NEW ABELIAN GROUPS FOR PRIMES OF TYPE $4K - 1$ AND $4K + 1$.

Anna Považanová

Faculty of Informatics and Information Technologies, SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA, Slovakia anna.povazanova@stuba.sk

Ivo Považan

to May 2012 Institute of Informatics, SLOVAK ACADEMY OF SCIENCES, Bratislava, Slovakia i.povazan@upcmail.sk

Abstract

p is prime. The article describes the new Abelian groups of type $p =$ $4k + 1$ and $p = 4k - 1$, for which a theorem similar to the Fermat's little theorem applies. The multiplicative group $(Z/pZ)^*$ in some sense similar to the Abelian group of type $p = 4k + 1$. Abelian group of type $p = 4k - 1$ is a different structure compared to group $(Z/pZ)^*$. This fact is used for the primality test of integer $N = 4k - 1$. The primality test was verified up to $N = 2^{64}$.

1 Introduction

The main goal of the article is to present new Abelian groups. One of the applications of these groups is a primality test. The main inspiration comes from [\[8\]](#page-12-0).

In the article we use the language of elementary terms. Proofs are informal, but we believe it can be translated into a formal language. The main part of the article is based on an operation which is a group operation and the elements of the group are the extended equivalent classes - unordered pairs.

When defining a group, we only work with primes of the $p = 4k - 1$ or $p = 4k + 1$ type.

For each type of prime, Abelian groups have a different formula for the number of elements.

For both types of groups,there is valid the analogous theorems of the Fermat's little theorem.

2 Equivalence Classes and Groups

An equivalence class [\[7\]](#page-12-1) is defined as a subset of the form $\{x \in X :$ xRa , where a is an element of X and the notation " xRy " is used to mean that there is an equivalence relation between x and y . It can be shown that any two equivalence classes are either equal or disjoint, hence the collection of equivalence classes forms a partition of X. For all $a, b \in X$, we have aRb if and only if a and b belong to the same equivalence class.

A set of class representatives is a subset of X which contains exactly one element from each equivalence class.

For prime p and a, b integers, consider the congruence

$$
a \equiv b \pmod{p} \qquad aRb \tag{1}
$$

then the equivalence classes are the sets $\{\ldots, -2p, -p, 0, p, 2p, \ldots\},\$ ${..., 1-2p, 1-p, 1, 1+p, 1+2p,...}$ etc. The standard class representatives are taken to be $\{\{0\},\{1\},\{2\},\ldots,\{p-1\}\}.$

 $a \neq 0$, $b \neq 0$ and a, b are class representatives. If

$$
ab \equiv -1 \pmod{p} \qquad aSb \tag{2}
$$

then

$$
(a + k_1 p)(b + k_2 p) \equiv -1 \pmod{p}
$$

Relations $R(1)$ $R(1)$ is reflexive, symmetric, and transitive. They are generally called equivalence relations. Relation $S(2)$ $S(2)$ for prime $p = 4k - 1$ is only symmetric except for 0. Relation $S(2)$ $S(2)$ for prime $p = 4k + 1$ is only symmetric except for 0 and two other members.

Definition 1. According to $[6]$

$$
T = R \cup S \tag{3}
$$

Definition 2.

$$
0 \cdot \infty \equiv -1 \pmod{p} \tag{4}
$$

Definition 3. $n \in \mathbb{N}$ and $n \neq 0$

$$
0 = \frac{n}{\infty} \quad and \quad \infty = \frac{n}{0} \tag{5}
$$

Lemma 1. *p* is prime. $x^2 \equiv -1 \pmod{p}$ if and only if $p \equiv 1 \pmod{4}$

Relation T is equivalence.

When $p = 4k - 1$ then the T relation generates $\frac{p+1}{2}$ class representatives,who have 2 members. When $p = 4k + 1$ then the T relation generates $\frac{p-1}{2}$ class representa-

tives,who have 2 members.

