only two possibilities 

are realized. 1 - The image that appears in the environment is not recognized, and 

as a result no a priori programs for working with it are available. As a result, 

behaviors will not become more adequate after the registration of this image. 2 - 

The image is recognized, but this can occur only when the system is given a priori 

standard for its recognition. In this case, the system’s behavior can become more 

adequate through the a priori application of behavior programs. However, 

knowledge acquisition in this case also does not occur, as programs of behavior 

existed in the system a priori. This problem is considered by Melkikh (2014a). In 

particular, in (Melkikh 2014a) two classes of behavior (Table 1) are distinguished 

for animals and arbitrary intellectual systems: 

Table 1 

Behavior based on innate programs (А) Behavior based on knowledge acquisition 

(В) 

Includes conditional and unconditional reflexes 

and the simplest forms of learning. 

Includes learning experiences (interactions 

with other animals) and the logical formulation 

of new concepts. 

An animal (intelligent system) meets a 

recognized object. This is accompanied by the 

running of innate programs. An unrecognized 

object can only trigger innate programs. An 

adequate response to the unrecognized object 

is impossible. 

An animal (intelligent system) meets an 

unrecognized object and begins to respond to it 

adequately through the acquisition of 

knowledge.  

 

 



It is shown that the behavior of type B is contradictory and cannot be 

realized. According to (Melkikh 2014a), such a system of recognition and 

decision-making can be described using the following model: 

Property 1: The system contains internal independent objects (words of the 

language) Q1 ... Qn. Operations P1 ... Pm on objects are possible. Operations of new 

object (operation) creation are not defined. 

Property 2: The system includes a receptor that receives information on the 

state of the environment. The receptor is capable of detecting objects q1 ... qm. In 

this case, operations p1 ... pk can be performed on objects. The receiving signal is 

compared to internal objects present in the system (pattern recognition). The 

system compares internal and external objects of the language. Mathematically, 

this comparison can be expressed in the form of equivalence (equality) of any 

internal object to some of the external objects. 

Property 3: From recognition (matching), some internal object operations 

trigger effectors; the system acts on the external environment. Every action is 

evaluated using function  iil PQ ,  (gain). This value is greater when the system is 

more successful. Without a loss of generality, we can assume that the system is 

designed such that there is a maximum condition:   max,  iil PQ . The term of 

"equivalence" is closely related to the gain and represents an adequate reflection of 

reality. 

Property 4: The system has limited memory storage, which can store the 

results of previous measurements or of intermediate operations. 

The pattern recognition and decision-making scheme can then be 

represented as the following form: 



 

? 

Image 

Operation 1 Operation 3 Operation 2 

Objects 

? 

 

Fig. 2. 

Let image Ω appear to the organism (system) with properties 1-4, which can 

be described in terms of the external language of receptors (registered). However, 

no objects of the internal language are relevant (in terms of equivalence) to 

external language objects corresponding to this image. Then, the effector cannot 

perform operations or activities that lead the system to obtain a certain gain 

(payoff). 

Consider a universal translator that translates one language into another and 

that can work with an unrecognized image. In this case, the algorithm cannot be 

run because the conditions required to run it, cannot be formulated. 

Suppose that the operation of supplementing a list of operations and objects 

from external alphabet phrases exists. However, this operation is controversial 

because it can be only performed if an external alphabet is part of the internal 

alphabet. When a phrase is part of an internal alphabet, the registered object is 



recognized, contradicting the initial claim. In this context, language problems 

require separate consideration and are discussed below in paragraph 5. 

In regard to pattern recognition and decision-making, the next version of the 

statement is controversial: "to create a new standard requires a new standard." 

When an image does not match an internal standard, the system must create a new 

standard to make an adequate decision. However, its creation is self-contradictory 

because the algorithm that creates such standards must know them in advance. 

The contradictory nature of the acquisition of knowledge based on learning 

automata is represented by the following diagram (Melkikh 2014a) (Fig. 3): 

 

Fig. 3. 

Thus, it is not clear how an arbitrary system acquires knowledge, as new 

information is not valuable, and valuable one is not new. That is, when a human is 

able to understand something that is not available to a computer, then he is capable 

of acquiring knowledge. 



Often, the acquisition of knowledge is associated with the concept of 

"intelligence." There are many definitions of "intelligence" (see, for example, Legg 

and Hutter 2007). For example, Gottfredson (1997) defines this concept as: 

«A very general mental capability that, among other things, involves the 

ability to reason, plan, solve problems, think abstractly, comprehend complex 

ideas, learn quickly and learn from experience. It is not merely book learning, a 

narrow academic skill, or test-taking smarts. Rather, it reflects a broader and 

deeper capability for comprehending our surroundings—"catching on," "making 

sense" of things, or "figuring out" what to do». 

Thus, the problem of knowledge acquisition and the problem of 

understanding are closely related. To determine whether an arbitrary system is able 

to understand or acquire knowledge, it is necessary to explicitly take the 

recognition process into account. 

 

2. Ascending and descending approaches to AI and the problem of 

knowledge acquisition  

In reference to the problems discussed above it is important to consider 

artificial intelligence systems, which are distinguished (from the brain) by the fact 

that their structures are known. 

In artificial intelligence, two basic approaches are used: ascending and 

descending approaches. An ascending approach involves the use of neural 

networks, including promising newly developed networks of deep learning (see for 

example, LeCun et al. 2015, Sze et al. 2017). To train a neural network on 

something, we must explore a large collection of preliminary examples. Note that 

in these examples, someone (a human) must explicitly indicate what kind of thing 

it is. This instruction occurs in a special mode - the training mode. The neural 

network itself does not need to understand anything - it is understood by the one 



who teaches it, i.e., the human. In the case of unsupervised learning, neural 

networks are only capable of clustering information. In this case, there is no 

recognition. 

Recently, the AlphaGo Zero algorithm achieved superhuman performance 

in the game of Go, Chess and other games using deep convolutional neural 

networks, trained solely by reinforcement learning from games of self-play (see, 

for example, Silver et al. 2017). It was demonstrated that a general-purpose 

reinforcement learning algorithm can achieve, tabula rasa, (without any additional 

domain knowledge except the rules of the game) superhuman performance across 

many challenging domains. In this case, however, new images do not arise, and 

there is no understanding. 

Note also that machine learning is applicable only to problems for which 

there are sufficient initial data (see for example Abu-Mostafa et al. 2012). Machine 

learning does not create information but rather uses it based on already available 

data. When there are not enough training data, machine learning methods do not 

work. It is also necessary to define the term "data." Clearly, if these data do not 

correspond to the "meaning" a priori, it will not appear as a result of further 

training. The collation of meaning to a signal is a human's task.  

The descending approach is related to the application of the Bayesian 

formula for conditional probabilities and generally theory of Bayesian networks. 

Hypotheses (generative models) are put forward and subsequently verified (see for 

example, Lake et al. 2015, Bonawitz et al. 2014). A Bayesian system can be 

trained on a small number of examples, but this requires the use of a set of 

hypotheses that the system itself cannot offer. Hypotheses are again formulated by 

those who understand (a human). This method is considered in more detail in the 

following section. 

Several works have been devoted to children’s learning processes. A 

number of authors believe (see for example, Bonawitz et al. 2014) that children 



learn in a Bayesian manner. However, this raises question of who in this case 

forms hypotheses? When a hypothesis is formed by an external system (another 

human), then how does the trainee understand what is being said when first 

presented with this situation (new objects or images)? In the second case it can be 

assumed that hypotheses are congenital (i.e., they exist prior to the learning 

process). 

It is often believed that children learn from examples by default, but this is 

not the case. For example, in (Melkikh 2014a) social learning was considered. 

Social learning is often considered separately owing to its complexity and 

importance to complex communities (transfer of experience from parents to 

descendants and so on). However, in terms of the problem addressed in this article, 

social learning is not fundamentally different from other forms of learning. We 

consider a case in which an organism receives new information from its parents or 

from other animals. Can the organism adapt to new conditions in this case? Given 

what has been said above, the answer is no. 

