Existence of solutions for Langevin differential equations involving two fractional orders on the half-line

Zaid Laadjal

Departement of Mathematics and Computer Sciences, ICOSI Laboratory, University of Khenchela, (40000), Algeria E-mail: zaid.laadjal@yahoo.com

August 28, 2018

Abstract

In this paper, we study the existence and uniqueness of solutions for Langevin differential equations of Riemman-Liouville fractional derivative with boundary value conditions on the half-line. By a classical fixed point theorems, several new existence results of solutions are obtained.

Keywords: fractional derivative; fractional Langevin equation; fixed point theorem.

AMS 2010 Mathematics Subject Classification: 34A08, 34B40, 26A33.

1 Introduction

..... To be completed.

In this paper, we study the existence and uniqueness of solutions for the following fractional Langevin equations with boundary conditions

$$D^{\alpha} (D^{\beta} + \lambda) y(t) = f(t, y(t)), \quad t \in (0, +\infty),$$

$$y(0) = D^{\beta} y(0) = 0, \quad \lim_{t \to +\infty} D^{\alpha - 1} y(t) = a, \quad \lim_{t \to +\infty} D^{\alpha + \beta - 1} y(t) = b,$$
(1)

where $1 < \alpha \leq 2$ and $0 < \beta \leq 1$, such that $1 < \alpha + \beta \leq 2$, with $a, b \in \mathbb{R}$, D^{α} and D^{β} are the Riemman-Liouville fractional derivative. Some new results are obtained by applying standard fixed point theorems.

2 Preliminaries

Definition 1 [2] The Riemann-Liouville fractional integral of ordre $\alpha \in \mathbb{R}^+$.for a function $f \in L^1[a, b]$ is defined as

$$(I^{\alpha}f)(t) = \frac{1}{\Gamma(\alpha)} \int_{a}^{t} (t-\tau)^{\alpha-1} f(\tau) d\tau, \qquad (2)$$

with Γ is Gamma Euler function.

Definition 2 [2] Let $\alpha \in \mathbb{R}^+$ and $n \in \mathbb{N}^*$ where $n - 1 < \alpha < n$, The Riemann-Liouville dirivative integral of ordre α for a function $f \in L^1[a, b]$ is defined as

$$D_a^{\alpha}f(t) = D^n I_a^{n-\alpha}f(t) = \frac{1}{\Gamma(n-\alpha)} \frac{d^n}{dt^n} \int_a^t \left(t-\tau\right)^{n-\alpha-1} f(\tau) \, d\tau, \qquad (3)$$

with $D^n = \frac{d^n}{dt^n}$.

Properties

Let $\delta > 0$ and $\beta > 0$, for all $f \in L^1[a, b]$, we have

$$I^{\delta}I^{\beta}f(t) = I^{\beta}I^{\delta}f(t) = I^{\delta+\beta}f(t)$$
(4)

$$I^{\alpha}t^{\beta} = \frac{\Gamma\left(\beta+1\right)}{\Gamma\left(\alpha+\beta+1\right)}t^{\alpha+\beta}, \quad \beta > -1.$$
(5)

If $\beta > \delta > 0$. Then

$$D^{\delta}I^{\beta}f(t) = I^{\beta-\delta}f(t).$$
(6)

Lemma 3 [2]Let $\alpha \in \mathbb{R}^+$ where $n-1 < \alpha \leq n$, with $n \in \mathbb{N}^*$. Then the differential equation $D^{\alpha}y(t) = 0$, has this general solution

$$y(t) = c_1 t^{\alpha - 1} + c_2 t^{\alpha - 2} + \dots + c_n t^{\alpha - n},$$
(7)

where $c_i \in \mathbb{R}$, with i = 0, 1, 2, ..., n.

Lemma 4 [2]Let $\alpha > 0$. Then

$$I^{\alpha}D^{\alpha}y(t) = y(t) + c_1t^{\alpha-1} + c_2t^{\alpha-2} + \dots + c_nt^{\alpha-n},$$
(8)

where $c_i \in \mathbb{R}$, with i = 0, 1, 2, ..., n, and $n - 1 < \alpha \leq n$.

3 Main results

Lemma 5 Let $h(t) \in C(\mathbb{R}^+, \mathbb{R})$, $1 < \alpha \leq 2$ and $0 < \beta \leq 1$, with $1 < \alpha + \beta \leq 2$. The following problem

$$D^{\alpha} \left(D^{\beta} + \lambda \right) y(t) = h(t), \qquad t \in (0, +\infty),$$

$$y(0) = D^{\beta} y(0) = 0, \quad \lim_{t \to +\infty} D^{\alpha-1} y(t) = a, \quad \lim_{t \to +\infty} D^{\alpha+\beta-1} y(t) = b,$$
(9)

has equivalent to the fractional integral equation

$$y(t) = -\frac{\lambda}{\Gamma(\beta)} \int_0^t (t-s)^{\beta-1} y(s) \, ds + \frac{1}{\Gamma(\alpha+\beta)} \int_0^t (t-s)^{\alpha+\beta-1} h(s) \, ds \\ -\frac{t^{\alpha+\beta-1}}{\Gamma(\alpha+\beta)} \int_0^{+\infty} h(s) \, ds + \frac{a+\lambda b}{\Gamma(\alpha+\beta)} t^{\alpha+\beta-1}.$$
(10)

