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Abstract

p is prime.The article describes the new Abelian groups of type p =
4k + 1 and p = 4k — 1, for which a theorem similar to the Fermat’s
little theorem applies. The multiplicative group (Z/pZ)* in some sense
similar to the Abelian group of type p = 4k + 1. Abelian group of type
p = 4k — 1 is a different structure compared to group (Z/pZ)*. This
fact is used for the primality test of integer N = 4k — 1. The primality
test was verified up to N = 264,

1 Introduction

The main goal of the article is to present new Abelian groups. One of
the applications of these groups is a primality test. The main inspira-
tion comes from [g].

In the article we use the language of elementary terms. Proofs are
informal, but we believe it can be translated into a formal language.
The main part of the article is based on an operation which is a group
operation and the elements of the group are the extended equivalent
classes - unordered pairs.

When defining a group, we only work with primes of the p =4k — 1 or
p =4k + 1 type.

For each type of prime, Abelian groups have a different formula for the
number of elements.



For both types of groups,there is valid the analogous theorems of the
Fermat’s little theorem.

2 Equivalence Classes and Groups

An equivalence class [7] is defined as a subset of the form {z € X :
rRa}, where a is an element of X and the notation "z Ry” is used to
mean that there is an equivalence relation between x and y. It can
be shown that any two equivalence classes are either equal or disjoint,
hence the collection of equivalence classes forms a partition of X. For
all a,b € X, we have aRb if and only if a and b belong to the same
equivalence class.

A set of class representatives is a subset of X which contains exactly
one element from each equivalence class.

For prime p and a, b integers, consider the congruence
a=b(modp) aRb (1)

then the equivalence classes are the sets {..., —2p, —p, 0, p, 2p, ...},
{1=2p,1—p, 1,1+ p, 1+ 2p,...} etc. The standard class represen-
tatives are taken to be {{0},{1},{2},....,{p — 1}}.

a#0,b+# 0 and a,b are class representatives. If
ab= —1 (mod p)  aSbh (2)

then
(a+ k1p)(b+ kop) = —1 (mod p)

Relations R is reflexive, symmetric, and transitive. They are gen-
erally called equivalence relations. Relation S for prime p =4k — 1
is only symmetric except for 0. Relation S for prime p =4k + 1 is
only symmetric except for 0 and two other members.

Definition 1. According to [6]
T=RUS (3)

Definition 2.
0-00=—1(mod p) (4)



Definition 3. n € N and n #0

n n
and oo = ¢ (5)

Lemma 1. p is prime. 2 = —1 (mod p) if and only if p =1 (mod 4)

Relation T is equivalence.

When p = 4k — 1 then the T relation generates
tives,who have 2 members.

When p = 4k + 1 then the T relation generates 1%1 class representa-
tives,who have 2 members.

ptl

£5= class representa-

Example 1. Prime p = 4k + 1.For p = 17, the class representatives of
the T relation are as follows.

{0, 00}, {1,16},{2,8}, {3, 11}, {4}, {5, 10}, {6, 14}, {7, 12}, {9, 15}, {13}
If isx =4 or x = 13 then is valid * = —1(mod p).

Example 2. Prime p = 4k — 1.For p = 19, the class representatives of
the T relation are as follows.

{0, 00}, {1,18},{2,9},{3,6}, {4, 14}, {5,15},{7,8}, {10, 17}, {11, 12}, {13, 16}
We have a prime p and a binary operation

T1T9 — 1
r3 = —— (mod 6
b= (mod ) ©)
This operation @ is a group operation. The elements of the group are
the extended equivalence classes that generate 7', they are unordered
pair. This operation @ is commutative because the addition and mul-
tiplication is commutative.

Closure:
1.
T1To — 1
T+ X9
2.
11 _ l-zazo 1
1 T2 _ xr1To _ T1To — — 25
=14 =1 —m—zy -
x1 To x1T2 I + T2
3. .
=1 — —X2—Xx1
ol — 1 T () 1
=1 T —l4zize _ o
N + T2 Y T1T9 1 I3

r3, = belong to the same equivalence class.
7 x3



Associativity:

By direct insertion into binary operation, we can easily prove that the
operation is associative

Identity element:{0, oo}

1.
0 is the identity element.
0- To — 1
= — d =-1 d
x3 0+ 2y (mod p)  waxs (mod p)

Z2, x3 belong to the same equivalence class.
2.
oo is the identity element.

1 1
x1x2—1_132—xl T2 — 5

= = od
{L‘1+3L’2 1+i—j 1+% (m p)

To =

Inverse element:

If 2129 = 1 (mod p) or z; + 22 = 0 (mod p) then xq, x5 are inverse
elements.