Example 1. Prime $p = 4k + 1$. For $p = 17$, the class representatives of the T relation are as follows.

$$
\{0, \infty\}, \{1, 16\}, \{2, 8\}, \{3, 11\}, \{4\}, \{5, 10\}, \{6, 14\}, \{7, 12\}, \{9, 15\}, \{13\}
$$

If $is x = 4$ or $x = 13$ then is valid $x^2 \equiv -1 \pmod{p}$.

Example 2. Prime $p = 4k - 1$. For $p = 19$, the class representatives of the T relation are as follows.

 $\{0, \infty\}, \{1, 18\}, \{2, 9\}, \{3, 6\}, \{4, 14\}, \{5, 15\}, \{7, 8\}, \{10, 17\}, \{11, 12\}, \{13, 16\}$

We have a prime p and a binary operation

$$
x_3 \equiv \frac{x_1 x_2 - 1}{x_1 + x_2} \; (\text{mod } p) \tag{6}
$$

This operation [\(6\)](#page-2-0) is a group operation. The elements of the group are the extended equivalence classes that generate T , they are unordered pair. This operation [\(6\)](#page-2-0) is commutative because the addition and multiplication is commutative.

Closure:

1.

$$
\frac{x_1 x_2 - 1}{x_1 + x_2} = x_3
$$

2.

$$
\frac{\frac{-1}{x_1}\frac{-1}{x_2} - 1}{\frac{-1}{x_1} + \frac{-1}{x_2}} = \frac{\frac{1 - x_1 x_2}{x_1 x_2}}{\frac{-x_1 - x_2}{x_1 x_2}} = \frac{x_1 x_2 - 1}{x_1 + x_2} = x_3
$$

3.

$$
\frac{\frac{-1}{x_1}x_2 - 1}{\frac{-1}{x_1} + x_2} = \frac{\frac{-x_2 - x_1}{x_1}}{\frac{-1 + x_1 x_2}{x_1}} = \frac{-(x_1 + x_2)}{x_1 x_2 - 1} = \frac{-1}{x_3}
$$

 $x_3, \frac{-1}{x_3}$ $\frac{-1}{x^3}$ belong to the same equivalence class.

Associativity:

By direct insertion into binary operation, we can easily prove that the operation is associative

Identity element: $\{0, \infty\}$

1.

0 is the identity element.

$$
x_3 \equiv \frac{0 \cdot x_2 - 1}{0 + x_2} \pmod{p} \quad x_2 x_3 \equiv -1 \pmod{p}
$$

 x_2, x_3 belong to the same equivalence class. 2. ∞ is the identity element.

$$
x_2 \equiv \frac{x_1 x_2 - 1}{x_1 + x_2} = \frac{x_2 - \frac{1}{x_1}}{1 + \frac{x_2}{x_1}} = \frac{x_2 - \frac{1}{\infty}}{1 + \frac{x_2}{\infty}} \pmod{p}
$$

Inverse element:

If $x_1x_2 \equiv 1 \pmod{p}$ or $x_1 + x_2 \equiv 0 \pmod{p}$ then x_1, x_2 are inverse elements.

1.

If $x_1x_2 \equiv 1 \pmod{p}$ then

$$
0 \equiv \frac{1-1}{x_1+x_2} \; (\text{mod } p)
$$

2.

If $x_1 + x_2 \equiv 0 \pmod{p}$ then

$$
\infty \equiv \frac{x_1 x_2 - 1}{0} \pmod{p}
$$

Explicitness:

$$
gcd(x_1 + x_2, p) \neq p \text{ and } gcd(x_1 + x_3, p) \neq p
$$

$$
\frac{x_1 x_2 - 1}{x_1 + x_2} \equiv \frac{x_1 x_3 - 1}{x_1 + x_3} \pmod{p}
$$
(7)

$$
x_1^2(x_2 - x_3) \equiv -(x_2 - x_3) \pmod{p} \tag{8}
$$

For prime $p = 4k - 1$ equation [\(8\)](#page-3-0) has a solution if equality

$$
x_2 - x_3 \equiv 0 \pmod{p}
$$

For prime $p = 4k + 1$ equation [\(8\)](#page-3-0) has a solution if equality

 $x_2 - x_3 \equiv 0 \pmod{p}$ or $x_1^2 \equiv -1 \pmod{p}$

If $x_1^2 \equiv -1 \pmod{p}$ then x_1 is not elements of the group.

