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Abstract

We introduce the reader to the problematic aspects of formulating
in concreto a suitable notion of geometry. Here, we take the canonical
approach and give some examples.

1 Introduction.

Non-commutative geometry is much less rigid as commutative geometry is in the
sense that it has a very poor group of symmetry transformation. This allows for
many different types of differential operators to exist depending upon subtle in-
tricacies of the algebraic relationships existing between differen point-operators.
There is of course still a universal definition in a way to do geometry; alas it has
many more inequivalent representations than one would desire for - a problem
of choice between blondé and brown woman. Certainly, it is not desirable to try
to mimic local differential geometry by means of “coordinate” operators satis-
fying some ad-hoc algebra. If anything goes, then coordinate transformations
do not exist anymore but diffeomorphisms do; the former coordinate dependent
approach has already been investigated by this author to a sufficient degree of
despair.

The approach taken in this paper is simple and direct and shows that the real
problem is the representation one. Often, many things will not exist such as the
human as a computer.

What is a point? Democritos thought that points correspond to entities which
cannot be further devided; in an operational setting this means that if you try
to disturb a point it shows itself or not. One thing is for sure, the point is
there and you know it, but then, how could you if you do not measure it? With
particles, we assume they exist when going through a second detector, because
something akin passed previously the first one and we assume a previous one not
to have stopped at the particle beach lounge. Points clearly do not have such
status because we cannot manipulate them; then, the only option is to measure
as many times as required, an infinite number to be precise before a click occurs.
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Therefore, we have two preliminary options, either to assume that points exist
and resort to an approach where the outcome is definite (classical geometry) or
to assume our apparatus is perfect but that something else changes. This last
option does not make much sense a priori given that we cannot control points.
Moreover, our apparatus, whatever it may be must have “relationships” with
the point which is usually expressed through is support in classical thinking.
Point gheists in a way carry the material gheists of the particle making up the
apparatus and I have never known someone who could interrogate its gardian
angel. So, we must conclude points do not exist as measurable atomic enti-
ties from the human or elementary particle point of view. This takes away all
the charm of spacetime and we must resort to “relations” between conscious
perceptions of point gheists which are precluded from our perspective. Non-
commutative geometry is the most stupid of all such enterprises; here, the point
gheists can only ask yes or no questions (in the framework of a divinely pre-
conceived space of an infinite number of allowed questions) and spacetime does
therefore not a priori exist but corresponds to an intelligent process correlating
outcomes of the “do I exist?” point-questions. Given, therefore, a preconceived
space of questions, we ask for the proximity between the existential question of
point gheists delineating a kind of similarity of temporarily intelligence.

As an example, take a classical manifold M and a cover by means of open sets
O;, let P, = xo, be the projection on the open set O;; then,

PNP; = POiﬁOj

and the P; all commute. The O; also define a sub-Hilbertspace H; of L?(M, p)
where £ is some volume measure with [ v dp = 1. Taking as state the unit
function, assuming that M is compact, we have that P;.1 = P; where P; is to

be seen as the identity 1; in H; = L?(0;, T d“du). Hence, 1, in a way perfectly
o,

correlates the similtanious existence of all Ipoint regions P; and is a sign of
emergent classicality. Therefore, the generalized Heisenberg dynamics must
ensure that all point projection operators commute and that there exists a
isomorphism 1 between state-vectors and a subalgebra of operators such that
P; = 9(v;) and there exist a vector 1 such that

Piyp(1) = Py = (P5(1)).

In other words, we must depart from the idea of an Heisenberg xor Schroedinger
picture, otherwise we are screwed in one way or another in explaining classicality.

2 Mathematical formulation.

Let H be a Hilbert involutive algebra, a so called Hilbert C* algebra, and A the
weak dual of the C* algebra of bounded operators on H whose weak pre-dual
is given by the compact operators on H. A is given by the trace class operators
B

)

Tr(B'B) < .

Let P; be some Hermitian projection operators on H where ¢ € I, an index set
which is finite, countable or real numbered. The space of Hermitian projection



operators has the structure of an atomistic, unimodular lattice meaning it has a
maximal 1 and minimal element 0 as well as minimal nonzero elements such that
the intersection A, union V satisfying the de Morgan rule and are well defined
within the context of a partial order.