Importantly we note that in this case, the organism also receives 

information via receptors. Therefore, any other organism (a member of the flock, 

the parent, etc.) is interpreted as part of the environment. Consequently, the 

aforementioned scheme of measurement - recognition – decision making holds. 

Regardless of actions the parent takes, they can be adequately interpreted only in 

one case: when a signal has been recognized (compared to a standard sample). In 

turn, this comparison is only possible when a standard sample has already been 

made available to the organism (as congenital). 

Note also that "supervised learning" in animals and humans is 

fundamentally different from "supervised learning" in neural networks, in that a 

neural network "teacher" can prepare a system (i.e., to set connection weights 

between neurons form outside), while for animals this is impossible. All 

"teachers’" acts can be perceived only through pattern recognition. 



Thus, a child can "learn" only what he is ready to absorb, for which he 

already has all necessary programs, and training is only available to launch such 

programs in a timely manner and to launch programs that are needed in the near 

future. 

In (Melkikh 2014a) basic methods of solving problems in AI are 

considered and it is shown that all of these methods are based on the use of a priori 

information. In addition to neural networks we list the following tools: 

1. Heuristic methods of problem solving are based on aprioristic 

information of the object domain that comprises a problem. Heuristics 

may prove to be incapable of finding a solution altogether. This 

limitation cannot be removed even from the best heuristics (Garey and 

Johnson 1978). A key question concerns how heuristics arise. The theory 

does not address questions of how we can develop a new heuristic. 

2. The recursive search represents a natural means of realizing such 

strategies of artificial intelligence through a graph search. However, an 

exact objective should be set for this method to be used. When objects (or 

even one object) are not defined, a recursive procedure cannot be applied 

(Luger 2003). 

3. Production systems are used for conflict resolution. In this case, the 

system requires an a priori standard sample (pattern) that determines the 

possibility of using the rules of production systems (Luger 1994).  

4. Expert systems are based on the same rules (Luger 2003). The core of an 

expert system is a knowledge base that includes knowledge generated 

from a particular applied domain. Knowledge in an object domain 

determines and updates an expert database (Minsky 1987). Can we 

possibly imagine a system that acts as an expert for itself? This is clearly 

not possible because a code can be corrected only when correct 

knowledge is known. 



5. Recently, hybrid connectionist-symbolic systems based on a synthesis of 

neural networks and based on symbolic representations of knowledge 

(see for example (Vilhelm et al. 2000, Kamsu-Foguem et al. 2012, 

d'Avila Garcez et al. 2009)) have been proposed. These systems facilitate 

knowledge acquisition through a variety of applications. However, the 

term "knowledge acquisition" is defined for such a system in a different 

sense than it is in this article. In the context of this approach, "knowledge 

acquisition" denotes that with help of knowledge, some useful tasks can 

be completed (e.g., in medicine). The functioning of such systems a 

priori assumes that all characters (or simple signals) or words written in 

a specific language are recognized by a human or computer. In this 

sense, they are innate. In this case, problems related to determining 

whether knowledge is innate to humans are not considered. 

We can also consider a hybrid variant: interactions between the brain and 

machine. Indeed, at the moment, control technologies that use brain signals to 

control a computer cursor or hand prosthesis are actively being developed (see for 

example, Mathot et al. 2016). However, these technologies do not relate to the term 

understanding. 

Thus, an analysis of main approaches to the problem of knowledge 

acquisition in artificial intelligence systems leads to the conclusion that in either 

case all knowledge is a priori. In the first case, a teacher (who can manage the 

system in a special mode) has knowledge and in the second, the system itself has 

them. No new knowledge appears in this case. 

In (Melkikh 2014a) it is noted that a special regime of system preparation 

can exist. As changes within an organism and its interactions with its environment 

are crucial when considering knowledge acquisition and learning, these 

interactions should be defined more precisely. Regarding processes of knowledge 

acquisition and learning, interactions between an organism and its environment 



must be performed only through recognition. The organism obtains all information 

on its environment through its senses. Furthermore, this information is subject to 

recognition, after which the organism decides what to do in the current situation. 

However, in principle, an organism can interact with its environment in another 

way – through preparation. The structure of the system can be directly changed by 

acting on it from the outside (not through the senses). This method is widely used 

in engineering systems. For example, a computer user can replace any part of a 

system to create a different system. However, this method is not related to learning 

or knowledge acquisition (as in this case another system learns); in addition, the 

method is not used in living systems. Thus, the system’s preparation is not 

considered further. 

A possible answer to questions on the origins of knowledge in artificial 

intelligence systems concerns the existence of universal solvers. For example, an 

analysis of universal solvers (Hernandez-Orallo 2016) shows that 

1. Some authors argue that there is an effective search method, as the interval 

in which a number (ε-acceptable policy) is located is known. Additionally, 

various search variants are considered. In principle, however, these search 

methods implicitly assume that the object under study is recognized. When it 

is not recognized (it is new), the interval in which one wishes to search is not 

known and the search space does not offer any potential values.  

1. The author (Hernandez-Orallo 2016) appeals to evolution as a search 

method, as by default it is assumed that its opportunities to solve problems 

are unlimited. However, references to evolution are untenable, as we do not 

know how a search actually occurs. The assumption of the Darwinian search 

mechanism is presented with serious conceptual difficulties associated with 

a need to search through a large number of variants (see for example 

Melkikh 2014c, Melkikh and Khrennikov 2017). The fact that this or that 

adaptation occurs in life does not say anything about the fact that a universal 



solver is used. Rather, it indicates that a system has a priori information on 

the solution which should be found. 

3. In this connection, a question arises as to whether there is at least one 

example of an artificial universal solver that would work in life (with real 

objects). The practice of solving technical problems via intelligent systems 

shows that there are no such solvers. 

4. Recognition models appear to be fundamentally important. This process 

cannot be described through words alone and must be modeled. 

Can an intellectual system self-improve while solving problems? If we 

could create a form of superintelligence that could improve itself, then this would 

be a breakthrough in the field of cognitive sciences. However, it is important to 

accurately define concepts. An improvement made in one area does not imply 

anything about improving work in another area. In (Yampolskiy 2014, 2015), 

various forms of intellectual system self-improvement are considered: 

- self-modification (1), 

- self-improvement (self-adaptation) (2), 

- recursive self-improvement (3). 

The purpose of the first method is to protect the program itself and not to 

improve it. 

The second concerns the goal of many software products to adjust the 

system to the user. For example, genetic algorithms optimize parameters for the 

analysis of a particular system through various learning algorithms such as meta-

calculations. 

The third allows one to replace an algorithm with a new algorithm. The 

author notes that this approach has not yet been employed. In this regard, it should 

be noted that this third method of self-improvement cannot be implemented in 



principle, as an algorithm must replace the algorithm that the new algorithm must 

contain a priori. 

 

3. Bayes hypotheses and trial and error method 

As noted above, the trial and error method is considered a common method 

of learning used by humans and animals. In some cases, a human needs to make 

only a few attempts to learn something. However, why does such a method work? 

Let us show that the working capacity of the trial and error method is closely 

related to Bayesian hypotheses that underlie it. We write the Bayesian formula as 

follows: 

 
   

 

P A P B / A
P A/ B =

P B ,                         (3) 

Under A and B we have the following: 

P (A) is the a priori probability of hypothesis A; 

P (A / B) is the probability of hypothesis A occurring with the occurrence 

of event B (a posteriori probability); 

P (B / A) is the probability of event B occurring with the truth of 

hypothesis A; 

P (B) is the probability of event B occurring. 

If the hypothesis put forward (explicitly or implicitly) is valid (good, 

corresponds to reality), then probability P (A / B) should be high. This means that 

learning will follow 

 
1

n
P A/ B  , 



steps, which is a small number. However, questions then arise as to where this 

hypothesis comes from. Why is this hypothesis valid in any sense? As a natural 

and non-contradictory answer to this question, the hypotheses themselves are 

congenital or are derived from inborn knowledge based on rules of inference. 

