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ABSTRACT. In this paper, by using Uhlenbeck-Yau’s continuity method, we
prove that the existence of approximation a-Hermitian-Einstein strusture and
the a-semi-stability on I4-holomorphic bundles over compact bi-Hermitian
manifolds are equivalent.

1. INTRODUCTION

A bi-Hermitian structure on a 2n-dimensional manifold M consists of a triple
(g,14+,1_), where g is a Riemannian metric on M and I are integrable complex
structures on M that are both orthogonal with respect to g. Let (M, g,1+,1_) be
a bi-Hermitian manifold. Let E be a holomorphic vector bundle on M endowed
with two holomorphic structures 0, and 0_ with respect to the complex structures
I, and I_, respectively. Suppose H is a Hermitian metric on E. Let FI be
the curvatures of the Chern connections V4 on E associated to the Hermitian
metric H and the holomorphic structures d... Motivated by Hitchin [16], Hu et al.
[18] introduced the following a-Hermitian-Einstein equation, where a € (0,1) and
AeR:

(1.1) V-T(aFT AW+ (1 —a)FP Aw™™ ) = (n— 1)1\ - Idg - dvoly,

where wy (+,+) = g(I+-,-) are the fundamental 2-forms of g. Once I = I_, (1.1)
reduces to the Hermitian-Einstein equation. A Hermitian metric H on E is called
a-Hermitian-Einstein if it satisfies (1.1).

Recently, the existence of Hermitian-Einstein metrics on holomorphic vector
bundles has attracted a lot of attention. The celebrated Donaldson-Uhlernbeck-
Yau theorem states that holomorphic vector bundles over compact Kéhler mani-
folds admit Hermitian-Einstein metrics if they are polystable. It was proved by
Narasimhan and Seshadri [32] for compact Riemann surface, by Donaldson [10] for
algebraic manifolds and by Uhlenbeck and Yau [40] for general compact Kéhler
manifolds. The inverse problem is that a holomorphic bundle admitting such a
metric must be polystable (that is a direct sum of stable bundles with the same
slope). And the problem was solved by Kobayashi [21] and Liibke [28] independent-
ly. This is the so-called Hitchin-Kobayashi correspondence for holomorphic vector
bundles over compact Kéahler manifolds. There are many interesting generalized
Hitchin-Kobayashi correspondences (see the References [1, 2, 3, 4, 6, 15, 17, 18, 20,
23, 24, 25, 26, 31, 33, 42, etc.).
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An Ii-holomorphic bundle (F,d;,0_) over a compact bi-Hermitian manifold
(M,g,1;,1_) is said to be admitting an approximate o-Hermitian-Einstein struc-
ture, if for every € > 0, there exists a Hermitian metric H. on E such that

(1.2) m]\z}xh/—l(aFff/\wi_l—k(l—a)Fflf Aw™™ ) —(n—1)I\-Tdg -dvoly|y. < e.

Kobayashi [22] introduced this notion for holomorphic vector bundles (that is,
I, =1_). He proved that over a compact Kéhler manifold, a holomorphic vector
bundle admitting such a structure must be semi-stable. Bruzzo and Grana Otero [5]
generalized the above result to Higgs bundles. When X is projective, Kobayashi [22]
solved the inverse part that a semi-stable holomorphic vector bundle must admit
an approximate Hermitian-Einstein structure and conjectured that this should be
true for general Kéhler manifolds. This was confirmed in [9, 19, 24]. Later, Nie and
Zhang [33] proved that the existence of approximation Hermitian-Einstein strusture
and the semi-stability on Higgs bundles over compact Gauduchon manifolds are
equivalent. Just very recently, in [42] Zhang et al. showed this is also true for a
class of non-compact Gauduchon manifolds.

In this paper, we are interested in the existence of approximate a-Hermitian-
Einstein structures on Ii-holomorphic bundles over compact bi-Hermitian mani-
folds. In fact, we prove that:

Theorem 1.1. Let (M,g,I.,1_) be a compact bi-Hermitian manifold such that g

is Gauduchon with respect to both I, and I_, and dvoly = % Suppose (E,0,,0_)
is an IL-holomorphic bundle on M. Then (E,01,0-) is a-semi-stable if and only
if it admits an approximate a-Hermitian-FEinstein structure.