1

If 219 = 1 (mod p) then

1-1
0= d
T+ Xo (mO p)
2.
If 1 + 22 = 0 (mod p) then
—1
00 = % (mod p)

Explicitness:

ged(x1 + x2,p) # p and ged(xy + x3,p) # p
T1T9 — 1 T1x3 — 1
= mod 7
T1 + T2 x|+ XT3 ( p) ( )
23 (zy — 23) = — (29 — 23) ( mod p) (8)
For prime p = 4k — 1 equation has a solution if equality

xo —x3 =0 (mod p)
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For prime p = 4k + 1 equation has a solution if equality
Ty —23=0 (modp) or z7=-1 (modp)

If 22 = —1 (mod p) then z; is not elements of the group.

p+1

Lemma 2. If p =4k — 1 then group has 5= elements.

Lemma 3. If p =4k + 1 then group has 7%1 elements.

The groups are Abelian groups and they are cyclic.

Every infinite cyclic group is isomorphic to the additive group of Z, the
integers.

Every finite cyclic group of order n is isomorphic to the additive group
of Z/nZ, the integers modulo n [17, (18, [19].

arcCot(z) + arcCot(xy) = arcCot <%_1) (9)

.T1+l’2

When we know the prime factorization of the numbers ’%1 and ’%1

then we can easily find the generator of the given cyclic groups.

xr1xo—1

) we will use:
r1+x2

In a group G with operation * (

x terms
7\

a*=a*xax*x---*xa*xa

Theorem 1. If p is prime p = 4k — 1 then
a P2 = jdentity element (10)
Theorem 2. If p is prime p = 4k + 1 then

aP~V/% = identity element (11)

In equations ,, the group operation is x3 = ’;11’2;21 (mod p).
Theorems , are analogous to the Fermat’s little theorem.



Example 3. Element {1,p — 1} has order 2.

It is valid: 1 - (p—1)(mod p) = —1

11-1 _ ~

a. 557 = 0 Identity element.

b. % = 7’%2 = oo Identity element.
c. (1(913—_12.)1—11 = ’%2 = oo Identity element.

(p=1)-(p—D—1 _ p>-—2p+1-1 _ 0 :
d ng—1)f(p—1) =505 = 7o ldentity element.

Algorithm 1 group_operation(z,xq, N)
TS < X1+ X9
gc < ged(zs, N) {ged(0,N) = N}
if gc # 1 then
if gc=N then
return (0)
else
return (-gc)
end if
end if
return (((z1 -2 —1)/xs)(mod N))

Note 1. If we want to avoid using oo in the @ we can implement a
group operation in the following way:

. 0 Zf T1+ Ty = 0
nen={ S § DT 0 .

By introducing this operation, the identity element would not be an
unordered pair.



3 Primality test

Conjecture 1. Let N = 4k —1 be a natural number. N is prime if and
only if

2V =1 (mod N) (13)
and
oWNHD/2 — jdentity element (14)
In equation , the group operation is v3 = x1x5 (mod N)

— x1x2—1

In equation (14), the group operation is x3 = P (mod N)

Lt 2 [ 38 [ 4 [ 5 |
’(ﬁT‘4k+1‘4k—1‘fﬂﬂ4k+l‘fﬂﬂ4k—1‘
341 8321 527 8321 0
561 | 24769 1679 721801
645 | 25481 2627 2491637

1105 | 38081 3599 2977217
1387 | 40501 3827 4181921
1729 | 64261 18527 6749021
1905 | 84001 | 20099 7232321
2047 | 164833 | 32239 7306261
2465 | 172789 | 32399 9863461
2701 | 195841 | 37127 10386241
2821 | 214369 | 39059 20234341
3277 | 257581 | 48827 35851037
4033 | 270293 | 60959 37439201
4369 | 280393 | 79799 37469701
4371 | 289301 | 80999 43363601
4681 | 349441 | 83711 44314129
5461 | 404801 | 97663 46517857
6601 | 416641 | 100127 47253781
7957 | 496801 | 115639 47903701
8321 | 518977 | 117739 48551161
8481 | 544321 | 130591 51283501
8911 | 561601 | 155819 60696661

Table 1: In column one are a Fermat pseudoprime to the bases 2
In column two are a 4k 4+ 1 pseudoprime to the bases 2
In column three are a 4k — 1 pseudoprime to the bases 2
In column four is intersection fer N4k + 1
In column five is intersection fer N4k — 1



In [I1] compressed text files present data on all base-2 Fermat pseudo-

primes below 2%4. The hypothesis to primality test was verified up to
N = 264,

The computational complexity of the primality test can be divided into
two parts:

1. The computational complexity of an exponentiation, which is the
same for each group [5].

2. The computational complexity of a group operation .
Computational complexity of mathematical operations [13, [14].

We do not compare the primality tests, there is rich literature - for
example |1} 3] 4], Bl 15, [16].

