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Abstract Lagrangian diagnostics, such as the finite-time Lyapunov exponent
and Lagrangian coherent structures, have become popular tools for analyz-
ing unsteady fluid flows. These diagnostics can help illuminate regions where
particles transported by a flow will converge to and diverge from, even in a
divergence-free flow. Unfortunately, calculating Lagrangian diagnostics can be
time consuming and computationally expensive. Recently, new Eulerian diag-
nostics have been developed which provide similar insights into the Lagrangian
transport properties of fluid flows. These new diagnostics are faster and less
expensive to compute than their Lagrangian counterparts. Because Eulerian
diagnostics of Lagrangian transport structure are relatively new, there is still
much about their connection to Lagrangian diagnostics that is unknown. This
paper provides a mathematical bridge between Lagrangian and Eulerian di-
agnostics. It rigorously explores the mathematical relationship that exists be-
tween invariants of the right Cauchy-Green deformation tensor and the Rivlin-
Ericksen tensors, primarily the Eulerian rate-of-strain tensor, in the infinitesi-
mal integration time limit. Additionally, this paper develops the infinitesimal-
time Lagrangian coherent structures (iLCSs) and demonstrates their efficacy
in predicting the Lagrangian transport of particles even in realistic geophysical
fluid flows generated by numerical models.
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1 Introduction

Lagrangian diagnostics, such as the finite-time Lyapunov exponent (FTLE)
and Lagrangian coherent structures (LCSs), have become a popular means
of analyzing the Lagrangian transport structure of unsteady fluid flows and
other dynamical systems [1–34]. These diagnostics predict the dominant par-
ticle deformation patterns in a fluid flow over a time interval of interest, as
well as which regions of the flow will undergo the greatest and least amounts
of stretching. However, Lagrangian methods rely on the numerical integration
of particle trajectories, making such methods computationally expensive and
time consuming. Furthermore, the integration of particle trajectories requires
a velocity field which is sufficiently resolved in both time and space in order to
accurately calculate the particle’s motion. This limits the ability of researchers
to compute Lagrangian diagnostics from experimental or observational data,
such as from particle image velocimetry (PIV) in laboratory-scale experimental
fluid mechanics [35–38], biological applications [8, 39–41], such as cardiovas-
cular flows [42–46], or from geophysical data, such as ocean currents [47–50]
or wind measurements [51, 52], necessitating the use of simulation-based flow
models instead. Additionally, model data takes time to generate, limiting its
usefulness for real-time time-critical applications requiring an emergency re-
sponse [53–55], such as a hazardous incident, e.g., a radioactive material leak
[56], an oil spill [57–60], or ocean search-and-rescue [61, 62]. Furthermore, even
when model data is readily available it may not be reliable [53, 63–65]. Thus
new methods of analyzing unsteady fluid flows are required, which do not de-
pend on particle advection schemes, and could be implemented experimentally
in a local spatial neighborhood using only Eulerian information.

Recent Eulerian diagnostics of Lagrangian transport, which do not require
integrating particle trajectories, such as objective Eulerian coherent structures
which are based on a variational principle [66], the wall shear stress divergence
[46], the trajectory divergence rate [67], and the attraction and repulsion rates
[51, 68], have been developed to analyze unsteady fluid flows. Most of these
diagnostics are derived from the Eulerian rate-of-strain tensor, which is cal-
culated from the gradient of the instantaneous velocity field. This allows for
dynamical systems to be analyzed without the need for particle trajectory inte-
gration, which reduces the amount of time and computational power necessary
to calculate such diagnostics. Furthermore, being based on gradients, these di-
agnostics can be calculated from measurements using as few as n + 1 points
in the neighborhood of a point in n dimensional space, and at one instant in
time. For example, [51] calculated the attraction rate field from experimen-
tal two-dimensional environmental fluid measurements using only 3 points in
space to estimate the velocity gradient.

This study builds upon the work mentioned above and provides a rigor-
ous foundation connecting the traditional Lagrangian diagnostics and the new
Eulerian diagnostics. In particular, the attraction rate is proven to be the
limit of the backward-time FTLE as integration time goes to zero, and analo-
gously, the repulsion rate is the limit of the forward-time FTLE as integration
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time goes to zero. In addition to this, higher-order Eulerian approximations
to the right Cauchy-Green deformation tensor than those currently used are
derived—modified Rivlin-Ericksen tensors—expanding in the integration time
T . Using this expansion, high-order approximations are derived for both the
backward-time and forward-time FTLE fields, expanding in the integration
time T , and using techniques from matrix perturbation theory. Analytical ap-
proximations are derived for the FTLE field for well-known examples, such as
the time-varying two-dimensional double-gyre and the three-dimensional ABC
flow, which have previously only had their FTLE calculated using numerical
particle advection schemes. Examples based on geophysical fluid simulation
data are also explored; an atmospheric data set and an oceanic data set. We
note that an experimental example has also been considered [51].

Furthermore, a new Eulerian diagnostic tool is introduced—infinitesimal-
time Lagrangian coherent structures (iLCSs). The iLCSs are shown to be the
limit of LCSs as the integration time T goes to 0, and are for general n-
dimensional dynamical systems. iLCSs provide a straightforward approach to
identifying the major codimension-1 hyperbolic features dominating particle
(or general phase space) deformation patterns, as the same ridge detection
methods used for the FTLE field can be applied to the attraction and repul-
sion rate fields. It is demonstrated using analytic and realistic flows that the
iLCSs do indeed identify the important cores of particle deformation patterns
over short times. Moreover, both attracting and repelling features can be de-
termined simultaneously as they are both based on the instantaneous velocity
field gradient–one need not perform two separate particle trajectory integra-
tions, one in forward-time, the other in backward-time. The computational
savings in using only the instantaneous velocity field, and not particle trajec-
tory integration, is one of the highlights of the method, making it a candidate
for use in real-time applications.

This paper is organized as follows. Section 2 gives information on the dy-
namical system that will be examined, along with the relevant notation. Sec-
tion 3 provides a rigorous mathematical connection between invariants of the
Eulerian rate-of-strain tensor and traditional Lagrangian diagnostics includ-
ing the FTLE field. Section 4 derives a new Eulerian diagnostic, iLCSs, as the
limit of LCSs as the integration time goes to zero. In section 5, numerous ex-
amples are provided, comparing the error of the Eulerian approximation with
the benchmark FTLE field (using particle advection algorithms from [69, 70]),
demonstrating the effectiveness of iLCSs, and comparing the attraction rate
field to the backward-time FTLE field. The attraction rate and backward-time
FTLE were focused on due to their usefulness in predicting where particles
advected by a flow will converge, making them more relevant to real-world
scenarios such as search-and-rescue operations and hazardous release emer-
gencies. Finally, section 6 provides conclusions and future directions.
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2 Setup and Notation

Consider the dynamical system,

d

dt
x(t) = v(x(t), t), (1)

x0 = x(t0), (2)

x ∈ U ⊂ Rn, t ∈ I ⊂ R. (3)

This system can be analyzed using Lagrangian (particle trajectory) methods,
by first calculating the flow map, x0 7→ xt = Ftt0(x0), for some time interval
of interest, [t0, t] ⊂ I, where t could be greater than or less than the initial
time, t0. The flow map, Ftt0 : U → U , is given by,

Ftt0(x0) = x0 +

∫ t

t0

v(x(τ), τ) dτ, (4)

and is typically given numerically [1, 5, 71, 72]. Taking the gradient of the flow
map, ∇Ftt0(x0), the right Cauchy-Green strain tensor for the time interval of
interest can be calculated,

Ct
t0(x0) = ∇Ftt0(x0)T · ∇Ftt0(x0), (5)

which is positive-definite, giving eigenvalues which are all positive and can be
ordered as,

λ1 ≤ λ2 ≤ · · · ≤ λn, (6)

with associated normalized eigenvectors,

ξλi
, i ∈ {1, . . . , n}. (7)

From the maximum eigenvalue of the right Cauchy-Green tensor, the finite-
time Lyapunov exponent (FTLE) [1, 2] can be defined as,

σtt0(x0) =
1

2|T | log(λn), (8)

where T = t−t0 is the (signed) elapsed time, often called the integration time.
Recent advances in dynamical systems theory have developed new Eulerian-
based methods to analyze the system (1) based on the Eulerian rate-of-strain
tensor, defined as,

S(x, t) = 1
2

(
∇v(x, t) +∇v(x, t)T

)
, (9)

which is symmetric, yielding eigenvalues which are real and can be ordered as,

s1 ≤ s2 ≤ · · · ≤ sn, (10)

with associated normalized eigenvectors,

ξsi , i ∈ {1, . . . , n}. (11)
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From the eigenvalues of the Eulerian rate-of-strain tensor, one can identify
regions of the flow which are the most instantaneous attracting and repelling
codimension 1 manifolds, as discussed below.