More concretely, let P be the algebraic variety of Hermitian, trace-class, pro-
jection operators on H and S* the cone of positive, trace-class operators, then
a metric geometry is characterized by a bifunction

d:PxP—S8ST
satisfying
d(P,P) =0, d(P,Q) = d(Q,P) > 0, d(P,Q) + d(Q, R) > d(P, R)

where d is a classical metric associated to d in a way explained below. It is clear
that the bijective linear operators commuting with the multiplication on H, the
so-called algebra automorphisms, determine a diffeomorphism on the underlying
space is H = L*(M, p) for some compact manifold M and measure p with the
complex conjugation as involution. The proof is simple; note that an automor-
phism maps characteristic functions to characteristic functions preserving the
entire algebra. Therefore, it induces a mapping on the points which must be
bijective given that the automorphism is. In case the automorphism is unitary
as a linear mapping, then it corresponds to an isometry of the measure. If,
moreover, the distance function is preserved, then we recover the Killing fields.
So, classically, the atomistic (Hermitian) projective elements x of H which are
of measure zero in the sense

Xl =0

correspond to points. Here, atomistic means that y cannot be written as a sum
of alike elements and we have put Hermitian between brackets because in the
classical situation projective elements are automatically Hermitian. This point
of view is not really exact and we better speak about a sequence of decreasing
Hermitian projective elements (xx)ren such that xi < x; for k& > I and

lim |[xk|| = 0.
k—o0

Generalized 0 functions can be constructed with regard to a dense, unital, sub-
algebra K by demanding that there exists an increasing sequence of positive
numbers ay, such that for any ¢ € K

li = .
i ag (i) = 1y

where the latter defines an automorphism on . The question now is how to
suitably relax this structure; clearly if we keep the field of the complex numbers
in the definition of the Hilbert algebra, as well as the standard commutata-
tive, associative and distributive rules for the sum and product, then nothing
is gained. We are stuck to classical spaces. On the other hand, if we throw
away the Hilbert space character of H, then there is very little structure in the
operator algebra over it. Connes prefers to throw away the notion of multipli-
cation on H (but keeps the Hilbert space character); unfortunately, that leaves



us with no points or atoms. Hence, the most general setting which appears to
be satisfying is one of a quaternionic Hilbert algebra with the standard abelian
sum and scalar multiplication rules but with a multiplication between vectors
which is generically non-abelian but satisfies the distributive law. We baptise
these geometries to be quaternionic.

For example, on flat Minkowski compactified on a n-dimensional torus from —L

to L in every orthonormal direction, points are determined by distributional
states d(x — z) := |z) and the unit operator is given by

1:/ﬁﬂ@@

0 < +(T(h) £ T(—h))? = H(T(h)* + T(—h)* £2)

Notice that

and therefore
—2 < T(h)?+T(—h)* <2

where T constitues a representation of the n dimensionial translation group
which is nothing but the maximal abelian group of the isometry group of R™.
Also, we know that

2
/ / dsr.sT_,Ts = / / ||7"||2—HSH )Ts =
Lo 1) Tlo. T [0,L] 4
1
(/ dr||r |2> (/ dsTs> - 7V01(T7[L0»L])/ ds||s||? Ty
Tlo.2] Tl-LL] 4 Tl-L.L]

is a positive definite matrix. Moreover,

/ ds T
TT[L—L.L]

usurpates (in the limit to maximal L) the action of T; and therefore must equal
the (distributional if L = co) state

(|

in the functional representation. Hence,

1
2 1 [0,L] 2
<A}P’Ll drl|rl| > [1)(1] 4V01(1n )\/TT[,,L’L] ds||s||T

is the expression of our concern and the reader notices there is no way to reg-
ularize the operator in the limit for the compactification scale L to infinity.
Therefore, a good definition of an operator valued distance d is determined by
the “positive scalar product” operator

(A|B)op / dr/ dsr.s A'T_,T,B.
0,L] 0,L]
Given that the quantity

A(lz) (], [y)(y]) = /T[—m dhl|h][*|)(z|T(h)]y)(yl

n



is given by
A(lz) (=], ly)yl) = d(z,y)* |2)(y]
where d is the distance on the n torus. Therefore, |z)(z| is a distributional

operator of norm squared %M|x><x| The norm is then given by its square
root which does not exist; it is however possible to construct quasi-roots be
considering the operators

1 L nt2
B(z) = — 1/ . / dhT)|z) (| =T,
€2 Xn[— Xn[_%vg]

5.5]
then b2
nt2
(B(x))? = 22— / dhT)|z) (| / d=T.
3 € Jal-5s Xnl=5.5

which agrees in the limit for € to zero with

nLn+2
3

) al.

By definition, the distance formula equals

(el b)) = [ dr [ dsrs ()0l = o)) Tom ()0l - o) ol) =
T Ty

nL"+? 1, 9
5 (@)l + ly)yl = |2}yl = y)al) + 7 L™ d(z, )" (l2){yl + ly){a]) .

