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Abstract 

 
     We introduce and suggest to research a special class of optimization pro- 

blems,  wherein an objective function is a real-valued complex variables  fu- 

nction and constraints comprising complex-valued complex variables functi- 

ons.                     
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1.  Introduction 

 

                    Its well-known that an optimization problem can be represented in the 

following way: 

Given:         a function  f:  G → R from some set G to the  real numbers  

Sought:              an element x0∈ G such that f(x0)  ≤   f(x) for all  x∈ G 

("minimization") or such that f(x0)  ≥  f(x) for all x∈ G   ("maximizati-

on").   

 

    Typically, G is some subset of the Euclidean space R
n
, specified by  a set 

of constraints and the function f is called an objective function, target funct- 

on.  

 

    The case, when G is some subset of two-dimensional complex plane    and  

target function f:  C → R  is real-valued complex variable function is not  inv- 

estigated yet.  Accordingly, G is supposed to be specified by constraints, co-  

comprising complex variable functions.   In more general models, function f:  

C
n 
 → R  is  supposed to be defined on the multi-dimensional complex space.  
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    The purpose of this paper is to introduce and describe such     optimization 

problems of  f:  C → R  and  f:  C
n 

 → R  target functions over subsets of C and  

C
n
,   since complex analysis proves a powerful tool for solving a wide variety  

of problems in fundamental science and engineering - the analysis of electri- 

cal circuits, hydro- and aerodynamics, and so on(see, e.g., Campos [3], Jam- 

es [6], Kreyszig [7]). 
   

2.  Overview 

 
    Thus, the history of mathematical optimization or mathematical program- 

ming is the history of optimization of functions that do not depend on comp- 

lex arguments, under constraints that do not include functions that depend on 

complex arguments as well. 

 

    In fact, mathematical optimization or mathematical programming problem 

has the form:  

 

                    minimize f(x), 

 

                    subject to gi(x) ≤ 0, i = 1, ... , m, 

 

                    x ∈ R
n
,  f:  R

n
 → R,  gi: R

n
 → R, n ∈ N, m ∈ N. 

 

    The following are the major subfields of the Optimization Theory: 

 

convex programming, non-linear programming, mixed-integer programming 

quadratic programming, combinatorial optimization, stochastic optimization, 

etc (see, e.g.,    Bertsekas [1], Boyd and Vandenberghe [2], Hemmecke et al. 

[5], Sierksma and Zwols [10]). 

 

     A convex optimization problem is one in which the objective and    const- 

raint functions are convex.      

 

     Linear programming, where both:    objective and constraints are linear is 

the important example of convex optimization: 

 

                     minimize c
T
x subject to 

 

                         Ax  ≤  b, x ≥ 0, 
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                     x = (xj),  xj ∈ R,  

                     c = (cj),  cj ∈ R, 

                     A = (aij), aij ∈ R,  

                     b = (bi), bi ∈ R,  

                     1  ≤  i  ≤  m, 1  ≤  j  ≤  n, m ∈ N, n ∈ N.             

 

     Non-linear optimization or non-linear programming is the term to  descri-  

be an optimization problem when the objective or constraint functions aren't 

linear but not known to be convex.  

 

      Quadratic programming allows the objective function to have    quadratic  

terms, while constraints must be specified by linear equalities or inequalities: 

 

                     minimize 0.5x
T
Qx +  c

T
x subject to 

 

                     Ax  ≤  b, 

 

                     x = (xj),  xj ∈ R,  

                     c = (cj),  cj ∈ R, 

 

                     Q = (qij), qij∈ R,  

 

                     1 ≤  i  ≤  n, 1 ≤  j  ≤  n, 

 

                     A = (aij), aij ∈ R,  

 

                     b = (bi), bi ∈ R,  

 

                     1  ≤  i  ≤  m, 1  ≤  j  ≤  n, m ∈ N, n ∈ N.             

 

 

        A general model of mixed-integer programming could be written as: 
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                    minimize f(x), 

 

                    subject to gi(x) ≤ 0, i = 1, ..., m, 

 

                    x ∈ R
k  

x Z
s
,  f:  R

k  
x Z

s
 → R,  gi:  R

k  
x Z

s
  →  R, 

 

where f and gi are arbitrary non-linear functions. 