For two-dimensional systems, [66] showed that the minimum eigenvalue,
s1, provides a measure of instantaneous hyperbolic attraction; with isolated
minimas of the s1 field forming the cores of instantaneous attracting structures
they referred to as attracting objective Eulerian coherent structures (OECS).
Meanwhile, the maximum eigenvalue, s2, was shown to provide a measure
of instantaneous hyperbolic repulsion; with isolated maximas of the s2 field
forming the cores of repelling OECS. Furthermore, in [51], s1 was identified
as the attraction rate, with an explicit formula given, and was used to detect
attracting LCSs from experimental data. Meanwhile, s2 was identified as the
repulsion rate. This nomenclature will be used in this paper as well, with sn
replacing s2 for n-dimensional systems.

3 Expansion of the right Cauchy-Green tensor in the infinitesimal
integration time limit

3.1 Eigenvalues of S as FTLE limit as integration time goes to zero

For small |T |, one can perform a Taylor series expansion of Ct
t0(x) in T as,

Ct
t0(x) = 1+ 2TS(x, t0) + T 2B(x, t0) + 1

2T
3Q(x, t0) +O(T 4), (12)

where 1 is the n× n identity and where,

B(x, t0) ≡ 1

2

[
∇a(x, t0) +∇a(x, t0)T

]
+∇v(x, t0)T · ∇v(x, t0), (13)

where the acceleration field, a(x, t0), is,

a(x, t0) =
d

dt
v(x, t0) =

∂

∂t
v(x, t0) + v(x, t0) · ∇v(x, t0), (14)

the total time derivative of v(x, t0), that is, the acceleration measured along
a trajectory (i.e., in a Lagrangian frame). The matrix Q, which is dependent
on the total time derivative of a(x, t0), is given in Appendix A.

Note the following general result for the eigenvalues,

λ−(A) = λ1(A) ≤ ... ≤ λn(A) = λ+(A), (15)

of n× n real symmetric matrices A. For scalar c 6= 0,

λ±(1+ cA) = 1 + λ±(cA), (16)

where,

λ±(cA) =

{
cλ±(A), for c > 0,

cλ∓(A), for c < 0.
(17)
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See Appendix B for the proof.
In (8), λn = λ+(Ct

t0(x)). For small T > 0, where the O(T 2) and higher
terms can be neglected,

λ+(Ct
t0(x)) = 1 + 2Tλ+(S(x, t0)) +O(T 2). (18)

Thus,

log(λn) = log(1 + 2Tλ+(S(x, t0))) = 2Tλ+(S(x, t0)) = 2Tsn(x, t0), (19)

in the limit of small T using the Taylor expansion, log(1 + δ) = δ +O(δ2) for
small |δ|.

From (8), and noting that |T | = T for T > 0,

σtt0(x) =
1

2|T | log(λn) =
1

2T
2Tsn(x, t0) = sn(x, t0) (20)

Therefore, the maximum eigenvalue of S(x, t0) is the limit of the FTLE value
for forward time as T → 0+.

For T < 0 with small T ,

λ+(Ct
t0(x)) = 1 + 2Tλ−(S(x, t0)) +O(T 2). (21)

Thus,

log(λn) = 2Tλ−(S(x, t0)) = 2Ts1(x, t0), (22)

in the limit of small T .
From (8), and noting that |T | = −T for T < 0,

σtt0(x) =
1

2|T | log(λn) = − 1

2T
2Ts1(x, t0) = −s1(x, t0). (23)

Therefore, the negative of the minimum eigenvalue of S(x, t0) is the limit of
the FTLE value for backward time as T → 0−.

If s1 and sn are denoted as s− and s+, respectively, the above results can
be summarized together as,

σtt0(x) = ±s±(x, t0) as t− t0 → 0± (24)

Note that the connection between the proportionality of the eigenvalues of
S(x, t0) and the FTLE for small |T | was suggested by [73], whereas here the
equality in the limit as |T | → 0 is proven. Furthermore, in the following section,
a means is provided to explicitly write the expansion of the FTLE through
any order in T .

For the n = 2 dimensional case with x = (x, y) with the vector field denoted
v = (u, v), the velocity gradient tensor is given explicitly as,

∇v =

[
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

]
, (25)
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with the Eulerian rate-of-strain tensor,

S =

 ∂u
∂x

1
2

(
∂u
∂y + ∂v

∂x

)
1
2

(
∂u
∂y + ∂v

∂x

)
∂v
∂y

 . (26)

The instantaneous attraction and repulsion rate, s− and s+, respectively, are
then given analytically by,

s±(x, t0) = 1
2

(
∂u
∂x + ∂v

∂y

)
± 1

2

√(
∂u
∂x − ∂v

∂y

)2

+
(
∂u
∂y + ∂v

∂x

)2

. (27)

If v(x) represents a two-dimensional fluid velocity, then the attraction and
repulsion rates can be written as,

s±(x, t0) = 1
2div(v(x, t0))± 1

2ε(x, t0). (28)

in terms of fluid quantities, where,

div(v(x, t0)) = ∇ · v(x, t0) = ∂u
∂x + ∂v

∂y , (29)

is the divergence of the flow field, εN (x, t0) = ∂u
∂x− ∂v

∂y is the normal component

of strain, εS(x, t0) = ∂u
∂y + ∂v

∂x is the shear component of strain, and,

εT (x, t0) =
√
ε2
N (x, t0) + ε2

S(x, t0), (30)

is the total strain.
For an incompressible (i.e., divergence-free) two-dimensional flow, notice

s±(x, t0) = ± 1
2εT (x, t0) and thus,

σtt0(x) = 1
2εT (x, t0), (31)

as t − t0 → 0, that is, both the attracting and repelling fields have the same
structure, that is, are identical, in the infinitesimal integration time limit.

3.2 Approximating FTLE to second-order in integration time

Consider now the third term, the order T 2 term, in the expansion (12) of the
right Cauchy-Green tensor. Then (18) becomes,

λ+(Ct
t0(x)) = 1 + 2Tλ+

(
S(x, t0) + 1

2TB(x, t0)
)

+O(T 3). (32)

Note that B(x, t0), like S(x, t0), is symmetric, i.e., B(x, t0)T = B(x, t0). It
can be shown via matrix perturbation techniques (see Appendix C) that,

λ+
(
S(x, t0) + 1

2TB(x, t0)
)

= sn + 1
2Tξ

T
snBξsn +O(T 2). (33)
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Using the Taylor expansion log(1 + δ) = δ − 1
2δ

2 + 1
3δ

3 +O(δ4) for small |δ|,
by a similar argument as before, for small T ,

log(λ+(Ct
t0(x))) = log

(
1 + 2T

[
sn + 1

2Tξ
T
snBξsn +O(T 2)

])
,

= 2T
[
sn + 1

2Tξ
T
snBξsn +O(T 2)

]
− 1

24T 2s2
n +O(T 3),

= 2T
[
sn + T

(
− s2

n + 1
2ξ
T
snBξsn

)
+O(T 2)

]
.

(34)

Therefore, for T > 0 with small |T |,

σtt0(x) = sn(x, t0)+T
(
−sn(x, t0)2 + 1

2ξsn(x, t0)TB(x, t0)ξsn(x, t0)
)

+O(T 2).

(35)
And similarly, for T < 0 with small |T |,

σtt0(x) = −s1(x, t0)−T
(
−s1(x, t0)2 + 1

2ξs1(x, t0)TB(x, t0)ξs1(x, t0)
)

+O(T 2).

(36)
If terms through second order in T are included, then the following is obtained,

σtt0(x) = sn + T
(
− s2

n + 1
2µ1

)
+ T 2

(
4
3s

3
n − snµ1 + 1

4µ2

)
+O(T 3) for T > 0,

σtt0(x) = −s1 − T
(
− s2

1 + 1
2µ1

)
− T 2

(
4
3s

3
1 − s1µ1 + 1

4µ2

)
+O(T 3) for T < 0,

(37)

where µ1 and µ2 are from (97) and (106), respectively, in Appendix C, and
the dependence on x and t0 is understood.