Trials and errors in this case are only a consequence of a lack of such knowledge 

due to uncertainties related to the environment. Information obtained through 

experiments and the number of experiments the must be conducted to obtain such 

information are related (see appendix 1). 

A priori information can be calculated from the Shannon formula based on 

a priori probability. Thus, a good hypothesis is a hypothesis that contains a 

considerable amount of a priori information on the learning object. This 

information cannot arise through the learning process but should be a priori, i.e., 

congenital. However, this means that knowledge is not acquired through such a 

process and only applies a priori knowledge most appropriate to the given 

situation. When a human (animal) immediately understands what is before him and 

which actions must be taken without trial and error (insight), then this is possible 

only when the human already knew this in advance (i.e., enough a priori 

information was available on the object). Whether a human perceives this process 

or not is another matter. 

If, as a result of using the trial and error method, the results of these trials 

(experiments) accumulate, then repetition can be applied to reduce errors. In 

(Melkikh 2014a) the model of errors at recognition is considered. According to 

(Melkikh 2014a), errors occur each time a device measures its environment, 

potentially leading to erroneous recognition. Therefore, the larger the degree of 

measurement error, the smaller the fitness Φ value (fitness is at a maximum when 

errors are absent). We refer to the maximum fitness level as Φ0. Then we can write 

the following (when errors are relatively small): 

0   , 



where Δ is a positive value denoting a decrease in fitness resulting from a 

measurement error. From error theory we know that random error decreases with 

repeated measurements as the number of measurements increases (when systematic 

inaccuracy is present, it can be included in the maximum fitness value). However, 

each measurement requires energy to complete and as a result fitness values will 

decrease. We denote a decrease in fitness resulting from energy expended for a 

single measurement as ε. Then we have the following formula for the fitness value: 

0 n
n




   
,                                            (4) 

where n is the number of measurements. 

Factor 1/ n  appears with a decrease in the random error value occurring 

from repeated measurements. This formula can be used when the measurement 

time is short compared to the characteristic behavior time. Alternatively, when 

measurements are collected slowly, the fitness value will decrease because the 

organism will not have enough time to measure rapid changes in the environment. 

The fitness value (4) may have an extremum with respect to n, and thus we 

have: 

2/3

2
n



 
  
  , 

    1/3 1/3 1/3

0 2/3

1
, , 2

2
X Y X Y 

 
     

  . 

As the number of measurements is an integer, the extremum exists only at 

Δ/ε > 2. Therefore, an organism, which occupies a complex environment, may find 

it unfavorable to immediately change its behavior as its environment is altered and 

instead might prefer to perform a set of measurements and only then begin to act. 

In other words, to initiate available programs an organism should first recognize its 

environment and identify necessary programs. 



This behavior explains the fact that living organisms form conditioned 

reflexes most often as a result of the recurrence of an external signal. Thus, 

repeated measurements of the state of the environment from an organism decrease 

errors during the operation of aprioristic programs. 

 

4. What is innate? 

To understand mechanisms of acquiring knowledge it is important to 

clarify the question of what can be attributed to the innate in living and artificial 

systems. 

What is innate? The answer to this question is quite complex. Even within 

the framework of cognitive sciences, no unambiguous definition of innate is given. 

By the term instinct, as applied to the behavior of animals and humans, we 

refer to complex stereotyped forms of activity that are inherent of all individuals of 

this species and that are inherited and do not require training. Instinct represents a 

form of species memory passed down from generation to generation by 

inheritance. The behaviors of animals and humans involve a complex interlacing of 

innate and acquired skills. 

Ethologists define instincts as specialized morphological structures (a 

temporary organ of the animal) that naturally appear in a specific social situation 

(Lorenz 1950). An instinctive reaction is realized automatically with any 

presentation of specific stimuli and is not corrected by circumstances of the given 

context or by the animal’s past experiences. In this case, innate response circuits 

are triggered. 

For example, Samuels (2004) considers several definitions of innateness. 

The author notes that the theory of innateness has been used to explain many 

psychic phenomena. However, the concept should be better defined. The author 

considers several definitions of innateness: 



- Innateness as non-acquisition. Is universal grammar innate? However, 

non-acquisition is also poorly defined. Minimum definition is: a 

characteristic is acquired from an object (e.g., an organism) when and 

only when there is a period of time in which an object has the 

characteristic in question and a prior period in which it does not. 

However, this is not enough, as at development all cognitive abilities are 

absent. 

- - Innateness as a presence at birth. That is they are acquired in the 

minimal sense - during growth. However, it is possible to train prior to 

birth. Sexual signs are also absent (in part) at birth. 

- Innateness as a consequence of internal causes. 

- Innateness as genetic determinism. However, here it is impossible to trace 

a clear causal relationship. 

- Innateness as an invariant of development. 

- Innateness as something that has not been taught. We in turn require a 

clear definition of training. 

There are two prior opposing theories that link behavior to genotypes. One 

theory conditionally referred to as "behaviorism" denies the importance of genes. 

However, another ("genetic determinism") states that genes completely determine 

behavior. 

At present these extreme views have not been confirmed. Studies of the 

individual development of organisms show that in different environments the same 

genotype can be expressed differently, and the phenotypes and behaviors of 

animals and humans depend not only on genes but also on the environment (see for 

example Argawal 2001, Whitman and Agrawal 2009). 

For example, the study of the IQs of monozygotic twins (see for example, 

Butcher et al. 2008) unambiguously shows that genes play an important role in 



intelligence. However, as shown by experiments, identifying genes responsible for 

specific aspects of behavior (e.g., learning) is difficult even for the simplest 

organisms. For example, Glanzman (2010) notes that the presence of molecular 

pathways is not sufficient to understand learning. Examples of Aplisia and 

Drosophila behavior show that molecules such as GABA and glutamate are 

associated with neuronal plasticity. However, by themselves molecules cannot 

explain behaviors without consideration of neural networks. «The take-home 

lesson from the two studies discussed here is that knowledge of the key molecular 

players does not provide a short cut to understanding memory and cognition» 

(Glanzman 2010). This conclusion can be attributed to other organisms and 

behaviors. 

According to experiments on human genome mapping, a very small 

number of genetic markers are related to intelligence test results (see, for example, 

Coleman et al. 2018, Hill et al. 2018). 

Thus, an organism can change its phenotype in response to changes in its 

environment (phenotypic plasticity). If we consider behavior, the special case of 

phenotypic plasticity can be considered as a form of neuroplasticity, as rooted in 

changes in connections between neurons and in the strength of synaptic contacts 

(synaptic plasticity) influenced by experience. Many mechanisms of synaptic 

plasticity are common among vertebrates and invertebrates (see for example 

(Glanzman 2010)). 

Noble (2006) examined the relationship between different levels of 

causality in cells. In his view, genes do not represent a program because many 

properties of an organism (cells) can be realized only at the higher systems level. 

However, mechanisms of this higher level remain unclear. Does this level involve 

the use of algorithms? If so, where do they come from, and if not, how does it 

work? 



Various researchers (for example, Fodor, Pask, Osherson) have suggested 

that some concepts of human language are congenital. In this case, however, 

formation mechanisms of remaining concepts remain unclear. 

For example, Fodor (1983) suggested that there is a special language of 

thinking referred to as mentaliz. According to Fodor, mentaliz is unique in that it 

cannot be learned from one’s native language, as it is innate. This applies, in his 

opinion, to a number of other concepts (e.g., BACHELOR, EFFECT, ISLAND, 

TRAPEZOID, WEEK) that the author attributes to primitive and innate. It remains 

unclear, however, how other concepts arise. 

Fodor and Pylyshyn (2016) explored an analogy between thinking and 

computers based on computation: "Cognitive processes are computations, which is 

to say that they apply to ... ." This analogy also means that cognitive processes 

must be based on innate knowledge, as computers work this way. 