Lemma 2. If $p = 4k - 1$ then group has $\frac{p+1}{2}$ elements. **Lemma 3.** If $p = 4k + 1$ then group has $\frac{p-1}{2}$ elements.

The groups are Abelian groups and they are cyclic. Every infinite cyclic group is isomorphic to the additive group of Z, the integers.

Every finite cyclic group of order n is isomorphic to the additive group of $\mathbf{Z}/n\mathbf{Z}$, the integers modulo n [\[17,](#page-12-3) [18,](#page-12-4) [19\]](#page-12-5).

$$
\operatorname{arcCot}(x_1) + \operatorname{arcCot}(x_2) = \operatorname{arcCot}\left(\frac{x_1 x_2 - 1}{x_1 + x_2}\right) \tag{9}
$$

When we know the prime factorization of the numbers $\frac{p+1}{2}$ and $\frac{p-1}{2}$ then we can easily find the generator of the given cyclic groups.

In a group G with operation \ast $\left(\frac{x_1x_2-1}{x_1+x_2}\right)$ $\frac{x_1x_2-1}{x_1+x_2}$ we will use:

$$
a^x = \overbrace{a \ast a \ast \cdots \ast a \ast a}^{x \text{ terms}}
$$

Theorem 1. If p is prime $p = 4k - 1$ then

$$
a^{(p+1)/2} = identity\ element \tag{10}
$$

Theorem 2. If p is prime $p = 4k + 1$ then

$$
a^{(p-1)/2} = identity\ element \tag{11}
$$

In equations [\(10\)](#page-4-0),[\(11\)](#page-4-1), the group operation is $x_3 \equiv \frac{x_1x_2-1}{x_1+x_2}$ $rac{x_1x_2-1}{x_1+x_2}$ (mod p). Theorems [\(1\)](#page-4-2), [\(2\)](#page-4-3) are analogous to the Fermat's little theorem.

Example 3. Element $\{1, p-1\}$ has order 2.

It is valid: $1 \cdot (p-1) \pmod{p} \equiv -1$

- a. $\frac{1 \cdot 1 1}{1 + 1} = 0$ Identity element.
- b. $\frac{1 \cdot (p-1)-1}{1+(p-1)} = \frac{p-2}{0} = \infty$ Identity element.
- c. $\frac{(p-1)\cdot 1-1}{(p-1)+1} = \frac{p-2}{0} = \infty$ Identity element.
- d. $\frac{(p-1)\cdot(p-1)-1}{(p-1)+(p-1)}=\frac{p^2-2\cdot p+1-1}{2\cdot(p-1)}=\frac{0}{2\cdot(p-1)}$ Identity element.

Algorithm 1 group operation (x_1, x_2, N)

 $xs \leftarrow x_1 + x_2$ $gc \leftarrow \gcd(xs, N) \{ \gcd(0, N) = N \}$ if $gc \neq 1$ then if gc=N then return (0) else return (-gc) end if end if return $(((x_1 \cdot x_2 - 1)/xs)(\text{ mod } N))$

Note 1. If we want to avoid using ∞ in the [\(6\)](#page-2-0) we can implement a group operation in the following way:

$$
x_1 * x_2 = \begin{cases} 0 & \text{if } x_1 + x_2 = 0\\ \frac{x_1 x_2 - 1}{x_1 + x_2} & \text{if } x_1 + x_2 \neq 0 \end{cases}
$$
 (12)

By introducing this operation, the identity element would not be an unordered pair.