3.3 Equality of the eigenvectors of S and C as integration time goes to zero

Let C be the n × n right Cauchy-Green strain tensor, S the n × n Eulerian
rate-of-strain tensor, λi an ordered eigenvalue of C, si an ordered eigenvalue
of S, and 1 the n × n identity matrix. Let T > 0 be small enough that the
relationships in (12) and (18) hold and O(T 2) terms are negligible. Assume
that ξi is the eigenvector of S associated with si, then

S ξi = siξi, (38)

2TS ξi + ξi = 2Tsiξi + ξi, (39)

(2TS + 1) ξi = (2Tsi + 1) ξi, (40)

C ξi = λiξi, (41)

where the dependence on x and t0 is understood and we used the order-T
approximation for C. Thus, if ξi is an eigenvector of S, then ξi is an eigenvector
of C. Now, assuming that ξi is the eigenvector of C associated with λi, and
working through (38-41) in reverse proves that if ξi is an eigenvector of C,
then ξi is an eigenvector of S in the limit as T goes to 0. For T < 0 an
analogous argument holds using (21) in place of (18) and with the ordering of
the eigenvalues opposed, i.e. λi ∼ sn−i+1, i ∈ [1, n].
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Therefore, in the limit as |T | goes to 0, the eigenvectors of S and C are
equal. For small |T |, we can also use the perturbation expansion of C, to get
the estimated eigenvectors of C from (88) in Appendix C, which provides the
eigenvectors through order T 2 using only the velocity field v from (1) evaluated
at x and time t0 as well as appropriate derivatives.

4 Infinitesimal-time Lagrangian coherent structures (iLCS)

Previous work [1, 2, 9, 13, 14, 17, 18, 21, 23] has demonstrated that Lagrangian
coherent structures (LCSs) can be identified as ridges of the FTLE field. While
there are different mathematical definitions for what constitutes a ridge, a co-
dimension 1 ridge can be thought of as the generalization of the concept of
local maxima. For this study, LCSs will be identified as C-ridges of the FTLE
field. C-ridges were first described in [74], as ridges of the FTLE which are
orthogonal to the direction of maximal stretching. They are defined as,

σ > 0, (42)

∇σ · ξλn
= 0, (43)

(Hσ · ξλn
) · ξλn

< 0, (44)

where the dependence on x, t0, and t is understood, and Hσ denotes the
Hessian of the FTLE field. C-ridges are advantageous over other definitions of
ridges for the FTLE field, as they only rely on invariants of the right Cauchy-
Green strain tensor. C-ridges of the FTLE field have also been proven in [74] to
be mathematically equivalent to the variational definition of hyperbolic LCSs
given in [12].

We propose an instantaneous approximation to the traditional finite-time
LCS, called the infinitesimal-time LCS (iLCS). Following [74], we seek co-
dimension 1 manifolds in the phase space which maximize local stretching
and are orthogonal to the direction of maximal stretching. For a flow Ftt0 ,
the FTLE field provides a measure of stretching over a given time period.
As −s1 and sn are the limits of the backward-time and forward-time FTLE
fields as integration time goes to 0, we seek ridges of these fields which are
orthogonal to the direction of maximal stretching. The direction of maximal
stretching in a flow over a time interval is the given by the eigenvector of the
right Cauchy-Green strain tensor associated with the largest eigenvalue. As
the eigenvectors of the right Cauchy-Green and Eulerian tensors are equal in
the infinitesimal-time limit, we seek ridges of −s1 and s2 which are orthogonal
to their associated eigenvector. Following [74], these ridges will be referred to
as S-ridges. S-ridges are thus the limit of C-ridges as integration time goes to
zero. Because of this, S-ridges are mathematically equivalent to the variational
definition of LCS as the integration time goes to zero.
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Because an attracting iLCS is a ridge of −s1, it can be defined as a trough
of s1, as illustrated in Figure 1. Mathematically, this can be expressed as,

s1 < 0, (45)

∇s1 · ξs1 = 0, (46)

(Hs1 · ξs1) · ξs1 > 0. (47)

where the dependence on x, t0, and t is understood. Additionally, as a ridge

Fluid parcel

Trough of

s
1

Fig. 1 Schematic of the effect of a trough of the attraction rate s1 field on a blob of advected
particles, for example, a fluid parcel if the flow is a fluid.

of sn, a repelling iLCS can be mathematically expressed as,

sn > 0, (48)

∇sn · ξsn = 0, (49)

(Hsn · ξsn) · ξsn < 0. (50)

where, again, the dependence on x, t0, and t is understood.
It should be noted that iLCSs are not restricted to two-dimensional flows,

as other Eulerian diagnostics have been, but generalize to n-dimensional sys-
tems. Section 5.1 considers a nonlinear saddle flow which can be worked out
entirely analytically. Section 5.2 considers the time-dependent double-gyre,
for which the velocity field can be written analytically. Sections 5.3 and 5.4
examine iLCSs in realistic time-dependent two-dimensional geophysical flows.
Section 5.5 applies iLCSs to a time-dependent three-dimensional extension of
the double-gyre flow. Finally section 5.6 explores the use of iLCSs in a fully
coupled three-dimensional flow.

5 Examples

5.1 Two-Dimensional Nonlinear Saddle Flow

Consider the nonlinear saddle flow,

ẋ = x,

ẏ = −y − y3.
(51)
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These two uncoupled ordinary differential equations admit the explicit solu-
tions,

x(t) = x0e
t,

y(t) =
y0√

(1 + y2
0)e2t − y2

0

,
(52)

where the initial condition at time t0 = 0 is x0 = (x0, y0). While the y solution
goes to infinity in finite integration time, only times small enough to be below
the singular limit are considered. The right Cauchy-Green deformation tensor
for a small backward integration time T < 0, is,

CT
0 (x0) =

[
e2T 0

0 e4T

((1+y20)e2T−y20)3

]
, (53)

which yields a backward time FTLE of

σT0 (x0) = − 1

2T
log

(
e4T

((1 + y2
0)e2T − y2

0)3

)
. (54)

Writing the log term as follows, using a Taylor series approximations for small
|T |,

log(e4T )− log[(1 + y2
0)e2T − y2

0)3],

= 4T − 3 log[(1 + y2
0)(1 + 2T + 1

2! (2T )2 + 1
3! (2T )3 +O(T 4))− y2

0 ],

= 4T − 3 log[1 + (1 + y2
0)2T + (1 + y2

0)2T 2 + (1 + y2
0) 4

3T
3 +O(T 4)],

= 4T − 3[(1 + y2
0)2T + (1 + y2

0)2T 2 − 1
2 (1 + y2

0)24T 2

+ 1
3 (1 + y2

0)3(2T )2 + 4
3 (1 + y2

0)T 3 − 1
2 (1 + y2

0)2(2T )3 +O(T 4)],

= 4T − (1 + y2
0)6T + 6T 2y2

0(1 + y2
0)− 4y2

0(1 + y2
0)(1 + 2y2

0)T 3 +O(T 4),

= −2T [(1 + 3y2
0)− 3y2

0(1 + y2
0)T + 2y2

0(1 + y2
0)(1 + 2y2

0)T 2 +O(T 3)].
(55)

So the FTLE is expanded in T as follows, obtained by dividing by −2T ,

σT0 (x0) = (1 + 3y2
0)− 3y2

0(1 + y2
0)T + 2y2

0(1 + y2
0)(1 + 2y2

0)T 2 +O(T 3). (56)

The FTLE is now approximated by the first, second, and third terms (the
zeroth-order, first-order, and second-order in T , respectively) using the proce-
dure outlined in section 3.2. The gradient of the velocity is,

∇v(x0) =

[
1 0
0 −(1 + 3y2

0)

]
, (57)

which is also S(x0), since the gradient is diagonal. This has a minimum eigen-
value s1 = −(1 + 3y2

0), the negative of which matches the first term of (56),
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as prescribed by (36). To calculate the second term of (56), the term first-
order in T , the acceleration field needs to be calculated and then B(x0). The
acceleration field is, following (14),

ẍ = d
dt ẋ = x,

ÿ = d
dt ẏ = y + 4y3 + 3y5.

(58)

Therefore (13) gives,

B(x0) =

[
1 0
0 (1 + 12y2

0 + 15y4
0)

]
+

[
1 0
0 (1 + 6y2

0 + 9y4
0)

]
,

=

[
2 0
0 (2 + 18y2

0 + 24y4
0)

]
.