Chomsky's theory (see, for example, Chomsky 1957, 1965) posits that 

language involves the use of deep and surface structures. Surface structures 'face 

outward' as represented by spoken utterances while deep structures 'face inward' 

and express underlying relations between words and conceptual meanings. 

Transformational grammar is generative grammar that applies a limited series of 

rules expressed in mathematical notation that transforms deep structures into well-

formed surface structures. Transformational grammar thus relates meaning and 

sound.  

The Chomsky hierarchy is a hierarchy of classes of formal grammar. The 

hierarchy imposes a logical structure to different language classes and provides a 

basis for understanding the relationship between grammars (devices that enumerate 

valid sentences within languages). In order of increasing expressive power, it 

considers regular, context-free, context-sensitive, and recursively enumerable 

grammars. Each class represents a strict subset of the class above it, i.e., each 

successive class can generate a broader set of formal languages.  



Later versions of Chomsky's theory (the minimalist program, Chomsky 

2015) make strong statements on universal grammar. According to his view, 

grammatical principles underlying languages are innate and unchanged, and 

differences between languages of the world can be explained in terms of 

parametric brain settings that can be compared to switches. According to this point 

of view, a child must learn lexical units (i.e., words) and morphemes to learn a 

language and must determine necessary parameter values in reference to several 

key examples. 

This approach, according to Chomsky, explains the amazing speed at 

which children can learn languages, consistent stages of child language learning 

regardless of languages learned, and characteristic errors that children make while 

learning their native language and seemingly logical errors that are not made. 

According to Chomsky, the absence or occurrence of such errors is related to the 

method used: generalized (innate) or dependent on a specific language. 

Chomsky notes that the infinite number of proposals that a human can 

make serves as a strong reason to reject the behaviorist concept of language 

teaching by reinforcing (fixing) conditioned reflexes. Young children can make 

new proposals not backed by past behavioral experience. The understanding of 

language is conditioned less by past experiences than by the so-called Language 

Acquisition Device, the internal structure of the human psyche. The mechanism of 

language learning determines the volume of permissible grammatical constructions 

and helps a child master new grammatical constructions from the language he has 

heard. 

According to the author, congenital grammars arose through random 

mutation. However, mechanisms for the emergence of other language concepts 

remain unclear. 

According to Chomsky meaning are hard-wired already somewhere inside 

the computational device. In his opinion meaning are independent of social 

purposes, arising from genetically determined syntactic structure. 



Chomsky's theory has been challenged by many authors through theory 

theory (Gopnik 2003, Gopnik 2012) and usage-based theory (Tomasello 2009), for 

example. 

According to Tomasello (2009), the innate grammatical module does not 

help a child assimilate his first language as much as different mechanisms of 

thinking, such as the ability to distribute objects into categories and to understand 

how they are related. Children begin by mastering simple grammatical schemes 

and then comprehend the rules that govern them. According to usage-based theory 

(Tomasello 2009), children intuitively guess the intentions of other people. A child 

learns standard schemes by watching other people. Thus, in the author’s opinion, 

the cognitive abilities of the brain serve as decisive factors of language learning. 

However, in light of that stated above with respect to problems of knowledge 

acquisition, these abilities must be explained. What, for example, does the term 

"assimilate" mean? How specifically does cognitive ability work with language 

when a child is exposed to a new environment? 

According to theory theory (see for example Gopnik 2003, 2012), while 

obtaining knowledge about the world, children use the same tools as adults do 

when testing scientific principles. Children develop theories. According to the 

author (Gopnik 2003, 2012), infants are born with initial innate theories. However, 

the range of theories that can be generated is much wider than the limited set of 

representations that are possible from innate views. We learn by modifying, 

revising and eventually replacing earlier theories with later ones. 

Theory theory is primarily applied to our everyday knowledge of the world, 

to our everyday understanding of biology, physics, psychology etc. 

A significant drawback of the theory theory and the usual theory of 

language is their lack of basis in models and inaccurate definition of terms. What, 

for example, occurs when modifying one’s original knowledge? How do we create 

new theories? 



From this connection a question arises as to where theories of science come 

from (especially in the case of mathematics). Wigner (1967) explored the 

inexplicable effectiveness of mathematics. According to Wigner, mathematics is 

smarter than us. This means that the laws of mathematics and physics existed 

independently of humans before humans discovered them. 

We show that the creation of concepts and generalizations is contradictory 

in principle regardless of the material basis of an intellectual system. 

 

5. Creation of new concepts, abstraction and inductive logic 

Let us consider several properties of thinking that are considered classical: 

the ability to generalize, intuition, abstraction, the creation of new concepts, and 

others. These concepts are at the core of human intellect and perhaps of the 

intelligence of animals. On the other hand, these properties are highly difficult (if 

not impossible) to apply on a computer (an intelligent system). Indeed, for 

example, abstraction modeling methods (Goertzel 1993) inevitably suggest that a 

concept that should appear as a result of such an abstraction must be a priori 

defined in a mathematical model. Consequently, the implementation of such a 

model within an intellectual system also does not lead to the formation of a real 

abstraction. 

In classical experiments with animals and young children (Gellerman 1933) 

their abilities to form general concepts were measured. It is shown that children 

can identify the notion of "triangularity" in consideration triangles of different 

textures, colors, etc. That is, children (and some animals) are able to identify 

common geometric shapes and to recognize these commonalities in a new figure. 

Note, however, that when an image is recognized, it is translated into a 

mathematical (abstract) form. That is, along with other characteristics of an image, 

the property of "triangularity" is also recognized. Otherwise, it is impossible to 

explain how such a notion could have "formed" if it had not been programmed in 



advance. As is shown above, the trial and error method can be effective only when 

it is based on a hypothesis that is close to the truth a priori. Therefore, the trial and 

error method implicitly includes the Bayesian approach. 

Lake and co-authors (2015) noted that two features of human thinking 

cannot be realized by computer systems. A human can learn a new concept with 

one attempt while a machine must make dozens or hundreds of attempts. Even 

children can make generalizations with one attempt. While learning, individuals 

can identify new options, functions and categories. Machines cannot do this. How 

do people learn from such a small amount of data? To address this problem, the 

authors proposed a Bayesian learning program that in their opinion supports the 

generalization and learning of new concepts. In this case, new programs can be 

developed from components of past ones. 

However, in this case, the generalization and creation of new concepts is 

something quite different. If we consider signs registered by a system as images, 

then they can be processed in various ways, and from them it is possible to form 

new images, etc. However, this new image does not have semantics, such that one 

does not know what it displays. Accordingly, it reflects not the creation of a 

concept but the creation of a new sign. Operations of "averaging" signs can of 

course also be carried out. As a result, from a set of signs one can identify common 

features and form an "average" sign. However, as what it means is not known (the 

semantics are not averaged), the system cannot take any adequate action in this 

case. Thus, a generalization cannot be made at the syntactic level, as the semantics 

of these symbols are determined in a completely different way. 

Consider for this connection the operation of "generalization." Let there be 

images in the external environment. After recognition, they correspond to concepts 

A1, ... An of the internal language. When an image is not recognized, it is 

impossible to carry out operations related to semantics (i.e., it is discarded). 

Generalization means that all concepts belong to a certain set. In this case, two 



options are possible. Either they already belong to it and a priori there are 

operations adequate for this set (i.e., what to do with this set as the whole), or they 

do not belong to this set. In the latter case, the operation of replenishing the set 

with the object is not defined. 