Hence, we obtain

nLn+2 nLn+2 "

el + 1o - (P55 = S )?) (ool + .

We may again look for quasi-roots of the operator

~

d(z,9)* = a (|lz)(z] + [y)(yl) — bz, y) (J2){y| + [y) (=)

3 3 4
They are all characterized by matrices of the type

s = (b PP

with € a very small number. Regarding a quantum triangle inequality

where a = ”L"H7b(x,y) = (@ - Lnd(m,y)2> satisfying 0 < b(z,y) < a.

0 ed(z,y) —1 1—ed(z,z)
B(z,y)+ B(y,z) — B(z,2) ~ | ed(z,y)—1 2 ed(y,z) — 1
el —d(z,z) ed(y,z)—1 0

a Hermitian matrix with two positive and one negative eigenvalue due to the
triangle inequality
d(z,y) +d(y, 2) = d(, 2).

A reverse inequality, such as is the case in Lorentzian geometry, results in two
negative eigenvalues and one positive one. It is therefore clear that no triangle



o~

inequality is satisfied at the level of d(x,y) given that those operators do not
commute and therefore Cauchy-Schwartz does not apply. These regard “quan-
tum fluctuations” of metric geometry which are not present classicaly where the
distance is positive real valued. We shall come back to this in the next chapter,
but it must be clear that the quantity

duww:¢4@+¢mﬁwmﬂWhéﬁmgﬂwPﬂm»—w>

reproduces the classical distance and metric geometry. Indeed, notice that

(2] = (yl) [1) =0

and, moreover,

n

L ds sl Tl 1) = = d(, )’

(o)) == ~(Gal ) VoUT L) [ g

T~k

n

which is clearly a satisfying formula allowing for regularisation in the limit for
L towards infinity. Clearly,
d(|z), y))

restricted to those “atomic” states satisfies the full triangle inequality given that
d does. For more general states;

2

[ dn ) = ()| -
-

nLnt?

(1), 160 ="

% =1L du /TiLL,L] dy d(z7y)QM(w(y) - 9(y)).

We show this quantity is indeed positive; suppose ¢ has only support in a region
for which d(z,y)? = (z — y)?, then

/T[*L,L] du /T[*L,L] dy (x2 —2z.y+ 92)@“9) =

Lovntec@ [, v o2 [ dvucl?

which allows for explicit verification of positivity of

d(|¢),0)*.

Hence, the triangle inequality is satisfied and coincides with the usual one on
distributional atomistic elements. It is clear that Lorentzian geometry and non-
abelian generalizations thereof can be treated in an entirely similar manner.

3 Differential geometry.

In the previous section we has cast flat, compactified, Euclidean and Minkowskian
geometry into a new jacket and the only task is to study the limit L to infinity
in a very succint way which necessitates giving up on the concept of a function



space hereby introducing the concept of “infinitesimal vectors” and operators by
means of a Cauchy procedure. Quantum geometry obviously necessitates such
thing given that “points”, given by Hermitian projection operators, are atom-
istic in a much weaker sense than it is for classical vectors in the Hilbert algebra.
This weaker notion is holistic given that it has non-zero measure whereas the
classical one is limiting to the zero measure case or distributional if appropriate
rescalings are applied for. The reader must have noticed by now that

d(z,y) ~ d(jz), [9)) ~ (] + (o) /

e <
Xn|—33

ATl e ) o) / AT () o)

€ €
Xn|—353

Therefore, regarding

Az, y; 2) i= d(|2) (], [y)(yl) + d(ly) (yl, [2)(z]) = d([z)(x], |2)(z])

one obtains that

lsg(al+ o1+ 1) [

€ €
Xn|—353

]thhA(:v,y;z)/ ]thh(\x>+\y>+|z>) >0

€ €
Xn|=32:3

due to the classical triangle inequality. So, this is our classical-quantum corre-
spondance: from a democratic state over all points, such as is the state asso-
ciated to the barycenter of the triangle, the triangle inequality is satisfied on
a average. The reader may compute the second moment of a smearing of the
operator A(z,y; z) over the points z,y, z by means of the translation operators
in order to study “quantum” fluctuations.