 

         Ones again, all existing mathematical programming models do not co- 

mprise any complex numbers or functions. 
 

     

3.  Complex Programming  
 

    Let | z | be the absolute value of a complex number z =  Re(z) + Im(z)i = a   

+ ib, a ∈ R, b ∈ R, i
2
 = -1 and arg(z) the argument of z: the principal value. 

(See, e.g., Scheidemann [8], Shaw [9]). 

 

     Let us introduce and demonstrate optimization problems, defined in terms 

of complex numbers and functions. 

 

Example 1.   

 

cp1 = { minimize | z |  subject to   | z |  ≥ 1 }, argmin(cp1) = {z: | z | = 1}. 

 

Example 2.   

 

cp2 = { minimize  – Im(z)   subject to   | z |  ≤  1 }, argmin(cp2) = i. 

 

Example 3.   

 

cp3 =  { minimize  Re(z)   subject to   | z |  ≤  1 }, argmin(cp3) =  -1. 

 

Example 4.   

 

cp4 =  { maximize  | z |  subject to  0 ≤ Re(z)  ≤  1, 0 ≤ Im(z)  ≤  1 },       

            argmax(cp4) =  1 + i. 

 

Example 5.   
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cp5 = { maximize Re(z) + Im(z)  subject to 0 ≤  Re(z)  ≤ 1, 0 ≤  Im(z)  ≤  1 }, 

          argmax(cp5) =  1 + i. 

 

Example 6.   

 

 

cp6 = { maximize Re(z) + Im(z)  subject to 0 ≤  Re(z)  ≤ 1, 0 ≤  Im(z)  ≤  1, 

           arg(z) = 0 }, argmax(cp6) = 1. 

 

Example 7.   

 

cp7 = { maximize Im(z)  subject to  0 ≤  Re(z)  ≤ 1, 0 ≤  Im(z)  ≤  1,  

           Im(z) ≤ Re(z) }, argmax(cp7) = 1 + i. 

 

Example 8.   

 

cp8 = { maximize | z |  subject to  Im(z) ≥ Re
2
(z), Re(z) ≥ Im

2
(z) }, 

           argmax(cp8) = 1 + i. 

 

Example 9.  "Polynomial" Complex Programming. 

 

cp9 = { maximize | cn z
n
+ ...  + c1z  |  subject to 

 

             | a1nz
n
 + ...  + a11z + a10 |  ≤  b1, 

               ...             ...              ... 

             | amnz
n 
+ ... + am1z + am0 |  ≤ bm, z ∈ C,  aij ∈ C,  bi ∈ R, cj ∈ C,  

 

             1  ≤  i  ≤  m, 0  ≤  j  ≤  n, n ∈ N,  m ∈ N }. 

 

(More sophisticated examples would contain rational meromorphic complex 

functions).  

 

Example 10.  Several complex variables. 

 

cp10 =  { maximize | z1 + z2 |  subject to  | z1 | ≤ 1, | z2 | ≤ 1 }. 

 

Example 11.   
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cp11 = { maximize | z1 + z2 |  subject to  | z1 | ≤ 1, | z2 | ≤ 1, arg(z1z2)  ≤ π/4 }. 

 

Example 12.  "Linear" Complex Programming. 

 

cp12 = { maximize | c1z1 + ...  + cnzn |  subject to 

 

             | a11z1  + ... + a1nzn |  ≤ b1, 

               ...             ...              ... 

             | am1z1  + ... + amnzn |  ≤ bm, zj∈ C,  aij∈ C,  bi ∈ R, cj ∈ C,  

 

             1  ≤  i  ≤  m, 1  ≤  j  ≤  n, n ∈ N,  m ∈ N }. 

 

Example 13.   

 

cp13 = { maximize  | z1 + ...  + zn |  subject to 

 

             Re( a11z1  + ... + a1nzn )  ≤ b1, 

               ...             ...              ... 