(59)

The normalized eigenvector of S(x0) corresponding to s1 is simply ξ0 = [0, 1]T ,
which via (97) yields,

1
2λ1 = 1

2ξ
T
0 B(x0)ξ0 = 1

2

[
0 1
] [2 0

0 (2 + 18y2
0 + 24y4

0)

] [
0
1

]
,

= 1
2 (2 + 18y2

0 + 24y4
0),

= 1 + 9y2
0 + 12y4

0 ,

(60)

hence,

−s2
1 + 1

2ξ
T
0 B(x0)ξ0 = −(1 + 6y2

0 + 9y4
0) + 1 + 9y2

0 + 12y4
0 ,

= 3y2
0 + 3y4

0 ,

= 3y2
0(1 + y2

0),

(61)

the negative of which matches the T coefficient of the second term of (56), as
prescribed by (36).

For the term second-order in T , note that, as prescribed by (84),

Q(x0) =

[
8
3 0
0 −( 8

3 + 56y2
0 + 192y4

0 + 160y6
0)

]
, (62)

and since (102) implies that ξ1 is parallel to ξ0, (106) yields,

λ2 = ξT0 Q(x0)ξ0 = −( 8
3 + 56y2

0 + 192y4
0 + 160y6

0). (63)

According to (37), the second-order term is,

−T 2[ 4
3s

3
1 − s1λ1 + 1

4λ2]

= −T 2[(− 4
3 + 2− 2

3 ) + (−12 + 24− 14)y2
0

+ (−36 + 78− 48)y4
0 + (−36 + 72− 40)y6

0 ],

= −T 2[0− 2y2
0 − 6y2

0 − 4y6
0 ],

= 2y2
0(1 + y2

0)(1 + 2y2
0)T 2,

(64)
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which matches the T 2 term of the true FTLE field (56).
Thus the formulas of sections 3.1 and 3.2 for approximating the true FTLE,

(56), of the nonlinear saddle, (51), through second-order in the integration time
T are verified for this example.

To illustrate the accuracy of the successive approximations, Figure 2 shows
the root mean-squared error (RMSE) for the FTLE field as a function of
integration time magnitude, |T |, over the domain U = {(x0, y0) ∈ R2

∣∣ |y0| <
1
2}. Notice that, as expected, the error grows linear in |T |, quadratic in |T |, and
cubic in |T |, for the zeroth-order, first-order, and second-order approximations,
respectively.
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Fig. 2 Root mean-squared error (RMSE) for successive approximations of the backward-
time FTLE field for the nonlinear saddle (51) expanded in T : zeroth-order (blue), first-order
(magenta), second-order (black). Notice that the error grows linear in |T |, quadratic in |T |,
and cubic in |T |, respectively, as shown more clearly in the log-log plot on the right.

5.2 Two-Dimensional Time-Varying Double-Gyre Flow

While the time-varying double-gyre does not admit an explicit solution, as the
previous example does, one can still analytically approximate the FTLE field
up to first-order in T using the formulas of Section 3.2.

Consider the double-gyre flow as described in [1]. This flow comes from the
Hamiltonian stream function,

ψ(x, y, t) = A sin(πf(x, t)) sin(πy), (65)
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where,

f(x, t) = ε sin(ωt)x2 + (1− 2ε sin(ωt))x. (66)

The velocity field, v = (u, v), can be calculate as,

ẋ = u(x, y, t) = −∂ψ
∂y

= −Aπ sin(πf(x, t)) cos(πy),

ẏ = v(x, y, t) =
∂ψ

∂x
= Aπ cos(πf(x, t)) sin(πy)

∂f

∂x
(x, t).

(67)

The domain for (x, y) is U = [0, 2]× [0, 1]. Following [1], parameters A = 0.1,
ω = 0.2π, and ε = 0.25 were chosen. The gradient tensor is,

∇v =

[
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

]
,

=

[
−π2A cos(πf) cos(πy)∂f∂x π2A sin(πf) sin(πy)

−π2A sin(πf) sin(πy)∂f∂x + πA cos(πf) sin(πy)∂
2f
∂x2 π

2A cos(πf) cos(πy)∂f∂x

]
.

(68)

From this gradient, it can be analytically calculated via (27) that the zeroth
order approximation to the backward-time FTLE for an initial condition x0 =
(x0, y0) at initial time t0 in the infinitesimal integration time limit is,

s1 = −1

2
π2A

[(
sin(πf) sin(πy0)

(
1− ∂f

∂x

)
+ 1

π cos(πf) sin(πy0)
∂2f

∂x2

)2

+ 4
(

cos(πf) cos(πy0)
∂f

∂x

)2
]1/2

.

(69)

where the dependence of s1 and f on (x0, t0) is understood. This can also be
written as,

s1 = −π2A

[
ε2 sin2(ωt)

{
sin2(πy0)

(
sin2(πf)(1− x)2 + 1

π sin(2πf)(1− x)

+ 1
π2 cos2(πf)

)
+ cos2(πy0) cos2(πf)(1− x)2

}

+ cos2(πy0) cos2(πf)
(

1− 4ε sin(ωt)(1− x)
) ]1/2

.

(70)

Note that the s1 field, just like the vector field, is a periodic function of t0
with period 2π/ω. Note that for t0 = k2π/ω, for some integer k, we have,

s1(x0, y0, t0) = −π2A| cos(πx0) cos(πy0)|. (71)
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Fig. 3 Root mean-squared error (RMSE) vs. |T | for successive approximations of the
backward-time FTLE field for the double-gyre flow expanded in T : zeroth-order (blue),
first-order (magenta), second-order (black), showing the error growing linear, quadratic,
and cubic in |T |, respectively, as revealed more clearly in a log-log plot (right).

The first-order term in the backward integration time T < 0 can also be
analytically determined. See Appendix D for details.

Figure 3 shows the root-mean-square error between the backward-time
FTLE field and the zeroth order (blue), first order (magenta), and second order
(black) approximations. In this figure, one can see that as the integration time,
|T |, goes to 0, the approximations converge to the true (benchmark) FTLE
field, as is expected. Note that the second-order term is more sensitive to
numerical errors than either the zeroth- or first-order terms. Figure 4 shows a

Fig. 4 Left: True backward-time FTLE field for the double-gyre flow for an integration
period of T = −0.3. Right: The approximation to the FTLE field to first-order in T for the
same integration time T = −0.3. The root mean-squared error between these two fields is
around 0.03 (see figure 3). Parameters: A = 0.1, ω = 0.2π, ε = 0.25, and t0 = 0.
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comparison of the FTLE field for a short integration time, T = −0.3 (center),
with an approximation to first order in T (left).

5.3 Two-Dimensional Atmospheric Flow Example

In this section, the methods described above are applied to a realistic time-
varying atmospheric flow example, using wind data from a Weather Research
and Forecasting (WRF) model simulation over the southeastern United States
[75]. This model was run with a horizontal grid resolution of 12 km and tem-
poral resolution of 1 hr. Due to the scale mismatch between the horizontal
resolution and the vertical resolution (which varies between 0.05 and 1 km), a
single vertical level was chosen to focus on for this analysis. The level that was
chosen corresponds to approximately 100 m above ground level (AGL), similar
to what has been done in previous atmospheric LCS studies [13, 18, 21, 76], as
this is a level reachable by unmanned aerial vehicles for in situ meteorological
measurements and sampling [51, 77]. The simulation was performed for a 24
hr period beginning at 0000 UTC 1 July 2011.

Using this data set the relationship between the attraction rate, higher-
order instantaneous approximations, and the backward-time FTLE field for a
two-dimensional atmospheric fluid flow can be numerically verified. This can
be seen in Figure 5, which shows the RMSE of of these approximations with
the FTLE field as integration is performed backward in time from 1200 UTC 1
July 2011. The blue line shows the RMSE for the attraction rate, the magenta
for the attraction rate with the correction term to first-order in T , and the
black for the attraction rate with the correction term to second-order in T . As
|T | goes to 0, the RMSE of all three approximations also goes to 0, thus nu-
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Fig. 5 RMSE for successive approximations of the backward-time FTLE field for an at-
mospheric flow expanded in T : zeroth-order (blue), first-order (magenta), and second-order
(black). Time is in seconds. The inset shows the behavior for the higher order terms for |T |
close to 0.
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merically verifying the relationships shown in section 3.1 for a two-dimensional
atmospheric flow. This figure also shows that for small |T |, the second-order
approximation is the most accurate, as expected. However, for larger |T | the
attraction rate will provide the most accurate approximation, which is to be
expected because of the unsteadiness of this flow field. The expansion proce-
dure described in section 3 is based on the instantaneous velocity field (and
its gradients) and thus tacitly assumes a time-independent (frozen) flow.

