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Abstract
p is prime.The article describes the new Abelian groups of type p =
4k + 1 and p = 4k − 1, for which a theorem similar to the Fermat’s
little theorem applies. The multiplicative group (Z/pZ)∗ in some sense
similar to the Abelian group of type p = 4k + 1. Abelian group of type
p = 4k − 1 is a different structure compared to group (Z/pZ)∗. This
fact is used for the primality test of integer N = 4k− 1. The primality
test was verified up to N = 264.

1 Introduction

The main goal of the article is to present new Abelian groups. One of
the applications of these groups is a primality test. The main inspira-
tion comes from [8].
In the article we use the language of elementary terms. Proofs are
informal, but we believe it can be translated into a formal language.
The main part of the article is based on an operation which is a group
operation and the elements of the group are the extended equivalent
classes - unordered pairs.
When defining a group, we only work with primes of the p = 4k− 1 or
p = 4k + 1 type.
For each type of prime, Abelian groups have a different formula for the
number of elements.



For both types of groups,there is valid the analogous theorems of the
Fermat’s little theorem.

2 Equivalence Classes and Groups

An equivalence class [7] is defined as a subset of the form {x ∈ X :
xRa}, where a is an element of X and the notation ”xRy” is used to
mean that there is an equivalence relation between x and y. It can
be shown that any two equivalence classes are either equal or disjoint,
hence the collection of equivalence classes forms a partition of X. For
all a, b ∈ X, we have aRb if and only if a and b belong to the same
equivalence class.
A set of class representatives is a subset of X which contains exactly
one element from each equivalence class.

For prime p and a, b integers, consider the congruence

a ≡ b (mod p) aRb (1)

then the equivalence classes are the sets {...,−2p,−p, 0, p, 2p, ...},
{..., 1− 2p, 1− p, 1, 1 + p, 1 + 2p, ...} etc. The standard class represen-
tatives are taken to be {{0}, {1}, {2}, ..., {p− 1}}.

a 6= 0 , b 6= 0 and a, b are class representatives. If

ab ≡ −1 (mod p) aSb (2)

then
(a + k1p)(b + k2p) ≡ −1 (mod p)

Relations R (1) is reflexive, symmetric, and transitive. They are gen-
erally called equivalence relations. Relation S (2) for prime p = 4k− 1
is only symmetric except for 0. Relation S (2) for prime p = 4k + 1 is
only symmetric except for 0 and two other members.

Definition 1. According to [6]

T = R ∪ S (3)

Definition 2.
0 · ∞ ≡ −1 (mod p) (4)
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Definition 3. n ∈ N and n 6= 0

0 =
n

∞
and ∞ =

n

0
(5)

Lemma 1. p is prime. x2 ≡ −1 (mod p) if and only if p ≡ 1 (mod 4)

Relation T is equivalence.
When p = 4k − 1 then the T relation generates p+1

2
class representa-

tives,who have 2 members.
When p = 4k + 1 then the T relation generates p−1

2
class representa-

tives,who have 2 members.

Example 1. Prime p = 4k + 1.For p = 17, the class representatives of
the T relation are as follows.

{0,∞}, {1, 16}, {2, 8}, {3, 11}, {4}, {5, 10}, {6, 14}, {7, 12}, {9, 15}, {13}
If is x = 4 or x = 13 then is valid x2 ≡ −1( mod p).

Example 2. Prime p = 4k− 1.For p = 19, the class representatives of
the T relation are as follows.

{0,∞}, {1, 18}, {2, 9}, {3, 6}, {4, 14}, {5, 15}, {7, 8}, {10, 17}, {11, 12}, {13, 16}
We have a prime p and a binary operation

x3 ≡
x1x2 − 1

x1 + x2

(mod p) (6)

This operation (6) is a group operation. The elements of the group are
the extended equivalence classes that generate T , they are unordered
pair. This operation (6) is commutative because the addition and mul-
tiplication is commutative.
Closure:
1.

x1x2 − 1

x1 + x2

= x3

2.
−1
x1

−1
x2
− 1

−1
x1

+ −1
x2

=
1−x1x2

x1x2

−x1−x2

x1x2

=
x1x2 − 1

x1 + x2

= x3

3.
−1
x1
x2 − 1

−1
x1

+ x2

=
−x2−x1

x1

−1+x1x2

x1

=
−(x1 + x2)

x1x2 − 1
=
−1

x3

x3,
−1
x3

belong to the same equivalence class.
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Associativity:
By direct insertion into binary operation, we can easily prove that the
operation is associative
Identity element:{0,∞}
1.
0 is the identity element.

x3 ≡
0 · x2 − 1

0 + x2

(mod p) x2x3 ≡ −1 (mod p)

x2, x3 belong to the same equivalence class.
2.
∞ is the identity element.