The problem of knowledge acquisition can also be considered based on 

logic. According to classical logic, to realize a proposition (that includes a subject, 

predicate, bundle and quantifier), all of its components must be a priori 

determined. This is often implicitly implied, but for our purposes it is necessary to 

note the importance of such an a priori definition. It is impossible to form a 

judgment of an unknown (unrecognized) object. Logical conclusions can be 

divided into inductive and deductive conclusions (see, for example, Baronett, 

2008). It is assumed that deductive conclusions are strict while inductive 

conclusions are only probabilistic. Bertrand Russell noted (1998) that deduction 

does not give rise to new knowledge. New knowledge can only be obtained 

through induction. The problem of inductive inference has been raised repeatedly 

in the field of philosophy. In particular, David Hume denied the validity of 

induction completely. On this connection Bertrand Russell remarked: "What these 

arguments prove is ... that induction is an independent logical principle that cannot 

be deduced from experience or from other logical principles, and that without this 

principle, science is impossible." 

The analogy in logic is also regarded as a form of inference (see, for 

example, Baronett 2008), though its conclusions on induction are probabilistic. 

This probability value can be calculated from the Bayesian formula. However, as 

noted above, for this probability to be as great as possible, "good" hypotheses on 

which the Bayes formula itself is based must be applied. It remains unclear what 

are the mechanisms of a good hypothesis generation. The existence of such a 

hypothesis has only been postulated. 



In the framework of formal (mathematical) logic, induction is also present 

(e.g., in Peano arithmetic). However, such induction can only work when all of its 

variants are determined in advance. Mathematical induction cannot work with 

objects that are not defined. Sometimes such a definition is given implicitly, but it 

does exist in any case. 

Within the framework of logic, complete and incomplete induction are 

distinguished. Most often, induction is incomplete, and as shown above an 

unambiguous conclusion cannot be drawn from it. 

In the case of complete induction we draw conclusions from a full 

enumeration of species of a certain genus on the whole genus; it is obvious that in 

using such a method of inference we obtain a quite reliable conclusion, and this 

method of inference cannot raise any doubts. In identifying the subject of a logical 

group with objects of particular judgments, we can apply this definition to the 

whole group. 

The scheme of complete induction can be written as follows: 

1. Set Ω consists of elements Ω1, Ω2, ..., Ωk. 

2. Where Ω1 has characteristic ψ, where Ω2 has characteristic ψ, and where 

all elements of Ω3 to Ωk have characteristic ψ. 

3. Consequently, all elements of set Ω have characteristic ψ. 

In relation to the problem of knowledge acquisition, this situation can be 

interpreted as follows: in the case of acquiring knowledge, we always deal with a 

new object. As shown above, the reliability of inductive outputs is directly 

dependent on a priori information on this object. When a priori information is 

completely absent, no inductive conclusions can be drawn on the object. 

If, from this point of view, we consider complete induction, it becomes 

equivalent to mathematical induction from which it is possible to draw definite 

conclusions, but induction can be complete only when all the elements of sets are 



determined a priori. In this case, no acquisition of knowledge (and understanding, 

the creation of new concepts, etc.) can occur in principle. 

In general, we can conclude that mathematical logic and set theory are most 

closely related to thinking as such. The paradoxes of set theory and mathematical 

logic reflect the incompleteness of our knowledge. Namely, our thinking occurs 

partly in a latent form. At the same time, part of our thinking is not realized. Thus, 

some of the mathematical evidence is implicitly implied. We simply know that 

mathematics (e.g., an infinite set of real numbers) is constructed in this manner and 

not otherwise. 

Consider the abstraction of identification as a means of forming general 

abstract concepts. This method involves taking into account only differences that 

for a given situation and for one reason or another are essential and in ignoring 

others and that are insignificant when considering initial objects. Initial objects that 

differ in an insignificant way are considered to be the same, and in terms of speech 

aspects, the abstraction of identification is manifested in the fact that two identical 

source objects when identified can be referred to as the same abstract object by 

applying the corresponding term. The following examples can be considered 

• The identification of identical figures leads to the generation of an 

abstract figure (an abstract word); 

• The identification of an equivalent fundamental sequence of rational 

numbers leads to the generation of a real number; 

• The identification of isomorphic groups leads to the generation of an 

abstract group. 

However, the word leads does not say anything about mechanisms 

facilitating the appearance of such concepts. It is much more logical to assume that 

concepts of "abstract letters," "abstract groups," etc. already exist. As a special 

case, they must contain an isomorphic group, a rational number, and a letter. 



Therefore, when abstracting, a human only discovers such general concepts and 

does not create them. 

Epistemology identifies various kinds of correct statements (see for 

example Audi 2011). There are self-evident statements and statements that are 

based on experience. Concerning the latter, however, one must bear in mind that 

all empirical must be recognized. Therefore, it is implicitly based on hypotheses 

that are postulated. That is, it is based on a priori knowledge. Analytical and 

synthetic correctness are also considered. Analytical correctness is obtained from 

proof. However, this is then just part of mathematical logic, for which the 

acquisition of new knowledge is impossible. Self-evident statements are innate by 

definition. 

The problem of knowledge acquisition as a part of philosophy has a long 

history. In particular, the notion that knowledge is to some extent predetermined 

arose a very long time ago. 

Socrates believed that soul is immortal (and repeatedly incarnated) and that 

the acquisition of knowledge is only an anamnesis. According to the ideas of 

Spinoza and Leibniz, thinking is a spiritual automaton that produces truth and that 

works according to a pre-set, pre-determined program. However, this raises 

questions as to where in such automaton errors come from. Descartes postulated 

that there is freedom of will according to which decisions are not predetermined. 

Kant considered such categories innate and that the creative method works 

based on them. However, what is the creative method? This term remains poorly 

defined and does not clarify mechanisms of the emergence of new knowledge. 

Kant asserted: "If we have a green leaf before us, our mind, comparing it 

with other leaves and considering through the prism of the category of universality, 

develops the concept of a leaf in general with the help of a productive 

imagination." This raises questions regarding what productive imagination is. 



What is universality? How does the mind define a category? Kant could not 

provide answers to these questions. To date progress in this area has been limited. 

Any reasoning is formulated based on elementary operations of a certain 

language. Elementary logical operations can be performed by classical and 

quantum systems. In quantum mechanics, operations are performed on qubits. 

Simple unitary operations over qubits are called quantum logical gates. For 

example, when a qubit passes from one state to another, 00  , 

 1exp1 ti  then it is said that after time t a qubit acts on the gate 

Any reasoning is formulated on the basis of elementary operations within a 

certain language. Elementary logical operations can be performed by both classical 

and quantum systems. In quantum mechanics, operations are performed on qubits. 

Simple unitary operations over qubits are called quantum logical gates. For 

example, if a qubit passes from one state to another, 00  , 

 1exp1 ti  then it is said that after a time t the gate  
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acted on a qubit. 

As other elementary quantum gates one can identify "equivalence," "not," 

etc. All of these gates act on one qubit and can be realized by means of some 

Hamiltonian of the Schrodinger equation. More detailed formalisms of quantum 

logic are described for example in (Haven and Khrennikov 2017). 

It is necessary, however, to emphasize that problems of justifying logic are 

not related to which particular model of logic (quantum or classical) is used. Thus, 

the problem of knowledge acquisition from a logical point of view cannot be 

solved within the framework of a given language either based on quantum theory 



or based on classical logic. Rather, for any language there is no means to justify the 

acquisition of knowledge. 

 

6. Can neurophysiology provide an answer to the question of 

understanding and thinking? 

If behavioral programs are innate, this in one way or another should be 

reflected in the structure of the brain. 

The relationship between congenital programs of behavior and the structure 

of the brain is discussed in a previous book (Sverdlik 2016). According to the 

author, the whole organism can be conditionally divided into two axes. The first 

axis includes our internal organs and tissues, and the second axis, the external axis, 

includes the skin and the sense organs. Accordingly, we can distinguish two 

divisions of the nervous system as follows: the autonomic (serving the inner life of 

the organism) and the somatic (serving the external life) nervous system. 

Different divisions of the brain are more or less involved in the process of 

the perception of the surrounding world and thinking. 

The hypothalamus is the central regulator of the internal axis. The 

hypothalamus regulates the endocrine activity of the brain and the homeostasis of 

the body including processes such as food control, protective behavior, thirst, 

thermoregulation, memory, emotions, etc. (see, for example, Swanson 2000, 

Canteras 2002). 