             Re( am1z1  + ... + amnzn )  ≤ bm,  

 

 

             Im( a11z1  + ... + a1nzn )  ≤ c1, 

               ...             ...              ... 

             Im( am1z1  + ... + amnzn )  ≤ cm, 

 

             zj∈ C,  aij ∈ C,  bi ∈ R, ci ∈ R, 1  ≤  i  ≤  m, 1  ≤  j  ≤  n,  

 

             n ∈ N, m ∈ N }. 

 

Example 14.   
 

cp14 = { maximize  | z1 + ...  + zn |  subject to 

 

             arg( a11z1  + ... + a1nzn )  ≤ b1, 

               ...             ...              ... 

             arg( am1z1  + ... + amnzn )  ≤ bm,  

 

 

             Im( a11z1  + ... + a1nzn )  ≤ c1, 
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               ...             ...              ... 

             Im( am1z1  + ... + amnzn )  ≤ cm, 

 

             zj∈ C,  aij ∈ C, bi ∈ R, ci ∈ R, 1  ≤  i  ≤  m, 1  ≤  j  ≤  n,  

 

             n ∈ N, m ∈ N }. 

 

Example 15.   

 

cp15 = { maximize  arg(z1 ... zn)  subject to 

 

             Re( a11z1  + ... + a1nzn )  ≤ b1, 

               ...             ...              ... 

             Re( am1z1  + ... + amnzn )  ≤ bm,  

 

 

             Im( a11z1  + ... + a1nzn )  ≤ c1, 

               ...             ...              ... 

             Im( am1z1  + ... + amnzn )  ≤ cm, 

 

             arg(zj)  ≤ dj,  

 

             zj∈ C,  aij ∈ C, bi ∈ R, ci ∈ R, dj ∈ R, 1  ≤  i  ≤  m, 1  ≤  j  ≤  n,  

 

             n ∈ N, m ∈ N }. 

 

Example 16. "Quadratic" Complex Programming.  

 

cp16 = { maximize | z1
2
 + ...  + zn

2
 - iz1z2 |  subject to 

 

             | a11z1  + ... + a1nzn |  ≤ b1, 

               ...             ...              ... 

             | am1z1  + ... + amnzn |  ≤ bm,  

 

             zj∈ C,  aij ∈ C,  bi ∈ R,  

 

             1  ≤  i  ≤  m, 1  ≤  j  ≤  n, n ∈ N,  m ∈ N }. 

 

Example 17. "Non-Linear" Complex Programming. 
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cp17 = { maximize | e
z
  + sin(πz) |  subject to 

 

             | cos(πz) |  ≤ a, 0 ≤  Re(z)  ≤ 1, 0 ≤  Im(z)  ≤ 1,  

 

             z ∈ C, a ∈ R }. 

 

Example 18. "Integer" Complex Programming(Over Gaussian Integers). 

 

cp18 = { maximize | z1
4
 + ...  + zn

4
 |  subject to 

 

             | a11z1  + ... + a1nzn |  ≤ b1, 

               ...             ...              ... 

             | am1z1  + ... + amnzn |  ≤ bm,   

 

             zj∈ C ∩ Z
2
,  aij ∈ C, bi ∈ R,  

 

             1  ≤  i  ≤  m, 1  ≤  j ≤  n, n ∈ N, m ∈ N }. 

 

(Similarly for "Mixed-Integer" Complex Programming). 

 

4.  Open Problems 

 

     Despite such optimization problems actually could be translated and con- 

sidered in terms of optimization problems over the Euclidean space,    it may  

be not always so "easy" task(complexity problems, etc). 

 

    That is why, it would be preferable to develop specific, "direct" methods 

for complex programming problems using complex analysis. 

 

    The corresponding complexity evaluations for the Complex Programming 

problems would be developed as well:  for example in binary encoded length 

of the coefficients(see, e.g., Cormen et al. [4], Hemmecke et al. [5]).  

 

     Complex Programming ideas may be useful for similar approaches in ot- 

her subfields of the Optimization Theory, e.g., in Optimal Control Theory. 

 

5.  Conclusions 
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     We unveiled a new class of optimization problems,  comprising complex 

numbers and complex functions in their targets and constraints. 
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