x2 ≡
x1x2 − 1

x1 + x2

=
x2 − 1

x1

1 + x2

x1

=
x2 − 1

∞
1 + x2

∞
(mod p)

Inverse element:
If x1x2 ≡ 1 (mod p) or x1 + x2 ≡ 0 (mod p) then x1, x2 are inverse
elements.
1.
If x1x2 ≡ 1 (mod p) then

0 ≡ 1− 1

x1 + x2

(mod p)

2.
If x1 + x2 ≡ 0 (mod p) then

∞ ≡ x1x2 − 1

0
(mod p)

Explicitness:

gcd(x1 + x2, p) 6= p and gcd(x1 + x3, p) 6= p

x1x2 − 1

x1 + x2

≡ x1x3 − 1

x1 + x3

( mod p) (7)

x2
1(x2 − x3) ≡ −(x2 − x3) ( mod p) (8)

For prime p = 4k − 1 equation (8) has a solution if equality

x2 − x3 ≡ 0 ( mod p)
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For prime p = 4k + 1 equation (8) has a solution if equality

x2 − x3 ≡ 0 ( mod p) or x2
1 ≡ −1 ( mod p)

If x2
1 ≡ −1 (mod p) then x1 is not elements of the group.

Lemma 2. If p = 4k − 1 then group has p+1
2

elements.

Lemma 3. If p = 4k + 1 then group has p−1
2

elements.

The groups are Abelian groups and they are cyclic.
Every infinite cyclic group is isomorphic to the additive group of Z, the
integers.
Every finite cyclic group of order n is isomorphic to the additive group
of Z/nZ, the integers modulo n [17, 18, 19].

arcCot(x1) + arcCot(x2) = arcCot

(
x1x2 − 1

x1 + x2

)
(9)

When we know the prime factorization of the numbers p+1
2

and p−1
2

then we can easily find the generator of the given cyclic groups.

In a group G with operation ∗ (x1x2−1
x1+x2

) we will use:

ax =

x terms︷ ︸︸ ︷
a ∗ a ∗ · · · ∗ a ∗ a

Theorem 1. If p is prime p = 4k − 1 then

a(p+1)/2 = identity element (10)

Theorem 2. If p is prime p = 4k + 1 then

a(p−1)/2 = identity element (11)

In equations (10),(11), the group operation is x3 ≡ x1x2−1
x1+x2

(mod p).

Theorems (1), (2) are analogous to the Fermat’s little theorem.
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Example 3. Element {1, p− 1} has order 2.

It is valid: 1 · (p− 1)( mod p) ≡ −1

a. 1·1−1
1+1

= 0 Identity element.

b. 1·(p−1)−1
1+(p−1) = p−2

0
=∞ Identity element.

c. (p−1)·1−1
(p−1)+1

= p−2
0

=∞ Identity element.

d. (p−1)·(p−1)−1
(p−1)+(p−1) = p2−2·p+1−1

2·(p−1) = 0
2·(p−1) Identity element.

Algorithm 1 group operation(x1, x2, N)

xs← x1 + x2

gc← gcd(xs,N) {gcd(0, N) = N}
if gc 6= 1 then

if gc=N then
return (0)

else
return (-gc)

end if
end if
return (((x1 · x2 − 1)/xs)( mod N))

Note 1. If we want to avoid using ∞ in the (6) we can implement a
group operation in the following way:

x1 ∗ x2 =

{
0 if x1 + x2 = 0
x1x2−1
x1+x2

if x1 + x2 6= 0
(12)

By introducing this operation, the identity element would not be an
unordered pair.
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3 Primality test

Conjecture 1. Let N = 4k−1 be a natural number. N is prime if and
only if

2N−1 ≡ 1 (mod N) (13)

and

2(N+1)/2 = identity element (14)

In equation (13), the group operation is x3 ≡ x1x2 (mod N)
In equation (14), the group operation is x3 ≡ x1x2−1

x1+x2
(mod N)

1 2 3 4 5

fer 4k + 1 4k − 1 fer ∩ 4k + 1 fer ∩ 4k − 1

341 8321 527 8321 ∅
561 24769 1679 721801
645 25481 2627 2491637
1105 38081 3599 2977217
1387 40501 3827 4181921
1729 64261 18527 6749021
1905 84001 20099 7232321
2047 164833 32239 7306261
2465 172789 32399 9863461
2701 195841 37127 10386241
2821 214369 39059 20234341
3277 257581 48827 35851037
4033 270293 60959 37439201
4369 280393 79799 37469701
4371 289301 80999 43363601
4681 349441 83711 44314129
5461 404801 97663 46517857
6601 416641 100127 47253781
7957 496801 115639 47903701
8321 518977 117739 48551161
8481 544321 130591 51283501
8911 561601 155819 60696661

Table 1: In column one are a Fermat pseudoprime to the bases 2
In column two are a 4k + 1 pseudoprime to the bases 2

In column three are a 4k − 1 pseudoprime to the bases 2
In column four is intersection fer ∩ 4k + 1
In column five is intersection fer ∩ 4k − 1
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In [11] compressed text files present data on all base-2 Fermat pseudo-
primes below 264. The hypothesis to primality test was verified up to
N = 264.