The amygdala is involved in emotional and social processes (discrimination 

of faces, etc.) (Kheirbeck and Hen 2011, Todorov and Engell 2008). 

The cortical mantle of the large hemispheres is the regulator of the outer 

axis. Conscious abstract thinking is carried out by stereotypes of the external axis. 

The resolving power of the autonomic nervous system is low and that of the 



somatic nervous system is high. Conscious thinking operates in working memory, 

in which there is a simultaneous retention of several pieces of information. 

In the author's opinion, the neurophysiological meaning of abstraction is 

that, from the long and entangled neural networks short networks (that generalize 

their content) are formed. Here, however, an important question arises about the 

mechanisms of the formation of such networks. This mechanism should be a 

consequence of some physical processes. 

According to the author (Sverdlik 2016), the goal of abstraction is to find 

something common, which unified different information. The cortex works 

inaccurately, so the precision of mathematics does not depend on it. The limbic 

system is the basis of emotions. It is possible to attribute some neurobiological 

address to emotions. The emotional brain is the place in which the inner axis 

reaches the maximum contact with the external axis. There, the body and the 

cortex (algorithmic mind) find many points of contact. Emotions invisibly 

participate in solving any abstract problems. 

In the author's opinion, to find the right solution for any problem means to 

recognize it as the right one. Recognition is controlled by the limbic (sensory) 

system. Neurons of the limbic system generate a sense of recognition when 

external information coincides with inner information. At the same time, the bodily 

component of cognition is important. 

According to the author, true discovery is impossible without the use of 

non-algorithmic instruments. The body is not capable of constructing logical 

chains, and internal information is encoded somewhere in the molecules. Intuition 

is the emergence of a solution without the participation of working memory. 

At the same time, however, the question arises as to why the body should 

be considered non-algorithmic. After all, the algorithm, in the most general sense, 

should describe all continuous processes. 



On the other hand, non-algorithmicity (if it exists) simply means that this 

knowledge already exists. 

To address the questions of understanding and consciousness, Koch and 

Tononi (2008) took a neurobiological point of view. Studying the activity of the 

brain with the help of a tomograph, the authors singled out the neuronal correlates 

of consciousness. The authors proposed an informational theory of consciousness, 

the main provisions of which are the following two statements: 

1. Consciousness is a high informativity. Every private conscious state 

excludes a large number of other states. 

2. Conscious information is unified. 

If you present different images to a computer, the understanding of what is 

depicted or what looks wrong would allow a computer to pass a Turing test. 

However, according to the authors, the creation of a universal system that 

understands what is in front of it is impossible. However, progress in solving 

complex problems is attributed to the construction of computers that are organized 

similarly to the mammalian brain. 

It remains unclear, however, how the proposed postulates help to 

understand how understanding arises in the event that a human meets an unknown 

image. How does the complexity of the brain and the large number of connections 

between neurons lead to understanding? 

 

7.  Quantum intelligence and quantum metalanguage 

A number of authors associate the solution of a number of problems of the 

intellect with quantum mechanics. These approaches can be divided into main 

motivations, i.e., reasons that, in the opinion of the authors, make the application of 

quantum mechanics to the thinking process promising. In my opinion, the most 

significant motivations are as follows. 



One of the important areas of the application of quantum mechanics to 

cognitive sciences is decision making. This is an actively developing field that 

includes many researchers. The main motivation here is the decision, with the help 

of quantum mechanics, of some paradoxes of decision making. Such paradoxes, 

for example, include the Ellsberg paradox, which is a violation of the sure-thing 

principle and others. In the opinion of different authors, it is quantum mechanics 

that makes it possible to explain decision making in situations that the classical 

probability theory cannot explain. The most important property of quantum 

probabilities is that, in addition to the usual classical probabilities, they contain 

interference terms related to the wave character of quantum particles. 

In the frame of «quantum-like consciousness» Khrennikov (2010a) 

proposed, that the brain performs “computation-thinking” by using algorithms of 

quantum computing in the complex Hilbert space of mental quantum-like models. 

Evolution of mental wave function in the frame of this model can be described 

with the Schrodinger equation: 

ˆd
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 - is the operator of «mental energy», â and  b̂ - are two 

self-adjoint operators,  and 
 ˆV a

- is the «mental potential». As will be shown 

below, the Hilbert space can be represented in the form of a subspace in which the 

metalanguage operates. 

The application of Bohmian version of quantum mechanics to the processes 

of thinking is caused by the fact, that the pilot wave (on the concept of which 

Bohm's quantum mechanics is largely based) can, to some extent, be considered 

the simplest form of consciousness. For example, Pylkkanen (2016) believes that 



some properties of quantum systems can help to understand the properties of 

consciousness. The pilot wave carries active information and, in a sense, informs 

the particle about its surroundings. According to the author, consciousness exists 

only because there is a higher level of information. This last remark can be 

attributed not only to consciousness but also to thinking in general. In the works of 

Khrennikov, mental information fields were defined in the “information space”, 

reflecting a hierarchic tree-like representation of information by cognitive systems 

(mathematically, such mental trees can be represented with p-adic numbers 

(Khrennikov 2010b)). 

A second quantization method is also promising for quantum-like modeling 

in which particle creation and annihilation operators are used (Bagarello 2012, 

Bagarello et al. 2017). In this case, these operators can be used to create or destroy 

the simplest information units of decision making, such as "Yes" or "No". 

The application of quantum mechanics to thinking can also be justified by 

the fact that the brain itself, on the basis of which thought is realized, functions as a 

quantum system. In previous works (Melkikh 2014b, Melkikh and Meijer 2018), it 

was shown that the work of neurons at the molecular level is contradictory. This 

phenomenon is reflected in the fact that the accuracy of the biochemical reactions 

of protein-ligand and protein-protein interactions, as well as the accuracy of the 

folding of proteins and DNA (RNA), cannot be justified by the presence of short-

range potentials between biologically important molecules. In this case, the 

entangled (in the classical sense) and the inoperable states of macromolecules 

should be realized with an overwhelming probability. In particular, this will lead to 

the impossibility of the efficient transport of substances both inside neurons and 

through their membranes. This phenomenon (formulated by the authors as a 

generalized Levinthal’s paradox) requires a fundamental revision in the 

understanding of the mechanisms of the work of cells at the molecular level. To 

solve the paradox, the authors proposed a quantum model of intermolecular 

interactions. The most significant point of this model is the long-range interaction, 



which ensures the efficient operation of intracellular molecular machines. Here, the 

motivation for using quantum mechanics is based on the fact that classical 

mechanics cannot, in principle, provide such an interaction. 

As noted above, the motivation of Penrose's proposals on the application of 

quantum mechanics is that he connects mental processes with the collapse of the 

wave function, which, in the author's opinion, is caused by the effects of gravity. 

Moreover, non-computability plays an important role. According to the author, the 

ability to understand cannot be formalized with the help of a particular set of rules. 

The author comes to the conclusion that “for the establishment of mathematical 

truth, mathematicians do not apply knowingly justified algorithms.” 

Is it possible to conclude from this idea that understanding in principle is 

not formalizable? Such a conclusion cannot be made, since unprovability occurs 

only within a certain language. There is no reason to say that the language we use 

is closed and unchanged. 

Hence, what follows is a natural logical conclusion that the concept of truth 

(adequacy in the broad sense) in relation to certain constructions is innate. This 

concept is just as axiomatic as the rules of the language within which there is a 

discussion (modeling) of truth. 

As for quantum gravity, its necessity for the operation of microtubules in 

neurons can hardly be justified, since the effects of quantum gravity should appear 

at much higher energies. Nevertheless, the concept of microtubules and the 

cytoskeleton as quantum systems is currently developing (see, for example, Cocchi 

et al, 2017). 