Figure 6 visually explores the connection between the attraction rate and
the FTLE field. Panel A shows the attraction rate field at 0000 UTC on 2
July 2011. Panels B, C, and D show the FTLE field after 1, 2, and 4 hours
of backward-time integration. In these plots it can be seen that the important
Lagrangian transport structures over the period examined are already present
in the attraction rate field, even though this accuracy is not reflected in the
RMSE plot, Figure 5. As the field is integrated backward in time the transport
structures become sharper and grow longer, but do not change significantly.
For this particular flow, as the integration time is increased the transport

Fig. 6 Comparison of the attraction rate (A), with FTLE fields of integration times T =
(B) −1 hr (C) −2 hr, (D) −4 hr. As the integration time increases increases the average
FTLE values decreases, thus the comparing the values of the heat-map is less meaningful
than comparing the topography. For a topographical analysis, relatively high FTLE values
are show in yellow and relatively low values in dark blue (a relative scale color bar is show
on the right). The spatial correlation between these fields can is given in Figure 7.
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patterns which are shown by the attraction rate field become more sharply
defined. This relationship can be quantified by the Pearson correlation coef-
ficient, given in Figure 7, which shows that for short integration times (< 4
hours), there is a strong correlation (> 0.6) between the attraction rate and
backward-time FTLE field. Then, as the integration time is increased the cor-
relation between the fields becomes weaker. However, note that even after 24
hours, there is still a moderate correlation (> 0.4), not yet nearing zero.
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Fig. 7 Pearson correlation coefficient between the attraction rate field and the benchmark
backward-time FTLE field as a function of integration time, |T |, in hours.

This data set allows us to test whether iLCSs are effective at predicting the
Lagrangian behavior of passive tracer particles advected in a two-dimensional
atmospheric flow, even though they are only evaluated at an initial time, t0 =
0000 UTC 1 July 2011. Figure 8 shows the evolution of attracting iLCSs (blue),
repelling iLCSs (red), and some example passive tracers (cyan). These struc-
tures were initialized at t0 and advected forward in time. Panel A shows the
iLCSs and tracers at the initial time. Panels B, C, and D show the iLCSs
and tracers after 2, 4, and 8 hours, respectively. An animation of the evolu-
tion of the iLCSs and tracers over the entire 24 hr period can be found at
https://youtu.be/h4UhJT8vsiU. In these panels it can be seen that as time
marches forward passive tracers are repelled away from the repelling iLCSs
and attracted towards the attracting iLCSs, as expected.

Interestingly, it can also be seen that some of the repelling iLCSs are at-
tracted onto and effectively consumed by the attracting iLCSs. A partial ex-
planation for this can be found in Figure 9, where a comparison between
the attraction rate and the repulsion rate fields is shown. Note that the two-
dimensional vector field on this level is not divergence-free, as the ignored
vertical velocity is non-zero. Thus, the two fields are different (recall they
would be the same if the vector field was divergence-free, according to (31)).
In this figure, it can be seen that the attraction rate field is stronger than
the repulsion rate field is; that is, the most attractive points of the attraction

https://youtu.be/h4UhJT8vsiU
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Fig. 8 iLCSs and passive tracers at different elapsed times, t, since the initial evaluation
time, t0 = 0000 UTC 1 July 2011, of the simulation. A) t− t0 = 0 hr, B) t− t0 = 2 hr, C)
t− t0 = 4 hr, D) t− t0 = 8 hr. Repelling iLCSs are shown in red, attracting iLCSs in blue,
and passive tracers in cyan. An animation of the evolution of the iLCSs and tracers over
the entire 24 hr period can be found at https://youtu.be/h4UhJT8vsiU.

rate field are more than twice as attractive as the most repelling points in
the repulsion rate field are repulsive. Thus, it can be concluded that while the

Fig. 9 Comparison of the attraction rate field, s1, left, and the repulsion rate field, s2, right,
at T = 0. Structures in the attraction rate field are noticeably stronger than in the repulsion
rate field. The attraction rate field has been multiplied by −1 to aid in visualization. The
colorbar has units of hr−1.

https://youtu.be/h4UhJT8vsiU
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repelling iLCSs are repulsive, the attracting iLCSs are more attractive and
thus overpower the repelling iLCSs after a sufficient period of time.

5.4 Two-Dimensional Oceanic Flow Example

In this section, a realistic oceanic flow model is employed to explore the meth-
ods described above, using ocean surface velocity data from a Multidisciplinary
Simulation, Estimation, and Assimilation Systems (MSEAS) [78] model sim-
ulation for the Atlantic Ocean in the vicinity of Martha’s Vineyard, Mas-
sachusetts. This model was run with a horizontal grid resolution of 200 m and
temporal resolution of 1 hr. The fluid simulation forecast was performed for a
24 hour period beginning at 0000 UTC 17 August 2017.

Figure 10 visually explores the connection between the attraction rate and
the FTLE field in a two-dimensional oceanic flow. Panel A shows the attraction

Fig. 10 Comparison of the attraction rate (A), with FTLE fields of integration times T =
(B) −1 hr (C) −2 hr, (D) −4 hr. As the integration time magnitude increases increases,
the average FTLE values decreases, thus comparing the exact values of the heat-map is less
meaningful than comparing the topography. For a topographical analysis, relatively high
values are show in yellow and relatively low values in dark blue. A relative scale color bar
is show on the right. The spatial correlation between these fields can be seen in figure 11.
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rate field at t0 = 0000 UTC 18 August 2017. Panels B, C, and D show the
FTLE field for 1, 2, and 4 hours of backward-time integration, initialized
at time t0. As in the previous section, it can be seen that the significant
Lagrangian transport structures over the time interval examined are already
present in the attraction rate field. As the field is integrated backward in
time the transport structures become sharper and grow longer, but do not
change significantly. As in the atmospheric example, as the integration time
is increased the transport patterns which are shown by the attraction rate
field become more sharply defined. This relationship can be quantified by the
Pearson correlation coefficient, which is given in Figure 11. This figure shows
that for short integration times (< 1.5 hours), there is a strong correlation
(> 0.6) between the attraction rate and backward-time FTLE field. Then,
as the integration time is increased the correlation between the fields becomes
weaker; falling to a weak correlation (∼ 0.2) after only 6 hours. The correlation
coefficient for this flow drops off more quickly than the in the atmospheric
example due to the shorter time-scale of unsteadiness for this flow.

This data set was also able to numerically verify the relationship be-
tween the attraction rate, higher-order instantaneous approximations, and the
backward-time FTLE field for a two-dimensional oceanic fluid flow. This re-
sult is presented in Figure 12, which shows the RMSE of these approximations
compared with a benchmark FTLE field, where integration is performed back-
ward in time from t0 = 1200 UTC 17 August 2017. The blue line shows the
RMSE for the attraction rate, the magenta for the attraction rate with a first-
order correction term, and the black for the attraction rate with a second-order
correction. As |T | goes to 0, the RMSE of all three approximations also goes
to 0, thus numerically verifying the relationships in section 3.1 applied to a
two-dimensional oceanic flow.

For this flow, it was further possible to verify that iLCSs are effective
at predicting the Lagrangian behavior of passive tracer particles advected in
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Fig. 11 Pearson correlation coefficient between the attraction rate field and the benchmark
backward-time FTLE field as a function of integration time, |T |, in hours.
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Fig. 12 RMSE for successive approximations of the backward-time FTLE field for an
oceanic flow expanded in T : zeroth-order (blue), first-order (magenta), and second-order
(black). Time is in seconds. The inset shows the behavior for the higher order terms for |T |
close to 0.

a two-dimensional oceanic flow. Figure 13 shows the evolution of attracting
iLCSs (blue), repelling iLCSs (red), and some passive tracers (cyan). These
structures were initialized at t0 = 0000 UTC 17 August 2017 and advected
forward in time. Panel A shows the iLCSs and tracers at the initial time.
Panels B, C, and D show the iLCSs and tracers after 0.5, 1, and 2 hours,
respectively. In these panels, one can see that as time moves forward passive
tracers are repelled away from the repelling iLCSs and attracted towards the
attracting iLCSs, as is expected.