Remark 1.2. Hu et al. [18] introduced the a—stability on Ii-holomorphic vector
bundles and proved that the Ii-holomorphic vector bundles admit a-Hermitian-
Einstein metrics iff they are a-polystable. We will use Uhlenbeck-Yau’s continuity
method [40, 29] to prove Theorem 1.1. We can not use the techniques in [18]
directly, since the stability condition is not strictly inequality. To fix this, we will
adapt Li-Zhang’s arguments [24] and Nie-Zhang’s arguments [33] to our settings.

Our motivation for studying such bundles also comes from generalized complex
geometry. In [13], Gualtieri introduced generalized holomorphic bundles, which are
analogues of holomorphic vector bundles on complex manifolds. For instance, on a
complex manifold M, a generalized holomorphic bundle corresponds to a co-Higgs
bundle, which is a holomorphic vector bundle E' on M together with a holomorphic
map ¢ : E — E ® Ty for which ¢ A ¢ = 0. Some of the general properties of
co-Higgs bundles were studied by Hitchin in [16] and moduli spaces of stable co-
Higgs bundles were studied in [34, 35, 36, 41], etc. Given the relationship between
the generalized complex geometry and the bi-Hermitian geometry, one can study
generalized holomorphic bundles in terms of I-holomorphic bundles. Recall that
any J-holomorphic bundle over generalized Kéahler manifold (M,J,J’) induces an
It-holomorphic bundle on (M, g,I;,I_) (see [18, Proposition 2.11]). We will not
list the definitions on generalized complex geometry (see [13, 18] for more details).
Therefore, combining Theorem 1.1, we have the following result.

Corollary 1.3. Let (M, J,]’) be a compact generalized Kahler manifold with non-
empty boundary M whose associated bi-Hermitian structure (g, Iy, I_) is such

that g is Gauduchon with respect to both I and I_, and dvol, = % Moreover,
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suppose (E,dy,0_) is a J-holomorphic bundle on M. Then (E,d,,0_) is a-semi-
stable if and only if it admits an approximate a-Hermitian-Einstein structure.

Remark 1.4. If M is real 4k-dimensional and the generalized Kéhler structure (J, J’)
is even, then its associated bi-Hermitian structure (g, I;,I_) is such that dvoly, =
wi
nl’

(see Remark 6.14 in [12]). In this case, one can rewrite (1.2) as
max |a\/71A+Ff5 +(1—a)V=1A_FH — X\ .1dg|g. <e,
where AL are the contraction operators associated to w., respectively.

2. PRELIMINARY

Suppose (E,d4,0_) is an Ii-holomorphic bundle on a bi-Hermitian manifold
(M,g,14,I_). Let us fix the I+-holomorphic structures 0y and a Hermitian met-
ric Hy on (E,0,,0_). For any positive-definite Hermitian endomorphism h €
Herm™ (E, Hy), let H := Hyh be the Hermitian metric defined by

(s, )i == (hs, t) m,,
for s,t € C®(E). Let VI = 05 + 0¥ be the corresponding Chern connections.
The relation between 9 and 95° is given by

(2.1) o = o + n1oton.
Then the curvatures with respect to V# and V° satisfy
(2:2) F{f = F{'* + 0. (h™'0°h).

We assumed that the Riemannian metric g to be Gauduchon with respect to both
Iy and I_, ie. ddiw? " =0, where di. = I odo I are the twisted differentials
with respect to Iy. Then we can associate to E two degrees deg, (E) and two
slopes p+(E) in the standard way [29, Definition 1.4.1]:

\/2?/]\4 tr(FL) A (:{1)!

deg,. (E)

e (B) = rank(E)
Note that deg, (E) are independent of the choice of H on E because the curvatures
of Chern connections corresponding to different Hermitian metrics on F differ by
04+ 0+-exact forms. Given these degrees and slopes, we now define the a-degree

deg, (F) and a-slope i (F) as [18, Definition 3.3]:

deg,(E) = adeg, (E) + (1 — a)deg_(E)

deg, (F) =

and

and
fa(E) = api (E) + (1 — a)u—(E),
respectively.
Furthermore, we define coherent subsheaves of (E,d,,0_) as follows:

Definition 2.1. [18, Definition 3.4] Let F. be coherent subsheaves of (E,d.),
respectively. The pair F := (F,, F_) is said to be a coherent subsheaf of (E,d,,0_)
if there exist analytic subsets S+ and S_ of (M, I.) and (M, I_), respectively, such
that

(1)S := 5S4 US_ has codimension at least 2;
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(2)Filan s, are locally free and Fy|ans = F_|an\s-

The a-slope of F is given by

deg (F4)
rank(F)

deg_(F-)

o (F) =« Sank(F)

+(1-a)

Let us now recall the a-stability for (E,d,,0_).