The ideas of Zizzi can, in a sense, be considered a continuation of Penrose's 

ideas. According to Zizzi (2012), there are three ways of expressing mental 

activity: classical computer, quantum computer and a non-computational way. In 

the author's opinion, we do not realize quantum calculations, but classical ones are 

conscious. The third way is connected with meta-knowledge - intuition, which is 



controlled by the quantum metalanguage. It is this language that distinguishes 

people from computers. People, in addition to logical rules, have meta-logical 

rules. We can agree with this, but it is necessary to clarify that these rules do not 

fundamentally differ from logical rules; they are simply hidden and manifest only 

in certain situations. Such properties of metalanguage will be discussed below in 

more details. 

According to the author (Zizzi 2012), a mathematician can uncomputably 

assert what Gödel's theorem considers unprovable. We note that Gödel's theorem 

addresses a closed logical system into which the hidden metalanguage is not 

included. Within the framework of the metalanguage, these statements could be 

completely provable. Although there certainly will be other unprovable statements, 

this is another matter. 

In the author's opinion, the quantum metalanguage governs our own 

language. When a mathematician claims the correctness of some statement G(F), 

in reality, he operates at the level of the quantum metalanguage. 

As will be shown in the next section, the concept of quantum metalanguage 

is very important and can be used to solve the problem of knowledge acquisition 

and to create a new paradigm of thinking in general. 

 

8.  Discussion. Quantum metalanguage and innate programs of 

behavior 

Discussion the problems of knowledge acquisition in the context of various 

sciences (epistemology, philosophy of science, neurocomputing and others) leads 

to the need for a new cognitive synthesis. This synthesis must be connected with a 

new answer to the following basic question of cognitive sciences: where does the 

knowledge come from? To this end, it is necessary to take advantage of all that has 

been achieved in various cognitive sciences. Previously, for example, Griffits 

(2015) proposed to consider the active use of computers and calculations in the 



cognitive sciences, which occurs at present as a new cognitive revolution. 

However, such use alone does not provide new answers to fundamental questions 

but only helps to speed up the experiments. The analysis of artificial intelligence, 

conducted in Section 5, shows that the computer does not provide new knowledge. 

To more accurately define the concepts related to thinking, the adequacy of 

human behavior has been suggested (Melkikh 2014a). Indeed, we can verify only 

experimentally whether a human has realized something new and whether he could 

create a new abstract concept. In this case, the only way to verify this is to 

determine how the behavior of a human (an arbitrary intellectual system) has 

changed as a result of understanding. If this behavior has become, to some extent, 

more adequate than before understanding, then we can say that understanding 

really occurred. If no adequacy is observed, then there is no way to verify that 

understanding really occurred. 

If we consider an intellectual system in the form of an automaton with 

given properties, then the adequacy of its behavior can be estimated, for example, 

by the gain that this system obtains from interaction with the environment. The 

following model of behavior is proposed (Melkikh 2014a): 

      1 , 1t t s t     

    f t F t . 

Where, φ describes internal states of automaton, f is the action of 

automaton, t is the discrete time and s is the input variable. 

The definition of knowledge acquisition of in accordance with the 

proposed model is follows: 

Definition. This will be understood by the acquisition of knowledge of such 

a process, followed by the emergence of an environmentally unrecognized image 

c* not including preparation of the systems and only to provide the system with 



information regarding the external environment through receptors, which results in 

a behavior of the system that is estimated to increase the expectation of winning at 

some preset value of W0: 

  0*W c W . 

The assignment of the image to unrecognized objects indicates that there is 

no prior information about the object. 

The hypothesis of the congenital behavior of animals is proposed (Melkikh 

2014), the main provisions of which are the following: 

1. Innate programs of behavior are formed on the basis of genes during 

ontogenesis (morphogenesis). 

The formation process of these programs is not obvious because, for 

example, in an organism, there is a clear discrepancy between the information 

contained in the genes and the complexity of the nervous system. However, the 

modeling of morphogenesis is a separate problem and is not considered in this 

paper. 

2. As a result of receptors receiving signals from the environment, 

remembering and recognition occur. 

Memory of the time or spatial distribution of the signals used by the 

organism to run a priori behavior programs is the most adequate for the observed 

situation. If recognition is not possible (the appeared image is new), then either no 

a priori programs start or the programs that correspond most closely (on the tree of 

recognition) to the recognized image are run. 

3. At the presence of uncertainty in the environment or errors in receptors 

aprioristic programs run only after several repetitions. 

Repetition can reduce random error in the registration signal. This situation 

is largely similar to the decrease of random errors in measurements. 



4. Another response to the uncertainty of the environment is a trial and 

error method, which allows the system to select the most appropriate 

aprioristic behavior program. 

5. An interaction with another organism that transfers the experience of 

one organism with the environment (see items 2-4) to another is only 

possible if both the organisms have the same a priori programs relating 

to the present situation. 

6. All programs of animal behavior are innate. For technical systems, they 

are aprioristic programs. 

Thus, animal learning caused by uncertainty in the environment is the 

method of choice for the a priori (innate) program, which is most appropriate for a 

certain situation. The new behavior program cannot be formed on the basis of an 

experience or interaction with other animals. This hypothesis may well be 

extended to the process of human cognition. 

Thus, to learn is to choose one of the a priori programs most appropriate to 

a given case. To quickly understand the situation (insight) means to immediately 

choose such a program. To learn by trial and error means to not immediately find 

such a program because of interference, environmental uncertainty, etc. 

To solve the problem of knowledge acquisition, consider the concept of 

metalanguage introduced by Tarski. It is a higher-level language that works with 

other languages. Some operations can be used to generate new languages from 

given languages. At the same time, operations such as concatenation, intersection, 

association and others are defined. 

Suppose that such operations are defined on our language. These operations 

are defined in some higher-level language L  (Fig. 4). 



 

Fig. 4 

Language L2 (our) is constantly replenished due to the innate quantum 

language L1 according to the rules of language L . Thus, we can build the 

following logical chain, modeling thinking as follows: 

Changes in the environment → registration by the receptors → recognition 

with the L2 language → if not → recognition with the metalanguage → operations 

on the L2 language involving the image, such as generalization and the formation 

of new concepts → the introduction of a new character symbol in the L2 language 

(together with possible operations) → new knowledge. This sequence of actions 

can also be presented in the form of a flowchart (Fig. 5): 



 

Fig. 5. 

 

Quantum mechanics represents the natural conditions for the formulation of 

the metalanguage, the discreteness of energy and states. Within the framework of 

quantum mechanics of particles, the following set acts as a language: 



 ˆ, H
. 

That is, the Hamiltonian can be considered as a set of operations on wave 

functions. However, generally speaking, to construct a quantum model of an 

arbitrary system, it is necessary to consider the quantization of the fields. 

The metalanguage operates in a more general space, part of which is the 

Hilbert space of wave functions. The elements of the metalanguage can also be the 

creation and annihilation operators applied to various elements of the language. 

With the help of such operators in the language, new concepts are selected from a 

list of a priori existing concepts. 

For effective functioning, a quantum metalanguage must have a large 

information capacity in an orders of magnitude greater than the capacity of any of 

the known languages. At first glance, such a requirement contradicts the 

comparatively small informational capacity of genes. Indeed, genomes of higher 

organisms contain only about a gigabyte of information, which is clearly 

insufficient to manage such complex behavior as human behavior. This 

contradiction can be solved on the basis of the assumption that the interaction 

between biologically important molecules (including neurons) is essentially a 

quantum effect (Melkikh 2014b, Melkikh and Meijer 2018). As noted above, the 

essence of the proposed model is that long-range potentials act between 

biologically important molecules, which allow the modulation of their movement. 

This additional interaction allows us to increase the possible information capacity 

of molecules by orders of magnitude, as well as cells in general, which is not 

related directly to genes. Experiments were proposed to test this hypothesis in 

previous works (Melkikh 2014b, Melkikh and Meijer 2018). 

Within the framework of the new concept of innate behavior, we can 

answer the following Kant’s questions: 

- How are synthetic judgments possible a priori? 