The computational complexity of the primality test can be divided into
two parts:
1. The computational complexity of an exponentiation, which is the
same for each group [5].
2. The computational complexity of a group operation ∗.
Computational complexity of mathematical operations [13, 14].

We do not compare the primality tests, there is rich literature - for
example [1, 3, 4, 5, 15, 16].

One of the possible ideas of proof may be based on the fact that the
4k − 1 and (Z/pZ)∗ groups differ in structure, the number of elements
is different.
Next, we looking for necessary condition that the number N = 4k − 1
is a Fermat pseudoprime.
Next, we looking for necessary condition that the number N = 4k − 1
is a 4k − 1 pseudoprime.
Finally, we show that these two necessary conditions can not be met at
all together. Intersection of a Fermat pseudoprime and 4k − 1 pseudo-
prime is empty set.
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4 Conclusion

Group operation (6) can be generalized as follows:

x3 ≡
x1x2 + c

x1 + x2

(mod p) (15)

Next, there is the table (2) for the constant c [12]. From of the table
is easy to see when the group will have p−1

2
or p+1

2
elements. A similar

hypothesis can be proposed to testing many numbers.

We came on the group operation x1x2−1
x1+x2

when we worked with spe-

cial binary quadratic forms [2] [9].

Another application of the new Abelian groups is in use for integer
factorization and for public-key cryptosystems[9].

In appendix A are a powers of an element of a group of p = 17 and
p = 19.

In appendix B is the code for the power in language pari/gp.

In the future, we will publish a more detailed article.

c c is a quadratic residue mod p if and only
if

c c is a quadratic residue mod p if and
only if

1 every prime p -1 p ≡ 1(mod 4)
2 p ≡ 1, 7(mod 8) -2 p ≡ 1, 3(mod 8)
3 p ≡ 1, 11(mod 12) -3 p ≡ 1(mod 3)
4 every prime p -4 p ≡ 1(mod 4)
5 p ≡ 1, 4(mod 5) -5 p ≡ 1, 3, 7, 9(mod 20)
6 p ≡ 1, 5, 19, 23(mod 24) -6 p ≡ 1, 5, 7, 11(mod 24)
7 p ≡ 1, 3, 9, 19, 25, 27(mod 28) -7 p ≡ 1, 2, 4(mod 7)
8 p ≡ 1, 7(mod 8) -8 p ≡ 1, 3(mod 8)
9 every prime p -9 p ≡ 1(mod 4)
10 p ≡ 1, 3, 9, 13, 27, 31, 37, 39(mod 40) -10 p ≡ 1, 7, 9, 11, 13, 19, 23, 37(mod 40)
11 p ≡ 1, 5, 7, 9, 19, 25, 35, 37, 39, 43(mod 44) -11 p ≡ 1, 3, 4, 5, 9(mod 11)
12 p ≡ 1, 11(mod 12) -12 p ≡ 1(mod 3)

Table 2: Quadratic residue
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A Integral Powers of an Element of a Group

The group operation is x3 ≡ x1x2−1
x1+x2

(mod p)

x and −1
x

are equals elements.

p = 17 a = 2 order of a is 8
exponent x = aexponent −1

x

1 2 8
2 5 10
3 11 3
4 16 1
5 14 6
6 7 12
7 9 15
8 0
9 8 2
10 10 5
11 3 11
12 1 16
13 6 14
14 12 7
15 15 9
16 0
17 8 2
18 5 10
19 11 3
20 16 1
21 14 6
22 7 12
23 9 15
24 0

Table 3: p=17,a=2

10



p = 19 a = 3 order of a is 10
exponent x = aexponent −1

x

1 3 6
2 14 4
3 8 7
4 9 2
5 18 1
6 17 10
7 12 11
8 15 5
9 13 16
10 0
11 6 3
12 4 14
13 7 8
14 2 9
15 1 18
16 10 17
17 11 12
18 5 15
19 16 13
20 0
21 6 3
22 14 4
23 8 7
24 9 2
25 18 1
26 17 10
27 12 11
28 15 5
29 13 16
30 0

p = 19 a = 2 order of a is 5
exponent x = aexponent −1

x

1 2 9
2 15 5
3 14 4
4 10 17
5 0
6 9 2
7 5 15
8 4 14
9 17 10
10 0
11 9 2
12 15 5
13 14 4
14 10 17
15 0
16 9 2
17 5 15
18 4 14
19 17 10
20 0
21 9 2
22 15 5
23 14 4
24 10 17
25 0