Proof. We applied the operator I^{α} on $D^{\alpha} (D^{\beta} + \lambda) y(t) = h(t)$, we get

$$(D^{\beta} + \lambda) y(t) = I^{\alpha} h(t) + c_1 t^{\alpha - 1} + c_2 t^{\alpha - 2}, \qquad (11)$$

where $c_1, c_2 \in \mathbb{R}$,

by the boundary condition y(0) = 0 and $D^{\beta}y(0) = 0$ we have $c_2 = 0$, thus

$$D^{\beta}y(t) = -\lambda y(t) + I^{\alpha}h(t) + c_{1}t^{\alpha-1},$$
(12)

applied the operator I^β

$$y(t) = -\lambda I^{\beta} y(t) + I^{\alpha+\beta} h(t) + c_1 I^{\beta} t^{\alpha-1} + c_3 t^{\beta-1},$$
(13)

where $c_3 \in \mathbb{R}$

by the boundary condition y(0) = 0 we have $c_3 = 0$, therefore

$$y(t) = -\lambda I^{\beta} y(t) + I^{\alpha+\beta} h(t) + c_1 \frac{\Gamma(\alpha)}{\Gamma(\alpha+\beta)} t^{\alpha+\beta-1}.$$
 (14)

Applied the operator $D^{\alpha+\beta-1}$ on (14), we get

$$D^{\alpha+\beta-1}y(t) = -\lambda D^{\alpha+\beta-1}I^{\beta}y(t) + Ih(t) + c_1\Gamma(\alpha).$$
(15)

We have

$$D^{\alpha+\beta-1}I^{\beta}y(t) = \frac{d}{dt}I^{1-(\alpha+\beta-1)}I^{\beta}y(t)$$

$$= \frac{d}{dt}I^{2-\alpha}y(t)$$

$$= \frac{d}{dt}I^{1-(\alpha-1)}y(t)$$

$$= D^{\alpha-1}y(t).$$
(16)

Substituting (16) into (15)

$$D^{\alpha+\beta-1}y(t) = -\lambda D^{\alpha-1}y(t) + Ih(t) + c_1\Gamma(\alpha), \qquad (17)$$

Using the boundary value conditions $\lim_{t \to +\infty} D^{\alpha-1} y(t) = a$ and $\lim_{t \to +\infty} D^{\alpha+\beta-1} y(t) = b$, we get

$$c_1 = \frac{a + \lambda b}{\Gamma(\alpha)} - \frac{1}{\Gamma(\alpha)} \lim_{t \to +\infty} Ih(t), \qquad (18)$$

Substituting the value of c_1 in (14), we obtain

$$y(t) = -\lambda I^{\beta} y(t) + I^{\alpha+\beta} h(t) - \frac{t^{\alpha+\beta-1}}{\Gamma(\alpha+\beta)} \lim_{t \to +\infty} Ih(t) + \frac{a+\lambda b}{\Gamma(\alpha+\beta)} t^{\alpha+\beta-1}.$$
 (19)

Therefore

$$y(t) = -\frac{\lambda}{\Gamma(\beta)} \int_0^t (t-s)^{\beta-1} y(s) \, ds + \frac{1}{\Gamma(\alpha+\beta)} \int_0^t (t-s)^{\alpha+\beta-1} h(s) \, ds \\ -\frac{t^{\alpha+\beta-1}}{\Gamma(\alpha+\beta)} \int_0^{+\infty} h(s) \, ds + \frac{a+\lambda b}{\Gamma(\alpha+\beta)} t^{\alpha+\beta-1}.$$
(20)

The proof is complete $\ \blacksquare$

Consider the space defined by

$$E = \left\{ y \in C(\mathbb{R}^+, \mathbb{R}), \ \sup_{t \ge 0} \frac{|y(t)|}{1 + t^{\beta + \alpha - 1}} \text{ exist} \right\}$$
(21)

and with the norm

$$\|y\|_{E} = \sup_{t \ge 0} \frac{|y(t)|}{1 + t^{\beta + \alpha - 1}}.$$
(22)

Lemma 6 [1] The space $(E, \|.\|_E)$ is Banach space.

We define the operator $T: E \to E$ by

$$Ty(t) = -\frac{\lambda}{\Gamma(\beta)} \int_0^t (t-s)^{\beta-1} y(s) \, ds + \frac{1}{\Gamma(\alpha+\beta)} \int_0^t (t-s)^{\alpha+\beta-1} f(s,y(s)) \, ds \\ -\frac{t^{\alpha+\beta-1}}{\Gamma(\alpha+\beta)} \int_0^{+\infty} f(s,y(s)) \, ds + \frac{a+\lambda b}{\Gamma(\alpha+\beta)} t^{\alpha+\beta-1}.$$

To be completed.

References

- Xinwei Su, Shuqin Zhang, Unbounded solutions to a boundary value problem of fractional order on the half-line, Computers and Mathematics with Applications 61, 1079–1087, (2011).
- [2] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies 204, Elsevier Science B.V, Amsterdam, (2006).
- [3] To be completed.