3 Primality test

Conjecture 1. Let $N = 4k - 1$ be a natural number. N is prime if and only if 2^{N-1}

$$
2^{N-1} \equiv 1 \pmod{N} \tag{13}
$$

and

$$
2^{(N+1)/2} = identity\ element \t\t(14)
$$

In equation [\(13\)](#page-6-0), the group operation is $x_3 \equiv x_1 x_2 \pmod{N}$ In equation [\(14\)](#page-6-1), the group operation is $x_3 \equiv \frac{x_1x_2-1}{x_1+x_2}$ $\frac{x_1x_2-1}{x_1+x_2}$ (mod N)

Table 1: In column one are a Fermat pseudoprime to the bases 2 In column two are a $4k + 1$ pseudoprime to the bases 2 In column three are a $4k - 1$ pseudoprime to the bases 2 In column four is intersection $fer \cap 4k + 1$ In column five is intersection $fer \cap 4k - 1$

In [\[11\]](#page-12-6) compressed text files present data on all base-2 Fermat pseudoprimes below 2^{64} . The hypothesis to primality test was verified up to $N = 2^{64}$.

The computational complexity of the primality test can be divided into two parts:

1. The computational complexity of an exponentiation, which is the same for each group [\[5\]](#page-12-7).

2. The computational complexity of a group operation ∗.

Computational complexity of mathematical operations [\[13,](#page-12-8) [14\]](#page-12-9).

We do not compare the primality tests, there is rich literature - for example [\[1,](#page-11-0) [3,](#page-11-1) [4,](#page-11-2) [5,](#page-12-7) [15,](#page-12-10) [16\]](#page-12-11).

One of the possible ideas of proof may be based on the fact that the $4k-1$ and $(Z/pZ)^*$ groups differ in structure, the number of elements is different.

Next, we looking for necessary condition that the number $N = 4k - 1$ is a Fermat pseudoprime.

Next, we looking for necessary condition that the number $N = 4k - 1$ is a $4k-1$ pseudoprime.

Finally, we show that these two necessary conditions can not be met at all together. Intersection of a Fermat pseudoprime and $4k-1$ pseudoprime is empty set.

4 Conclusion

Group operation [\(6\)](#page-2-0) can be generalized as follows:

$$
x_3 \equiv \frac{x_1 x_2 + c}{x_1 + x_2} \pmod{p} \tag{15}
$$

Next, there is the table [\(2\)](#page-8-0) for the constant c [\[12\]](#page-12-12). From of the table is easy to see when the group will have $\frac{p-1}{2}$ or $\frac{p+1}{2}$ elements. A similar hypothesis can be proposed to testing many numbers.

We came on the group operation $\frac{x_1x_2-1}{x_1+x_2}$ when we worked with special binary quadratic forms [\[2\]](#page-11-3) [\[9\]](#page-12-13).

Another application of the new Abelian groups is in use for integer factorization and for public-key cryptosystems[\[9\]](#page-12-13).

In appendix A are a powers of an element of a group of $p = 17$ and $p = 19$.

In appendix B is the code for the power in language pari/gp.

In the future, we will publish a more detailed article.

\mathbf{c}	c is a quadratic residue mod p if and only	\mathbf{c}	c is a quadratic residue mod p if and
	if		only if
$\mathbf{1}$	every prime p	-1	$p \equiv 1 \pmod{4}$
$\overline{2}$	$p \equiv 1,7 \pmod{8}$	-2	$p \equiv 1, 3 \pmod{8}$
3	$p \equiv 1,11 \pmod{12}$	-3	$p \equiv 1 \pmod{3}$
$\overline{4}$	every prime p	-4	$p \equiv 1 \pmod{4}$
$\overline{5}$	$p \equiv 1, 4 \pmod{5}$	-5	$p \equiv 1, 3, 7, 9 \pmod{20}$
6	$p \equiv 1, 5, 19, 23 \pmod{24}$	-6	$p \equiv 1, 5, 7, 11 \pmod{24}$
$\overline{7}$	$p \equiv 1, 3, 9, 19, 25, 27 \pmod{28}$	-7	$p \equiv 1, 2, 4 \pmod{7}$
8	$p \equiv 1,7 \pmod{8}$	-8	$p \equiv 1, 3 \pmod{8}$
9	every prime p	-9	$p \equiv 1 \pmod{4}$
10	$p \equiv 1, 3, 9, 13, 27, 31, 37, 39 \pmod{40}$	-10	$p \equiv 1, 7, 9, 11, 13, 19, 23, 37 \pmod{40}$
11	$p \equiv 1, 5, 7, 9, 19, 25, 35, 37, 39, 43 \pmod{44}$	-11	$p \equiv 1, 3, 4, 5, 9 \pmod{11}$
12	$p \equiv 1,11 \pmod{12}$	-12	$p \equiv 1 \pmod{3}$