5.5 Three-Dimensional Time-Varying Double-Gyre Flow

In this section, iLCSs are applied to a time-dependent three-dimensional flow
and the convergence of the attraction rate and higher order approximation to
the backward-time FTLE field is further demonstrated. For this section, the
time-dependent double-gyre from section 5.2 was extended to 3 dimensions.
The new three-dimensional equations are,

ẋ = −Aπ sin(πf(x, t)) cos(πy), (72)

ẏ = Aπ cos(πf(x, t)) sin(πy)
∂f

∂x
(x, t), (73)

ż = 0. (74)

with the parameters and function f(x, t) as defined previously in section 5.2.
The domain for (x, y, z) is U = [0, 2]× [0, 1]× [0, 1]. While this flow is trivially
three-dimensional (i.e., there is no motion in the vertical direction), it does
serve as a proof of concept that iLCSs work for three-dimensional systems.
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Fig. 13 iLCSs and passive tracers at different elapsed times, t. A) t − t0 = 0 hr, B)
t − t0 = 0.5 hr, C) t − t0 = 1 hr, D) t − t0 = 2 hr. Repelling iLCSs are shown in red,
attracting iLCSs in blue, and passive tracers in cyan.

The RMSE of Eulerian approximations of the FTLE field, as the flow is
integrated backward in time from the initial time t0 = 0, is identical to the
two-dimensional case, Figure 3.

Example two-dimensional iLCSs for the three-dimensional double-gyre flow
are shown in Figures 14 and 15. Figure 14 shows an attracting iLCS (blue),
along with a blob of passive tracers (green). Meanwhile, Figure 15 show a
repelling iLCS (red), along with blob of tracers (green). In both figures, the
first row shows the the initial configuration from two different angles, while
the second row shows the configuration after being advected by the flow for a
time of 1.25 in non-dimensional units. In Figure 14, one can see that the green
blob, starting out as a sphere around a portion of the iLCS, becomes squeezed
towards and spread along the iLCS as the two are advected by the flow. In
Figure 15, the green blob, starting as a sphere, spreads out and away from the
repelling iLCS as they are advected by the flow. These behaviors demonstrate
that iLCSs are indeed the instantaneous approximation of traditional LCSs
in three dimensions. An animation for the attracting iLCS can be found at
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Fig. 14 An attracting three-dimensional iLCS, blue, with a blob a passive tracers, green,
shown from two different viewing angles. Top row shows the iLCS and tracers at the initial
time, t0 = 0. Bottom row shows the iLCS and tracers after being advected forward in time
to t = 1.25. The animation for the attracting iLCS is at https://youtu.be/NWxdG7BY0_o.

https://youtu.be/NWxdG7BY0_o, and the repelling iLCS at https://youtu.
be/ZkD3qBnrHL0.

5.6 Three-Dimensional ABC Flow

In this section, iLCSs are applied to a fully coupled three-dimensional flow.
Additionally, the convergence of the attraction rate and higher-order approxi-
mation to the backward-time FTLE field is demonstrated. For this section, the
Arnold-Beltrami-Childress (ABC) flow [79, 80] was chosen, a divergence-free
flow commonly used in FTLE and LCS demonstrations. The fluid components
of the ABC flow are analytically given by,

ẋ = u = A sin(z) + C cos(y),

ẏ = v = B sin(x) +A cos(z),

ż = w = C sin(y) +B cos(x).
(75)

https://youtu.be/NWxdG7BY0_o
https://youtu.be/NWxdG7BY0_o
https://youtu.be/ZkD3qBnrHL0
https://youtu.be/ZkD3qBnrHL0
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Fig. 15 A repelling three-dimensional iLCS, red, with a blob a passive tracers, green, from
two different viewing angles. Top row shows the iLCS and tracers at the initial time, t0 = 0.
Bottom row shows the iLCS and tracers after being advected forward in time to t = 1.25.
The animation for the repelling iLCS is at https://youtu.be/ZkD3qBnrHL0.

The ABC flow v = (u, v, w) is an exact steady solution to Euler’s fluid equa-
tions and has been shown to have chaotic particle trajectories [80]. The domain
for x = (x, y, z) is the periodic cube, U = [0, 2π]× [0, 2π]× [0, 2π]. For coeffi-
cients, A =

√
3, B =

√
2, C = 1, were chosen following [81].

As the ABC flow is an analytical flow, it is possible to analytically express
the repulsion and attraction rate fields, respectively, as,

s3 = 2ρ1/3 cos
(
θ
3

)
> 0,

s1 = − 1
2s3 −

√
3ρ1/3 sin

(
θ
3

)
< 0,

(76)

where the dependence on position x is understood and ρ and θ are given by,

ρ =
√
q2 + |p|,

θ = tan−1
(

Im(
√
p)

q

)
,

(77)

https://youtu.be/ZkD3qBnrHL0
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where,

q = − 1
2a0,

p =
1

27
a3

1 +
1

4
a2

0,

a0 = − 1
4 (B cos(x)− C sin(y))(C cos(y)−A sin(z))(−B sin(x) +A cos(z)),

a1 = − 1
4

[
(B cos(x)− C sin(y))2

+ (C cos(y)−A sin(z))2 + (−B sin(x) +A cos(z))2
]

(78)

where the coefficients a1 and a0 come from the characteristic polynomial for
the rate-of-strain tensor S for this system,

s3 + a1s+ a0 = 0. (79)

Figure 16 shows the RMSE of Eulerian approximations with the benchmark
FTLE field (computed using the algorithm of [69]) as the flow is integrated
backward in time from the initial time t0. Since this flow is autonomous, t0 is
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Fig. 16 RMSE for successive approximations of the backward-time FTLE field for the
ABC flow (75) expanded in T : zeroth-order (blue), first-order (magenta). Time is in non-
dimensional units. The inset shows the behavior for the higher order terms for |T | close to
0.

arbitrary. The RMSE for the attraction rate is shown in blue, the first-order
approximation in magenta, and the second-order approximation in black. As
in the previous sections, this figure shows that as the integration time goes to
zero, the RMSE goes to zero as well.

Figures 17 and 18 examine the efficacy of iLCSs for the ABC flow. As in
the previous section, Figure 17 shows an attracting iLCS (blue), along with a
blob of passive tracers (green), while Figure 18 show a repelling iLCS (red),
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Fig. 17 An attracting two-dimensional iLCS, blue, within the three-dimensional flow, with
a blob a passive tracers, green, shown at different angles. Top row shows the iLCS and tracers
at the initial time, t0 = 0. Bottom row shows the iLCS and tracers after being advected
forward in time to t = 1.3. An animation of the the attracting iLCS and tracer blob is at
https://youtu.be/fmXFcpUEfaI.

along with two blobs of passive tracers (green). In both figures, the first row
shows the initial configuration from two different angles, while the second row
shows the configuration after being advected by the flow for a time of 1.3
non-dimensional units. In figure 17, one can see that the green blob, starting
out as a sphere around a portion of the iLCS, becomes squeezed towards and
spread along the iLCS as the two are advected by the flow. An animation of
the the attracting iLCS and tracer blob in Figure 17 can be found online at
https://youtu.be/fmXFcpUEfaI.

Due to the the large amounts of twisting and shear in the ABC flow, the
repelling effects of iLCS are more difficult to visualize in this flow than in
sections 5.3 and 5.5. To compensate for this, two blobs were used in figure
18. The green blobs are initialized above and below a repelling iLCS. In this
figure one can see that as the iLCS and tracers are advected by the flow, the
tracer blobs are transported away from each other. This also demonstrates

https://youtu.be/fmXFcpUEfaI
https://youtu.be/fmXFcpUEfaI
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Fig. 18 A repelling two-dimensional iLCS, red, within the three-dimensional flow, with a
blob a passive tracers, green, shown at different angles. Top row shows the iLCS and tracers
at the initial time, t0 = 0. Bottom row shows the iLCS and tracers after being advected
forward in time to t = 1.3.

the effectiveness of iLCSs as an indicator of flow separatrices, as tracers on
opposite sides of the iLCS do not interact with one another.