The reader must correctly understand that underlying the quantum geometry
is a fixed classical one just as is the case in this author’s work on quantum grav-
ity. We now generalize this work to a curved classical background by means of
the exponential map which is after all immediately determined by the geodesic
equation and vierbein and generalizes the idea of a translation group towards
non-abelian bi-groups. That is, locally, we may write

Tir, (v)) (w) =T ((w S v)y)

where w ®wv is uniquely given if we demand that geodesics do not leave a certain
open region O around z and T,(v) = exp,(v). On the other hand T (v) may
be thought of as representing a translation on the tangent space at x in which
case the usual law

T (w) Ty (v) = Tu(v +w)

holds. We shall be interested in the first representation which is isomorphic
to the second in flat Minkowski with respect to a global inertial frame so that
there, the z dependency can be dropped in T, as well as ¢,. Specifically, the
global action T is

(T(0)f)(x) = f(Te(v(z)))
where v(x) is a vectorfield on M. The element v(x), seen as an ultralocal vector,

may also serve as T, on the flat geometry modelled at x. It is the exponential
map which connects both representations as we shall see soon. One also has

[T(w)(T () /))(z) := [T(wdw)f](z) = f(Te(vdw)e) = f(Tr, (w@) (0(Te(w(z))))).



Therefore, the right framework for curved geometry is the one of the induced
non-abelian sum on the vectorfields. This calls for an extension of our previous
setting; one could work with the Hilbert-algebra H of functions on M where M
is compact, equipped with the real Leibniz topological dual H** on it defined
by the continuous, real linear functionals D satisfying

D(fg) = D(f)g+ fD(g)
where

- ) 1
fla) = tim s | @,
The Leibniz rule is there to ensure the locality aspect and enables one to de-
fine D(x) which is what we need; notice that the previous definition of H*"*
does not depend upon the choice of H whereas quantum mechanically it might.
Given that H** is infinite dimensional, we cannot integrate over it; however,
we restrict to constant elements D which are those satisfying some equation of
constancy. Note that we have something as a pull back defined by

f«D

where [(f.D)(9)](z) = [D(g o f~1)](f(z)) for f € Diff(M) which is an auto-
morphism of H. Formulated more algebraically, every automorphism y of H
induces a mapping x, : H*% — H*% by means of

[X«DI(f) = x[D(x " ())]-

Indeed, one checks that

[«D1(f9) = xID(X ' [fa)] = x[D(x (IN]g+ XD gD = [[x«DI()]g+f[x«D](g)]

which shows its sanity. In general, constancy of an element requires metric
information to have a benchmark. Here, our translations might come in handy:

T(D)*> = T(2D)

as an equality between automorphisms on H. This restricts the field to be
geodesic; however, that leaves plenty of freedom. It is better to fix a point x
and drag D(x) along the geodesics emanating from it. Concretely, we look for
a mapping

(exp,)s : R" — H*X : D(x) — D

where

Do) it 20U T = (0 T
e—0 €

and the reader verifies that the Leibniz rule is satisfied. To implement this idea
in abstracto, we need to make use of the fact that the T" map really connects
the Leibniz dual #* with the Hilbert algebra H given that the specialization
to a “stalk” of the Leibniz dual at a point provides for a local automorphism
between the respective local Hilbert algebra in R™ and a part of the Hilbert
algebra H by means of the associated local diffeomorphism T),. Here, the local
Hilbert algebra Hﬁ)? is canonically defined by

(Tw)*XO



where Y 4 is the standard characteristic function on A C R™. In vector language,

<(Tr)*XO|y> = X(’)((Tr)il(y))

which determines the mapping completely given that we assume disjunct atoms
to ca. Therefore, we have to take into account that (exp, ). is only defined on a
neighborhood of the origin of R™ given that one meets serious problems globally.
Here, locality is hiding in the classical distance on the natural Hilbert-algebra
H12* () associated to the localized Leibniz topological dual H** at 2. The
formula for D f then reads

o I To(0 4+ eD(@)) = § (T, (v)

e—0 €

and is to be understood in the usual way. Hf2t(x) is defined by noticing that

(D(fxo))(x) = (Df)(x)
since
[D(x0)](z) = [D(x5)(z) = 2[D(x0)](x) = 0

and therefore D depends at x only on fxe and not the entire f. Since O was
arbitrary, the limit to zero size can be taken what justifies the notation D(x).
This requires an a priori input of a topological class of idempotent elements
¢? = (. More in particular, we demand the existance of a Boolean isomorphism
from

¢ I(H) = 7(AH))

where A(H) is the set of all atoms and 7 is a topology on it locally homeomorphic
with a R™ metric topology. v is defined by resorting to a notion of inclusion
which is the restriction of the partial order < on I(H) where

a=<peaf=a.