Table 2: Quadratic residue

A Integral Powers of an Element of a Group

The group operation is $x_3 \equiv \frac{x_1x_2-1}{x_1+x_2}$ $\frac{x_1x_2-1}{x_1+x_2}$ (mod p)

x and $\frac{-1}{x}$ are equals elements.

	$p = 17$ $a = 2$ order of a is 8	
exponent	$x = a^{\overline{exponent}}$	\equiv \overline{x}
$\mathbf{1}$	$\overline{2}$	8
$\frac{2}{3}$	$\overline{5}$	$\overline{10}$
	11	$\overline{3}$
$\overline{4}$	$\overline{16}$	$\overline{1}$
$\overline{5}$	$\overline{14}$	$\overline{6}$
$\overline{6}$	$\overline{7}$	12
$\overline{7}$	9	15
$\overline{8}$	$\overline{0}$	
$\overline{9}$	8	\overline{c}
$\overline{10}$	$\overline{10}$	$\overline{5}$
$\overline{11}$	$\overline{3}$	$\overline{11}$
$\overline{12}$	$\mathbf 1$	16
$\overline{13}$	$\overline{6}$	14
$\overline{14}$	12	$\overline{7}$
$\overline{15}$	$\overline{15}$	9
$\overline{16}$	$\overline{0}$	
$\overline{17}$	$\overline{8}$	$\overline{2}$
18	$\overline{5}$	10
19	11	$\overline{3}$
20	16	$\overline{1}$
$\overline{21}$	$\overline{14}$	$\overline{6}$
22	$\overline{7}$	12
23	9	15
24	$\overline{0}$	

Table 3: p=17,a=2

$p=19$	$a=2$ order of a is 5	
exponent	$x = \overline{a^{exponent}}$	$\overline{-1}$
$\mathbf{1}$	$\overline{2}$	$\frac{\overline{x}}{9}$
$\overline{2}$	$\overline{15}$	$\overline{5}$
$\overline{3}$	$\overline{14}$	$\overline{4}$
$\overline{4}$	$\overline{10}$	$\overline{17}$
$rac{5}{6}$	$\overline{0}$	
	$\overline{9}$	$\overline{2}$
$\overline{7}$	$\overline{5}$	$\overline{15}$
$\overline{8}$	$\overline{4}$	14
$\overline{9}$	$\overline{17}$	$\overline{10}$
$\overline{10}$	$\overline{0}$	
$\overline{11}$	$\overline{9}$	\overline{c}
$\overline{12}$	$\overline{15}$	$\overline{5}$
13	$\overline{14}$	$\overline{4}$
$\overline{14}$	$\overline{10}$	$\overline{17}$
$\overline{15}$	$\overline{0}$	
$\overline{16}$	$\overline{9}$	$\overline{2}$
$\overline{17}$	$\overline{5}$	$\overline{15}$
$\overline{18}$	$\overline{4}$	$\overline{14}$
$\overline{19}$	$\overline{17}$	$\overline{10}$
$\overline{20}$	$\overline{0}$	
$\overline{21}$	$\overline{9}$	$\overline{2}$
$\overline{22}$	$\overline{15}$	$\overline{5}$
23	14	$\overline{4}$
$\overline{24}$	$\overline{10}$	$\overline{17}$
25	$\overline{0}$	