Table 4: p=19,a=2,a=3
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B Code

This algorithm will compute the exponentiation and language pari/gp
[10] is used.

power(N,y,ex)={
local(i,bex,y0);

bex=binary(ex);
y0=y;
for(i=2,matsize(bex)[2],

if(bex[i],
y=group_operation(y,y,N);
if(y<0,return(y));
y=group_operation(y,y0,N);
if(y<0,return(y));

,
y=group_operation(y,y,N);
if(y<0,return(y));

);
);
return(y);

}

References

[1] Daniel J. Bernstein, Distinguishing Prime Numbers from Composite
numbers: The State of the Art in 2004 Department of Mathemat-
ics, Statistics, and Computer Science (M/C 249), The University of
Illinois at Chicago, Chicago, IL 60607 7045

[2] J. Buchmann and U. Vollmer, Binary quadratic forms: An algo-
rithmic approach, Algorithms and Computation in Mathematics,
vol. 20, Springer-Verlag, Berlin, 2007.

[3] Richard Crandall, Carl Pomerance, Prime Numbers - A Computa-
tional Perspective c© 2005 Springer Science+Business Media, Inc.

[4] Paulo Ribenboim The Little Book of Bigger Primes, Second Edition,
c© 2004 Springer-Verlag New York, Inc.

12



[5] Song Y. Yan, Number Theory for Computing Springer-Verlag Berlin
Heidelberg (2000)

[6] https://alexandrianlibers.files.wordpress.com/2009/10/
20377572-tarski-introduction-to-logic-and-to-the-methodology-of-the-deductive-sciences-4ed-oup-1994-1-copy.
pdf

[7] http://mathworld.wolfram.com/EquivalenceClass.html

[8] https://www.math.u-bordeaux.fr/~hecohen/rabinslides.dvi

[9] http://www.cryptoslovak.sk/

[10] https://pari.math.u-bordeaux.fr/

[11] http://www.cecm.sfu.ca/Pseudoprimes/index-2-to-64.html

[12] https://en.wikipedia.org/wiki/Quadratic_residue

[13] https://en.wikipedia.org/wiki/Computational_
complexity_of_mathematical_operations

[14] https://en.wikipedia.org/wiki/Greatest_common_divisor

[15] https://en.wikipedia.org/wiki/Primality_test

[16] https://en.wikipedia.org/wiki/Baillie-PSW_primality_
test

[17] https://en.wikipedia.org/wiki/Cyclic_group

[18] http://dogschool.tripod.com/cyclic.html

[19] https://en.wikipedia.org/wiki/Subgroups_of_cyclic_
groups

13

https://alexandrianlibers.files.wordpress.com/2009/10/20377572-tarski-introduction-to-logic-and-to-the-methodology-of-the-deductive-sciences-4ed-oup-1994-1-copy.pdf
https://alexandrianlibers.files.wordpress.com/2009/10/20377572-tarski-introduction-to-logic-and-to-the-methodology-of-the-deductive-sciences-4ed-oup-1994-1-copy.pdf
https://alexandrianlibers.files.wordpress.com/2009/10/20377572-tarski-introduction-to-logic-and-to-the-methodology-of-the-deductive-sciences-4ed-oup-1994-1-copy.pdf
http://mathworld.wolfram.com/EquivalenceClass.html
https://www.math.u-bordeaux.fr/~hecohen/rabinslides.dvi
http://www.cryptoslovak.sk/
https://pari.math.u-bordeaux.fr/
http://www.cecm.sfu.ca/Pseudoprimes/index-2-to-64.html
https://en.wikipedia.org/wiki/Quadratic_residue
https://en.wikipedia.org/wiki/Computational_complexity_of_mathematical_operations
https://en.wikipedia.org/wiki/Computational_complexity_of_mathematical_operations
https://en.wikipedia.org/wiki/Greatest_common_divisor
https://en.wikipedia.org/wiki/Primality_test
https://en.wikipedia.org/wiki/Baillie-PSW_primality_test
https://en.wikipedia.org/wiki/Baillie-PSW_primality_test
https://en.wikipedia.org/wiki/Cyclic_group
http://dogschool.tripod.com/cyclic.html
https://en.wikipedia.org/wiki/Subgroups_of_cyclic_groups
https://en.wikipedia.org/wiki/Subgroups_of_cyclic_groups

	Introduction
	Equivalence Classes and Groups
	Primality test
	Conclusion
	Integral Powers of an Element of a Group
	Code