Moreover, an idempotent ¢ is an open neighborhood O of an atom z if and
only if for any equivalence class [£,], of z, there exists an n such that for any
m > n holds that &, < (. ¥(¢) = xo meaning that all other information
about ( is redundant with regard to the scalar product on H. It is clear that
induces a mapping between atoms and points which allows one to speak about
differentiable structure. We assume moreover a C> atlas to exist on A(H)
equipped with its local topology homeomorphic to R™.

This prepares the setting for a generalization of the geometry defined in the
previous section. The crucial part is to use the standard spectral theorem on
‘H to know that every element can be written as a sum of complex multiples
of Hermitian idempotents which in their turn can be written as an integral
of distributional atomistic idempotents (a Hilbert algebra is a commutative C*
algebra as well as a Hilbert space, where the C* algebra is represented on itself).
Therefore, the position “basis” of atoms always is a basis of orthogonal elements
in the general distributional sense. A classical metric is defined in the following
way: pick a point z and a scalar product h,(v(x),w(x)) on H**(x) which we
assume to be isomorphic, as a vector space, to R™. The pull back of h,, is defined
as

(X*h)x_l(w)((X*v)x—l(a;)7 (X*w)x—l(w)) = hx(v(x)7w(x))



If one were to define the h field by means of

[(Tac_l)*h]Tw(v) = hy

hr, ) = [(T2)xh](v)

where h,(v) = h, then that definition would be x dependent and result in a flat
geometry. To rectify this, note that 7" defines the full connection and therefore
the parallel transporter which we denote with 7. T" and T satisfy

Tr, () (=((To)« (v)) (@) = @
for all z and v € H**(x). Moreover, locally,
(ev) @ (ew) = e(v +w) + O(%).

As is well known from differential geometry, this issue does depend upon the
choice of h, if the latter is nondegenerate and symmetric and of fixed sig-
nature. Indeed, take a matrix field O(x), then the connection associated to
O(x)g(z)OT (z) is given by

1
O(z)y(2)0" (z) ® O™ (z) + §(OT)_19_10_1(ﬁrst derivatives of O).

2
. 1 . . . . .
There are in general % equations and n? variables so that inconsistencies

arise. This issue is pretty easily solved by demanding that
- Teh—h
lim —— =

e—0 €

0

for the appropriate metric  and any field v € H**. Consistency then implies
that L R
. TevTewh - Te(v+w)h
lim =

e—0 62

0

for any fields v,w and the two conditions on 7" which define one parameter
subgroups and restrict the coincidental behaviour of &, together with the fact
that T" must define an infinitesimal isometry of the metric field, fix the classical
geometry entirely.

We now proceed towards the end of this short introduction which is by no means
complete. Delta densities are defined by

/ dz §(z, 2) f(x) := f(z)
A(H)

where the integral has been constructed by making use of 1) and the local charts
at A(H) and the vector f maps to a continuous function on atomic space by
means of a Hilbert-space limiting procedure. This gives meaning to

(2| f) = f(2)
and

f= /A BTV

10



with
0(z,w)

Vh.
To ensure that it is really v, showing up, we demand that the T(ev) are

unitary in the limit e to zero up to second order in € for conformal vectorfields
v satisfying

(<) =

lim

e—0

0.

()= Vi _

More in particular, for those Leibniz dual elements, we have that

o T (0)alT(0)3) ~ (0l8)

e—0 €

=0.

An alternative route consists in taking a point z = [x,] as a generalized vector
satisfying R
(zIf) = f(2)

where f(z) is an algebra homomorphism from H to C. The reader should proof
that the a, accomplishing this are given by m The vector sub-algebra
spoken about before is then simply defined by demanding that this expression
exists and is independent of the equivalence. |z) is then not a generalized density
but a generalized function which is the better way to follow. Define the “formal”
operator B with as prescription

Mﬁ:/wmwméwmmm>

where the integral in H*%(2) is executed with respect to inertial coordinates
associated to an orthonormal basis of h,. The reader then sees that we are
really interested in the expression

d(ja),[8))* = (B(la) = |8)1B(lov) = 15)))

which reproduces, at least locally, the correct classical distance obeying the
triangle inequality. Quantum distances are then constructed by means of the
scalar product

(A|C)op := ATBTBC

for trace class operators A, C' on H.

4 Afterword.

In a previous paper of mine, I have generalized classical geometry to general
path metric spaces. Careful elaboration on the setting introduced in this paper
could pave the way for an alike suitable generalization. However, we are not
there yet and it remains to be seen how far the scheme in this paper could lead
towards a fruitful theory.
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