One of the possible ideas of proof may be based on the fact that the
4k — 1 and (Z/pZ)* groups differ in structure, the number of elements
is different.

Next, we looking for necessary condition that the number N = 4k — 1
is a Fermat pseudoprime.

Next, we looking for necessary condition that the number N = 4k — 1
is a 4k — 1 pseudoprime.

Finally, we show that these two necessary conditions can not be met at
all together. Intersection of a Fermat pseudoprime and 4k — 1 pseudo-
prime is empty set.



4 Conclusion

Group operation (@ can be generalized as follows:

= e Il (mod p) (15)

$1+I2

Next, there is the table for the constant ¢ [I2]. From of the table

. . 1 1 ..
is easy to see when the group will have 2= or 2= elements. A similar

hypothesis can be proposed to testing many numbers.

x1xo—1

when we worked with spe-
T1t+x2

We came on the group operation
cial binary quadratic forms [2] [9].

Another application of the new Abelian groups is in use for integer
factorization and for public-key cryptosystems[d].

In appendix A are a powers of an element of a group of p = 17 and
p = 19.

In appendix B is the code for the power in language pari/gp.

In the future, we will publish a more detailed article.

¢ ¢ is a quadratic residue mod p if and only | ¢ ¢ is a quadratic residue mod p if and
if only if

1 | every prime p -1 | p=1(mod 4)

2 | p=1,7(mod 8) -2 | p=1,3(mod 8)

3 | p=1,11(mod 12) -3 | p=1(mod 3)

4 | every prime p -4 | p=1(mod 4)

5 | p=1,4(mod 5) -5 | p=1,3,7,9(mod 20)

6 | p=1,5,19,23(mod 24) -6 | p=1,5711(mod 24)

7 | p=1,3,9,19,25,27(mod 28) -7 | p=1,2,4(mod 7)

8 | p=1,7(mod 8) -8 | p=1,3(mod 8)

9 | every prime p -9 | p=1(mod 4)

10 | p=1,3,9,13,27,31,37,39(mod 40) -10 | p=1,7,9,11,13,19,23,37( mod 40)

11 | p=1,5,7,9,19,25,35,37,39, 43(mod 44) | -11 | p =1, 3,4, 5,9(mod 11)

12 [ p=1,11(mod 12) 12 | p = L(mod 3)

Table 2: Quadratic residue



A Integral Powers of an Element of a Group

The group operation is x5 = % (mod p)

x and _71 are equals elements.

p=17 a=2 orderof ais 8
exponent | x = a“Prent | —
1 2 8
2 5 10
3 11 3
4 16 1
) 14 6
6 7 12
7 9 15
8 0

9 8 2
10 10 5
11 11
12 1 16
13 6 14
14 12 7
15 15 9
16 0

17 8 2
18 5 10
19 11 3
20 16 1
21 14 6
22 7 12
23 9 15
24 0

Table 3: p=17,a=2
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p=19 a=3 order of ais 10
exponent | x = qerponent %1
; ?4 2 p=19 a=2 orderofaisb
3 3 L [caponent [ = = | T
4 9 5 1 2 9
2 15 5
5 18 1
3 14 4
6 17 10 . = L
7 12 11 - :
8 15 5 . : .
9 13 16
10 0 7 5 15
8 1 14
11 6 3 - ' L
12 4 14 " !
15 1 18 12 15 3
16 10 17 13 14 4
17 11 19 14 10 17
18 5 15 12 8 :
20 0 17 5 15
22 14 1 19 17 10
20 0
23 ) 7
21 9 D)
24 9 5
22 15 5
25 18 1
23 14 4
26 17 10 = 10 L
27 12 11 = !
30 0

Table 4: p=19,a=2,a=3
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B Code

This algorithm will compute the exponentiation and language pari/gp
[10] is used.

power (N,y,ex)={
local(i,bex,y0);

bex=binary(ex) ;

yo=y;
for(i=2,matsize(bex) [2],
if (bex[i],
y=group_operation(y,y,N);
if (y<0,return(y));
y=group_operation(y,y0,N);
if (y<0,return(y));
y=group_operation(y,y,N);
if (y<0,return(y));
);
)
return(y);
}
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