- How is human freedom possible? 

The first question can be answered as follows: a priori judgments are the 

consequences of the innate quantum metalanguage, which is adequate a priori to 

the existing reality. 

The second question can be answered in such a way that what is considered 

free will is the result of unconscious metalanguage algorithms. If the basis of 

thinking is quantum mechanics, then this naturally explains the existence of 

probabilistic judgments (which seem to be arbitrariness and freedom). As is 

known, the outcome of an experiment with quantum particles can only be predicted 

probabilistically. This property, with respect to operations over elements of the 

language, can be treated as freedom of will. 

Consider how a human learns a new language within the framework of the 

concept of innate behavior. From this point of view, the presence of Chomsky's 

proposed Language Acquisition Device is quite natural. This is nothing other than 

an innate program of behavior. Moreover, it can be said that this is not a 

mechanism for extracting the language but rather a mechanism for including an 

innate program that implements the language. This applies, of course, not only to 

the native language of any person but to any language in general. However, we 

know that the ability to learn languages is different among all people. The 

mechanism of this phenomenon within the framework of the metalanguage can be 

thought of as the following: all people have the same congenital programs, 

however, they start differently in the development process. This process is largely 

determined by the environment, which leads to the fact that some programs are not 

run at all. In this sense, the programs under which we operate are operational 

programs. Most of the programs are hidden and not operational. They cannot 

manifest themselves in the course of a human life. 

Let the child in the appropriate situations (surrounding objects) be given 

words that correspond to these subjects. After numerous repetitions, the innate 

programs for working with these words are run. At the same time, the 



understanding of words is present a priori. The further generalization of concepts 

(words) occurs in a similar way; there is recognition of the fact that a given set of 

words refers to a particular (a priori) set that is characterized by some generalized 

concept. After recognition, the conclusion is drawn that the concept is formed. All 

programs of work with such an abstract concept exist a priori (they are innate). 

Thus, if one considers Chomsky's approach to language acquisition from 

this point of view, then it can be called more correct than, for example, the 

cognitive approach or the theory theory, since the latter contains many vague 

terms, and the mechanisms for mastering new terms, understanding new concepts 

and so on are contradictory. However, Chomsky's approach also needs further 

development. If only a part of the language is innate, it is not clear where the 

remaining parts originate. In this case, it is logically consistent that the whole 

language is innate. This does not mean that the language in this case acts as a kind 

of rigid structure. A natural property of algorithms and computer programs written 

on their basis are operators of the following type: 

if А then В, else 

if С then D, else 

if E then F else…. 

Thus, completely innate behavior allows to flexibly react to changes in the 

environment, including forming (which means choosing from ready-made 

concepts) various new concepts in different life situations. 

Let us consider a simple example. How can a child create the concept of a 

square as a result of communication with the outside world? Let the child be 

surrounded by the following objects (Fig. 6): 



 

Fig. 6. 

At some initial stages of its development, generalization simply does not 

occur, and the child perceives these objects as different. However, in the future, the 

following occurs: the recognition of all these objects includes the congenital 

concept of a "square". That is, with their recognition, the child, in addition to other 

qualities of objects, recognizes the objects as belonging to a set of "squares". This 

set, with all its properties, is also innate, and the information and programs are 

written on an innate quantum metalanguage. At a certain stage (when a real need 

arises), these congenital programs are translated from the quantum metalanguage 

into the child's language. The concept of "square" thus begins to work, i.е. the 

child begins to use this concept in life and in the future to more adequately address 

emerging problems. 

A number of experiments to test the innate behavioral programs were 

proposed earlier (Melkikh 2014a, 2014b, Melkikh and Khrennikov 2015). Planning 



and conducting such experiments is closely related to a precise understanding of 

what is innate (see, section 4). 

In the end, only such experiments (or the like) can finally resolve the 

question of whether cognitive effects are quantum or quantum-like. 

Thus, the new paradigm of cognitive sciences can be formulated in the 

form of the following provisions: 

1. All human behavior is innate. It seems to us that, as a result of learning 

and gaining experience, we can create new concepts. However, we are just 

beginning to apply the concepts that were already available. 

2. Bayesian learning is entirely based on good hypotheses. These 

hypotheses are good because they are part of innate programs of behavior that are 

adequate a priori to the surrounding world. 

3. When we say that we understand something, it means that it seems new, 

recognized, and it corresponds to some innate standard. 

4. Congenital behavior programs allow behavior to be flexible through 

multiple types of structures of “if ... then ...”. 

 

Conclusion 

A systems analysis of the processes of understanding, generalizing and 

knowledge acquisition leads to the conclusion that these processes are 

contradictory. However, their detailed consideration is fundamentally important for 

understanding intelligence as such. The problem of the Chinese Searle room is 

considered, and it is shown that this problem can be naturally solved on the basis 

of the innate knowledge of the language. In this sense (meaning precisely the 

acquisition of knowledge, not feelings), a human is no different from a computer. 



To solve these problems and paradoxes, a quantum metalanguage model is 

proposed that provides cognitive function only at the expense of innate behavioral 

programs. As a result, it is possible to explain consistently the mechanisms of the 

emergence of new concepts and generalizations. A priori correct judgments are 

possible because they are correct innately. As a result of training, only a choice of 

appropriate behavioral programs occurs, in which all new concepts, 

generalizations, and so on are already included a priori. The fact that artificial 

intelligence systems work successfully is due to only one thing - a significantly 

increased speed of pattern recognition. This speed now allows the solving of many 

tasks online. However, this does not mean that such intellectual systems are able to 

acquire knowledge or understand something new. 

 

Appendix 1 

Connection between information, obtained in experiment and the 

number of measurements 

In a previous paper (Melkikh, 2014a), the trial and error method as a series 

of experiments was considered, which will result in finding an adequate algorithm 

or the absence of an adequate algorithm. In information theory, the degree of 

uncertainty of experiment β with possible outcomes and their probabilities p1, 

p2…pk is usually characterized by the Shannon entropy: 
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If this value equals zero, the outcome of the experiment is known in 

advance. Any measurement or supervision α prior to experiment β can limit the 

quantity of possible experimental outcomes and thus reduce a degree of its 

uncertainty. The fact that the realization of experiment α reduces a degree of 

uncertainty in experiment β is reflected through the conditional entropy H(β/α) of 

experiment β under the condition of α being less than (more precisely, less than or 



equal to) the initial entropy of the same experiment. Thus, if experiment β does not 

depend on α, the realization of α does not reduce the entropy of β: 

   /H H   , 

If the result of α completely predetermines an outcome of β, the entropy 

decreases to zero:  / 0H    . Thus, the difference 

     , /I H H       

specifies how much the realization of experiment α reduces the uncertainty 

of experiment β. This difference represents the quantity of information in 

experiment β, which is contained in experiment α. Here, information (according to 

the information theory) is understood as the uncertainty that is removed when a 

message is received. 

There is an interrelation between the number of experiments and the 

information received as a result of each experiment. For example, if the experience 

is found with an adequate algorithm, each experience corresponds to receiving one 

bit of information. Suppose that the system has n degrees of freedom, each of 

which may be in one of m states. If, at the beginning of the experiment, there is no 

a priori information to find an adequate algorithm, then we obtain the average 

number of steps required to achieve it, which is equal to the total number of 

possible states: 

nN m . 

If n is sufficiently large, then the number of steps is exponentially large, 

even for m = 2. 

The number of steps corresponds to Shannon entropy: 

2 2log logH N n m  . 

In this case, each bit of a priori information reduces the search area in half. 
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Figure captions 

Fig.1. Cognition at the intersection of different sciences. 

Fig.2. The pattern recognition and decision-making scheme.  

Fig.3. The contradictory nature of knowledge acquisition and learning 

automaton. 

Fig.4. Higher-level language. 

Fig.5. Logical chain, modeling thinking. 

Fig.6. Different objects and concept of a square. 

 

 