Definition 2.2. [18, Definition 3.5] An Ii-holomorphic structure (94,0_) on E
is called a-stable (resp., a-semistable), if, for any proper coherent subsheaf F of
(E,04,04+), we have

tra(F) < pra(E)(resp., pa(F) < pa(E)).

By using Uhlenbeck-Yau’s continuity method [40], we will show that the a-semi-
stability implies approximation a-Hermitian-Einstein structure.
Set

Herm(E, H) = {n € End(E)|n*" =n}
and
Herm™ (E, H) = {p € Herm(E, H)|p is positive definite}.

Fixing a proper background Hermitian metric Hy on F, we consider the following
perturbed equation

(2.3) L.(he) :=®(H.)+¢elogh. =0, ¢€(0,1],

where
O(H.) = av/=IA F{* + (1 —a)V=IA_F — X\ 1dg

and h, = H(lea S Herm“'(E7 Hy). Tt is obvious that h. and log h. are self adjoint
with respect to Hy and H.. By the results in [18], (2.3) is solvable for all € € (0, 1].
Using the assumption of a-semi-stability, we can show that

(2.4) ;1_13(1)5 max |log he|p, = 0.

This implies that max |®(H.)|m. converges to zero as e — 0.

By an appropriate conformal change, we can assume that H satisfies
tr(®(Hp)) = 0.

In fact, let Hy = e® H|,, where H| is an arbitrary metric and ¢ is a smooth function
satisfying

(2.5) Djap =~

where

and
Ag, = V-1A10:0;.
Since [, tr(®(H}))w™ = 0, equation (2.5) is solvable by [29, Corollary 1.2.9].
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Fix a background Hermitian metric Hy satisfying tr(®(Hy)) = 0. From (2.3),
we have

0 =trLe (he)
:tI‘(I)(Ho) + tr <Oé\/ —1A+5+ (h;lﬁfo hs))

+ tr((l — a)\/le,g,(hglﬁfIOhs)) + etr(log he)
=Aj ,(trlog he) + etr(log he).
Using the maximum principle, we have
det h, = 1.
The following lemma was proved in [18].
Lemma 2.3. If h. € Herm™ (E, Hy) satisfies L.(h.) = 0 for some ¢ > 0, then it
holds that

(i) 385, ([loghe|?,) +elloghe|?, < |®(Ho)lm,|log he|my;
(ii) m = maxys | log he|m, < % -maxps |P(Ho)|m,;

(iii) m < C-(|| loghe ||r2 +maxys |P(Hp)|m, ), where C only depends on g and
H,.

3. PROOF OF THEOREM 1.1

Before giving the detailed proof, we first recall some notations. Fixing n €
Herm(E, H), from [29, p. 237], we can choose an open dense subset W C X sat-
isfying at each © € W there exist an open neighbourhood U of z, a local unitary
basis {e,}!_; with respect to H and functions {\, € C*°(U,R)}’_; such that

a=1

1) =Y Xaly) - ealy) ® e (y)
a=1
for all y € U, where {e®}!_, denotes the dual basis of E*. Let ¢ € C*(R,R),

¥ e C®R xR,R) and A = Z;bzl Afe, ® €® € End(E), here we also assume
rank(F) = r. We denote ¢(n) and ¥(n)(A) by

e y) = e(Aa)eq @ e

and
(3.1) T(n)(A)(y) = T(Aa, Ao) Afea @ €.
Proposition 3.1. If h. € Herm™ (E, Hy) solves (2.3) for some & > 0, then it holds
wTL _ _ wn
/ (D (Ho)s.) % + a/ (W (52) (D4 52), B 52) 1y
M n: M n:

(3.2) n
Wi

+(1=0) [ (W)0-5).05)m, 5 = —elscl

where s. = log h. and

v )
muw>{ i
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Proof. By simple calculations,
(3.3)

[ (s(@()s0) — x(@(i)s.)
_ /M (VTN (B0 he), 52)m, + (1= @)(VTA_D_(hT1050he), 52, ).