6 Conclusions and Future Directions

This paper has formulated a rigorous mathematical connection between the
attraction rate and the backward-time FTLE, as well as the repulsion rate and
the forward-time FTLE. It proved that the attraction and repulsion rate fields
are the limits of the backward-time and forward-time FTLE fields, respec-
tively, as the integration time, T , goes to 0. Additionally, it has shown that for
small integration times |T |, the eigenvectors of the right Cauchy-Green strain
tensor are equal to those of the Eulerian rate-of-strain tensor. These proofs
laid the groundwork for a new Eulerian diagnostic, iLCS, the infinitesimal-time
Lagrangian coherent structure, which provide a straightforward approach to
identifying the major hyperbolic features dominating particle deformation pat-
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terns. These structures can be detected by applying the same ridge detection
methods that have been used on the FTLE field to the attraction and repulsion
rate fields. Algorithms involving iLCS will be much faster as no particle trajec-
tory integration will be necessary. Moreover, higher-order approximations of
the FTLE field using Rivlin-Ericksen tensors were derived and explored. While
this study expanded the right Cauchy-Green deformation tensor and FTLE
fields, to third order and second order in T , respectively, one could follow this
procedure to arbitrary order k, assuming the underlying vector field is smooth
enough in the sense of differentiability. Automatic differentiation software can
be used, such as used for invariant manifold estimation, where expansions up
to order k = 25 or higher in the dependent variables have been used [82, 83].

For the example flows considered to illustrate this method, it was found
that higher-order FTLE approximations are more accurate for short integra-
tion periods, consistent with what would be expected from a Taylor series
expansion. For a steady flow with a smooth vector field, such as the nonlin-
ear saddle (51) or the time-independent double-gyre (i.e., (67) with ε = 0),
the FTLE approximation to order k in T will converge to the true FTLE as
k → ∞ for any T . This is because there is no effect of unsteadiness, that is,
the t0 dependence of the vector field. The FTLE structure arises merely due to
the inhomogeneity of the steady vector field. As a corollary, one could measure
the effect of unsteadiness, the t0 dependence, on the FTLE (and corresponding
Lagrangian transport structure) by calculating the difference between a high-
order FTLE approximation and the true (particle advection based) FTLE.

The framework presented herein provides a significant contribution to the
field of dynamical systems analysis and has important applications in partic-
ular for the study of unsteady fluid flows. For example, iLCSs can be used in
the place of LCSs when studying environmental or geophysical flows and with
considerable computational savings. This study shows that iLCSs are valid pre-
dictors of geophysical transport for up to several hours. The use of iLCSs could
thus provide a useful diagnostic of the Lagrangian transport structure of these
flows more quickly than traditional LCS analysis. This faster analysis would in
turn be useful for time sensitive applications, such as search-and-rescue oper-
ations [62], hazardous release scenarios [58], or even agricultural applications
such as fungicide spraying [22, 29]. Relatedly, Lagrangian diagnostics, such
as the FTLE, have recently been used to improve the reduced order models
(ROMs) for fluids, such the quasi-geostrophic equations or Navier-Stokes equa-
tions [55]. In place of these Lagrangian diagnostics, the higher-order Eulerian
diagnostics derived in this paper could be used to improve such ROMs, reduc-
ing both the time and the computational power needed generate Lagrangian
data-driven ROMs.

Future work on this topic will explore: the existence of lower-dimensional
iLCSs embedded within higher-dimensional iLCSs [82, 84–88]; the application
of iLCSs and higher-order FTLE approximations to experimental data [51, 68];
the application of higher-order FTLE approximation to ROMs; measures of
the influence of unsteadiness compared with inhomogeneity on Lagrangian
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transport structure; and the determination of the time interval over which
Eulerian diagnostics are most effective.
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Appendices

A Expansion of the right Cauchy-Green tensor in the integration
time

Evaluation of the flow map and therefore the right Cauchy-Green tensor Ct
t0 ,

from (5), can be computationally expensive. Therefore, this section seeks an
instantaneous approximation that gives the leading order behavior of this ten-
sor field, expanded in terms of the integration time T = t− t0.

For tensor fields in what follows, the dependence on x0 and t0 will be
notationally dropped for clarity, as it will be understood. For small time T ,
the right Cauchy-Green tensor, C, may be expanded, as in [67], in terms of
the integration time T ,

C = C|T=0 +
dC

dT

∣∣∣∣
T=0

T +
1

2!

d2C

dT 2

∣∣∣∣
T=0

T 2 +
1

3!

d3C

dT 3

∣∣∣∣
T=0

T 3 +O(T 4). (80)

where the dependence on the initial position and time is understood. Because
all derivatives are evaluated at T = 0, d

dt

∣∣
t=t0

= d
dT

∣∣
T=0

. The first term on

the right denotes the situation of no deformation, therefore, C|T=0 = 1. The
derivatives of the right Cauchy-Green tensor are given by the Rivlin-Ericksen
tensors [67, 89],

dkC

dtk
= ∇dx

dt
+

(
∇dx
dt

)T
, k = 1,

dkC

dtk
= ∇d

kx

dtk
+

(
∇d

kx

dtk

)T
+

k−1∑
i=1

(
k
i

)(
∇d

ix

dti

)T
∇d

k−ix
dtk−i

, k ≥ 2.

(81)
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For small |T | � 1, the leading order behavior is given by the first Rivlin-
Ericksen tensor (∇v + (∇v)T ), which is twice S. The second-order term is,

d2C

dt2
= ∇d

2x

dt2
+

(
∇d

2x

dt2

)T
+ 2

(
∇dx
dt

)T
∇dx
dt
,

= ∇dv
dt

+

(
∇dv
dt

)T
+ 2 (∇v)

T ∇v,

= 2B

(82)

where B is the same as given in (13).

The third-order term is

d3C

dt3
= ∇d

3x

dt3
+

(
∇d

3x

dt3

)T
+ 3

[(
∇dx
dt

)T
∇d

2x

dt2
+

(
∇d

2x

dt2

)T
∇dx
dt

]
,

= ∇da
dt

+

(
∇da
dt

)T
+ 3

[
(∇v)

T ∇a + (∇a)
T ∇v

]
,

= 3Q,

(83)

where,

Q ≡ 1

3

[
∇da
dt

+

(
∇da
dt

)T]
+
[
(∇v)

T ∇a + (∇a)
T ∇v

]
. (84)

The expansion of the right Cauchy-Green tensor (80) can be written as,

C = 1+ 2TS + T 2B + 1
2T

3Q +O(T 4),

= 1+ 2T
(
S + 1

2TB + ( 1
2T )2Q +O(T 3)

)
.

(85)

B Proof of Equation (16)

Let A be an n×n matrix, λ an eigenvalue of A, ξ the corresponding eigenvector
of A, 1 the n×n identity matrix and c ∈ R. By the definition of an eigenvalue
Aξ = λξ thus,

(A + c1) ξ = Aξ + c ξ = λξ + c ξ = (λ+ c) ξ. (86)

Therefore, if λ is an eigenvalue of A with eigenvector ξ, then (λ + c) is an
eigenvalue for A + c1 with the same eigenvector ξ.
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C Eigenvalues of the Taylor-expanded right Cauchy-Green tensor

Let S be a real, symmetric n × n matrix with n distinct eigenvalues, and let
B and Q also be real, symmetric n× n matrices. Seek the eigenvalues of

Sε = S + εB + ε2Q, (87)

a perturbation of S, where |ε| is a small scalar. In our case of interest, from
(85), the small parameter is ε = 1

2T .
Consider the eigenvalue µ0 of S with corresponding normalized eigenvec-

tor ξ0. Let’s refer to the perturbed eigenvalue and corresponding perturbed
eigenvector of Sε as µε and ξε. one can expand ξε and µε in powers of ε as

ξε = ξ0 + εξ1 + ε2ξ2 +O(ε3), (88)

µε = µ0 + εµ1 + ε2µ2 +O(ε3). (89)

The eigenvector equation Sεξε = µεξε can be approximated as

(S + εB + ε2Q)(ξ0 + εξ1 + ε2ξ2) = (µ0 + εµ1 + ε2µ2)(ξ0 + εξ1 + ε2ξ2), (90)

which leads to the following three expressions, corresponding to the order one
terms, order ε, and order ε2 terms, respectively,

Sξ0 = µ0ξ0, (91)

Sξ1 + Bξ0 = µ0ξ1 + µ1ξ0, (92)

Sξ2 + Bξ1 + Qξ0 = µ0ξ2 + µ1ξ1 + µ2ξ0. (93)