Table 4: p=19,a=2,a=3

B Code

This algorithm will compute the exponentiation and language pari/gp [\[10\]](#page-12-14) is used.

```
power(N,y,ex)={
      local(i,bex,y0);
      bex=binary(ex);
      y0=y;for(i=2,matsize(bex)[2],
            if(bex[i],
                   y=group_operation(y,y,N);
                   if(y<0, return(y));y=group_operation(y,y0,N);
                   if(y<0, return(y));,
                   y =group_operation(y,y,N);
                   if(y<0, return(y)););
      );
      return(y);
}
```
References

- [1] Daniel J. Bernstein, Distinguishing Prime Numbers from Composite numbers: The State of the Art in 2004 Department of Mathematics, Statistics, and Computer Science (M/C 249), The University of Illinois at Chicago, Chicago, IL 60607 7045
- [2] J. Buchmann and U. Vollmer, Binary quadratic forms: An algorithmic approach, Algorithms and Computation in Mathematics, vol. 20, Springer-Verlag, Berlin, 2007.
- [3] Richard Crandall, Carl Pomerance, Prime Numbers - A Computational Perspective \degree 2005 Springer Science+Business Media, Inc.
- [4] Paulo Ribenboim The Little Book of Bigger Primes, Second Edition, c 2004 Springer-Verlag New York, Inc.
- [5] Song Y. Yan, Number Theory for Computing Springer-Verlag Berlin Heidelberg (2000)
- [6] [https://alexandrianlibers.files.wordpress.com/2009/10/](https://alexandrianlibers.files.wordpress.com/2009/10/20377572-tarski-introduction-to-logic-and-to-the-methodology-of-the-deductive-sciences-4ed-oup-1994-1-copy.pdf) [20377572-tarski-introduction-to-logic-and-to-the-methodo](https://alexandrianlibers.files.wordpress.com/2009/10/20377572-tarski-introduction-to-logic-and-to-the-methodology-of-the-deductive-sciences-4ed-oup-1994-1-copy.pdf)logy-of-the-deducti [pdf](https://alexandrianlibers.files.wordpress.com/2009/10/20377572-tarski-introduction-to-logic-and-to-the-methodology-of-the-deductive-sciences-4ed-oup-1994-1-copy.pdf)
- [7] <http://mathworld.wolfram.com/EquivalenceClass.html>
- [8] <https://www.math.u-bordeaux.fr/~hecohen/rabinslides.dvi>
- [9] <http://www.cryptoslovak.sk/>
- [10] <https://pari.math.u-bordeaux.fr/>
- [11] <http://www.cecm.sfu.ca/Pseudoprimes/index-2-to-64.html>
- [12] https://en.wikipedia.org/wiki/Quadratic_residue
- [13] [https://en.wikipedia.org/wiki/Computational_](https://en.wikipedia.org/wiki/Computational_complexity_of_mathematical_operations) [complexity_of_mathematical_operations](https://en.wikipedia.org/wiki/Computational_complexity_of_mathematical_operations)
- [14] https://en.wikipedia.org/wiki/Greatest_common_divisor
- [15] https://en.wikipedia.org/wiki/Primality_test
- [16] [https://en.wikipedia.org/wiki/Baillie-PSW_primality_](https://en.wikipedia.org/wiki/Baillie-PSW_primality_test) [test](https://en.wikipedia.org/wiki/Baillie-PSW_primality_test)
- [17] https://en.wikipedia.org/wiki/Cyclic_group
- [18] <http://dogschool.tripod.com/cyclic.html>
- [19] [https://en.wikipedia.org/wiki/Subgroups_of_cyclic_](https://en.wikipedia.org/wiki/Subgroups_of_cyclic_groups) [groups](https://en.wikipedia.org/wiki/Subgroups_of_cyclic_groups)