According to [33, Proposition 3.1], we have

(3.4) Aj(ﬁAiéi(hglathE),se>Ho =/ <\I’(35)(5ﬂ:35)75ﬂ:35>H0~

M
Combining (3.3) and (3.4), we complete the proof. O

We first prove the following.

Theorem 3.2. If (E,0,0_) is a-semi-stable, then it admits an approzvimate o-
Hermitian- Finstein structure.

Proof. Let {he}o<e<1 be the solutions of equation (2.3) with the background metric
Hy. Then

loghl: =1 [ (@(H),logha)u. -
eJu n!

Case 1, There exists a constant C; > 0 such that || log h||z2 < C; < +00. From

Lemma 2.3, we have
mﬁx|®(HE)|HE =c- mj\:}x|logh€\H€ <eC-(Cr1+ m]\%x|<b(Ho)|HU).

Then it follows that max |®(H.)|g. — 0ase — 0.

Case 2, lim||logh.| > — oc.

e—=0" =

Claim If (F,04,0-) is a-semi-stable, then it holds
(3.5) ggr%n}\f/:[mx@(HsﬂHa :Eli_rf(l)srl}\f}xHoghs\HE =0.

We will follow Simpson’s argument ([37, Proposition 5.3]) to show that if the
claim does not hold, there exists a subsheaf contradicting the a-semi-stability.

If the claim does not hold, then there exist § > 0 and a subsequence ¢; — 0, i —
400, such that

|| log he,|| 2 — 400

and

(3.6) max |®(H,,)

H., =& m]‘z/}x|log h511|Hsi > 4.

Setting s., = loghe,, l; = ||s¢,||r2 and ue, = s, /l;, it follows that tr(u.,) = 0

and ||ue,||z2 = 1. Then combining (3.6) with Lemma 2.3, we have
(3.7) li > Z— —max|®(Ho)|m,
and
C
(3.8) m]\%x|u€i| < 7(11 +m]\%x|<1>(H0)|HO) < Oy < +o00.

Step 1 We will show that [|u., ||z are uniformly bounded. Since [|uc,|[z2 = 1, we
only need to prove ||du,

12 are uniformly bounded.
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By Proposition 3.1, for each h.,, it holds
w - - wh
[ et 5 ol [ @) @) D by Sy
_ _ wh
=l [ () @), 0, = el
M n.
Substituting (3.7) into (3.9), we have

n

) wl = ~ w
o+ [ e ol [ @l @) Do b, o
(3.10) C M n! M n!
(= ali [ (W(liue)(O-ue,),0-ue,) 1y > < e max | ®(Ho)|m,,
M n: M
Consider the function
l, T =1;
(I, ly) = § oo i
=z T #y.

From (3.8), we may assume that (z,y) € [-Cs, C3] x [-C3, Cs]. It is easy to check
that

(x—y)™t x>y

3.11 10 (1, ly) —
(3.11) (I, ly) {%0’ r<y.

increases monotonically as | — +oo. Let ¢ € C*°(R x R,RT) satisfying ((z,y) <
(r —y)~! whenever x > y. From (3.10), (3.11) and the arguments in [37, Lemma
5.4], we have

wh

) s = =
G+ [ ulemey S o [ ()0, 00,

(3.12) .
+(1=0) [ (Gl 0. 0oty S < e ()

for ¢ > 0. In particular, we take ((z,y) = ﬁ It is obvious that when (x,y) €
[-C3, Cs] x [-Cq,Cs] and x > y, ﬁ < —L__ This implies that

x—y"
i wi 1 2) 2 5 2 (Wi
c ® e o . 1— a)d_u, |2, ) 2=
(3.13) C +/Mtr{ (Ho)ue,}— +/M 50 (@19 ua iy + (L= l0-ue, [77,) 3

S = m]\%X|(I)(H0)|HU
for ¢ > 0. Then we have

_ _ wh
[ @+ (0= )0 )5 < 303 g (o), Vol O, ).

Thus, u., are bounded in L?. Then we can choose a subsequence {ue,, } such that
U, — Uss Weakly in L2, still denoted by {u., } for simplicity. Noting that L3 < L2

we have
1= [ el = [ el
M M

This indicates that ||uso||rz = 1 and us, is non-trivial.
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Using (3.12) and following a similar discussion as in [37, Lemma 5.4], it holds

wi

) Wl ) )
(3.14) C + /M tr{@(Ho)uoo}H + oz/M@(uoo)(aJruoo)’ 3+Uoo>HOH

wi

+1=0) [ () O-u). 0ty Sy <0

Step 2 Using Uhlenbeck and Yau’s trick from [40], we construct a subsheaf which
contradicts the a-semi-stability of F.

From (3.14) and the technique in [37, Lemma 5.5], we conclude that the eigen-
values of uy, are constant almost everywhere. Let p; < po < --- < py be the
distinct eigenvalues of uq. The facts that tr(ues) = tr(ue,) = 0 and |Juso|/z2 =1
force 2 <1 <r. For each p; (1 < j <1—1), we construct a function

Pj:R—R

such that

1 < u;
Pj: ) T My,
Oa xZHj—H-

Setting m; = Pj(uoo), from [18], we have

(i) mj € LE;
(i) 2 = m, = m37%;
(iii) (IdE — ﬂj)aiﬂ'j =0.
By Uhlenbeck and Yau’s regularity statement of L?-subbundle [40], {r; 2;11
determine | — 1 subsheaves of E. Set E; = m;(E). Since tr(uc) = 0 and ue =

JY IdE - Zi_:ll (Mj-i—l - ,uj)ﬂ'j, it holds

-1

(3.15) purank(E) =Y (11 — py)rank(E;).
j=1

Construct
-1

v = deg,(E)— Z(Mj+1 — ) deg,, (Ej).
j=1

On one hand, substituting (3.15) into v,

-1
(3.16) v="> (41 — pj)rank(E;) <(::§EE§)) B fﬁﬁgj;) '

On the other hand, from [18], we have the following Chern-Weil formula

wn

1 ~ _
BI7) dega(B) = 5- [ (n(mK(H0) - aldymfiy, — (1= )l0smf, ) 5.
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where K(Ho) = av/=1AL F + (1 — a)y/—IA_F™°. Substituting (3.17) into v,

2m = [ ()
M

-1
e =) { [ ek = [ (aldumlh, + 0 @)dim ) |
= M M
-1

=/ tr(MzIdE = (i1 — Mj)ﬂj)’CHo
M =
-1

+ ) (g1 — ) /M (04\5+7Tj|§10 +(1- 04)|5+7Tj|12r{0)

-1
- [ () + [ (501 = 1) AP ) O ). D
-1 B B
[ o= (S 501 1) AP (1) 0-). D)

where the function dP; : R x R — R is defined by
Pj(z) — P;(y)

; T F Y
dPj(z,y) = -y
/ —
Pi(z), r=y.
By simple calculation, if p, # us,
-1
(3.18) > (i1 = ) (AP (ttas i) = |pta — | ™"
j=1

Since tr(uso) = 0, by (3.14) and the same arguments in [24, p. 793-794], it holds
that

)
1 2y < ——.
(3.19) W< -5

Combining (3.16) with (3.19), we have

-1

deg, (E) _ deg,(Ej)
Z it = pgJrank(E}) (rank(E) rank(E;) <0,
J=1

which contradicts the a-semi-stability of E. O

Theorem 3.3. If (E,0,,0_) admits an approzimate a-Hermitian-Einstein struc-
ture, then it is a-semi-stable.

Proof. Let F be any saturated subsheaf with rank p. Then by [22, p. 119], APE ®
det F~! admits an approximation a-Hermitian-Einstein structure with the constant
2pm
= 2 (4a(E) — palF)).
T () = 10 )

The injective map det(F) — APE induced by the inclusion F — E, defines a
section of APE ® det F~!, say s. By construction, s is an I+-holomorphic section
with respect to the induced Ii-holomorphic structures. By the vanishing theorem

(3.20)



10
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i.e.

(1]
(2]
(3]
(4]
(5]
(6]
(7]
(8]

[9]

[10]
[11]
[12)
[13]
[14]
[15]
[16]
17)
i
[19)
120]
21]
[22)
23]
[24]
[25)
[26]

27]

PAN ZHANG

Theorem 5.4], we have A > 0. This together with (3.20) gives 1 (F) < p1a(E),
(E,04+,0-) is a-semi-stable.
(]
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