Multiply (92) by ξT0 to get,

ξT0 Sξ1 + ξT0 Bξ0 = µ0ξ
T
0 ξ1 + µ1ξ

T
0 ξ0, (94)

Since ξ0 is normalized, ξT0 ξ0 = 1. Also, since S is symmetric,

ξT0 Sξ1 = (ξT1 Sξ0)T ,

= (ξT1 µ0ξ0)T ,

= µ0ξ
T
0 ξ1,

(95)

where (91) was used. Now (94) is,

µ0ξ
T
0 ξ1 + ξT0 Bξ0 = µ0ξ

T
0 ξ1 + µ1, (96)

Thus,
µ1 = ξT0 Bξ0, (97)

which, since B is symmetric, represents a quadratic form.
A bound can be put on the term ξT0 Bξ0, noting that ξ0 is a unit vector. If

bn is the maximum eigenvalue of B, then,

max
ξ0

ξT0 Bξ0 = bn. (98)
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Similarly, if b1 is the minimum eigenvalue of B, then,

min
ξ0

ξT0 Bξ0 = b1. (99)

So,

µ1 = ξT0 Bξ0 ∈ [b1, bn]. (100)

So (89) becomes,

µε = µ0 + εµ1 +O(ε2), (101)

where µ1 is from (97).
With µ1 in hand, ξ1 can also be determined, which solves the following

re-arranged version of (92),

(S− µ01)ξ1 = −(B− µ11)ξ0. (102)

Note that (S−µ01) is not invertible as it has zero determinant, since µ0 is an
eigenvalue of S. The null space of (S−µ01) is span{ξ0}. Note that (102) is of
the form Ax = b with a square matrix A of nullity 1 and a vector b which is
in the image of A, as shown below.

Note that the vector Bξ0 can be written as,

Bξ0 = µ1ξ0 + dξ′⊥0 , (103)

where d ∈ R and ξ′⊥0 is, in general, a vector in im(S−µ01). Since the coefficient
of ξ0 in (103) is µ1 from (97).

The right-hand side of (102) can be written as,

−Bξ0 + µ1ξ0 = −dξ′⊥0 , (104)

since the µ1ξ0 terms cancel. This means the right-hand side of (102) is a vector
b which is in im(S− µ01), the image of the operator on the left-hand side of
(102).

One can further determine µ2 by multiplying (93) by ξT0 to get, by a similar
procedure as before,

µ0ξ
T
0 ξ2 + ξT0 Bξ1 + ξT0 Qξ0 = µ0ξ

T
0 ξ2 + µ1ξ

T
0 ξ1 + µ2. (105)

Thus,

µ2 = ξT0 Qξ0 + ξT0 Bξ1 − µ1ξ
T
0 ξ1. (106)

But take the transpose and,

µ2 = ξT0 Qξ0 + ξT1 (B− µ11)ξ0, (107)

= ξT0 Qξ0 − ξT1 (S− µ01)ξ1, (108)

where (102) was used. One can write ξ1 as,

ξ1 = aξ0 + bξ⊥0 , (109)
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where a, b ∈ R and ξ⊥0 ∈ im(S − µ01), which is, in general, not equal to ξ′⊥0 .
Hence,

µ2 = ξT0 Qξ0 − b2ξ⊥T0 (S− µ01)ξ⊥0 . (110)

Therefore, the only part of ξ1 which contributes to µ2 is the part which is in
the image of (S− µ01).

When dealing with a two-dimensional flow field, im(S − µ01) is just a 1-
dimensional subspace of R2, and thus ξ′⊥0 in (104) is parallel to ξ⊥0 in (109).
Without loss of generality, they can be taken to be equal unit vectors, ξ⊥0 =
ξ′⊥0 . Thus, (102) becomes,

b(S− µ01)ξ⊥0 = −dξ⊥0 , (111)

or,

(S− µ01)ξ⊥0 = −dbξ⊥0 , (112)

which is an eigenvector equation for the matrix (S−µ01) with the eigenvector
ξ⊥0 and corresponding eigenvalue µ̄ = −db , assuming b 6= 0. Note that if b = 0,
then d = 0, from (111).

For two-dimensional flows, from ξ0, one can obtain ξ⊥0 from a 90◦ counter-
clockwise rotation,

ξ⊥0 = Rξ0, (113)

where,

R =

[
0 −1
1 0

]
. (114)

Now, ξ⊥0 was used to obtain µ̄ from (112) for the case d 6= 0. With (113) in
(112), (112) becomes the following eigenvector equation for RT (S − µ01)R
with eigenvector ξ0,

RT (S− µ01)Rξ0 = µ̄ξ0, (115)

Therefore µ̄ is obtained by taking the dot product with ξ0,

µ̄ = ξT0 RT (S− µ01)Rξ0, (116)

and d is obtained from (104), noting that ξ⊥T0 ξ0 = 0,

d = ξ⊥T0 Bξ0,

= ξT0 RTBξ0.
(117)

Thus, (110), for two-dimensional systems, simplifies to,

µ2 =

{
ξT0 Qξ0, if d = 0

ξT0 Qξ0 − d2

µ̄ , if d 6= 0
(118)

where d and µ̄ are from (117) and (116), respectively.
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D Details for Time-Varying Double-Gyre Example

The acceleration field, a = d
dtv = (ax, ay), for the double-gyre, (67), is given

by,

ax =− π2A cos(πf) cos(πy)∂f∂t + 1
2π

3A2 sin(2πf)∂f∂x ,

ay = π2A
[
− sin(πf) sin(πy)∂f∂x

∂f
∂t + 1

π cos(πf) sin(πy) ∂
2f

∂x∂t

]
+ 1

2π
3A2 sin(2πy)

[
sin2(πf)∂f∂x + cos2(πf)(∂f∂x )2 − 1

2π sin(2πf)∂
2f
∂x2

]
,

(119)

where the dependence of the function f , from (66), is understood.
The components of the symmetric B matrix are,

Bxx = −Aπ2 cos(πf) cos(πy) ∂
2f

∂x∂t + 1
2Aπ

3 sin(2πf)∂f∂x
∂f
∂t

+A2π3 sin(2πf)∂
2f
∂x2

(
1
2 − sin2(πy)(∂f∂x )2

)
+A2π4 cos(2πf)(∂f∂x )2

+A2π4 sin2(πf) sin2(πy)(∂f∂x )4 +A2π2 cos2(πf) sin2(πy)∂
2f
∂x2

+A2π4 cos2(πf) cos2(πy)(∂f∂x )2,

(120)

Bxy = 1
2Aπ cos(πf) sin(πy)

[
∂3f
∂x2∂t + π2

(
1− (∂f∂x )2

)]
−Aπ2 sin(πf) sin(πy)

(
∂f
∂x

∂2f
∂x∂t − 1

2
∂2f
∂x2

∂f
∂t

)
− 1

4A
2π4 sin(2πf) sin(2πy)

[
∂f
∂x

(
1 + (∂f∂x )2

)
+ 1

2
∂3f
∂x3

]
,

(121)

Byy = Aπ2 cos(πf) cos(πy) ∂
2f

∂x∂t −Aπ3 sin(πf) cos(πy)∂f∂x
∂f
∂t

− 1
2A

2π3 sin(2πf) sin(2πy)∂
2f
∂x2

+A2π4 cos2(πf) cos2(πy)(∂f∂x )2 +A2π4 sin2(πf) sin2(πy)

+A2π4(∂f∂x )2
(

cos2(πf)− sin2(πy)
)
.

(122)

The normalized eigenvector of S(x0, t0) corresponding to the eigenvalue s1(x0, t0)
given in (69) is,

ξs1 =

[
ξx
ξy

]
=

1

N

[
1
2α

s̄1 + β

]
, (123)

where,

s̄1 =
s1

π2A
= − 1

2

√
α2 + 4β2,

N =
√

1
4α

2 + (s̄1 + β)2,

α = sin(πf) sin(πy)
(

1− ∂f
∂x

)
+ 1

π cos(πf) sin(πy)∂
2f
∂x2 ,

β = cos(πf) cos(πy)∂f∂x .

(124)
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The coefficient of T in the approximation of the backward-time FTLE for the
double-gyre is thus given by s2

1 − 1
2ξ
T
s1Bξs1 which can be expressed as,

a(x0, t0) = s2
1 − 1

2 (Bxxξ
2
x + 2Bxyξxξy +Byyξ

2
y), (125)

using the above formulas. This yields a backward-time FTLE approximation
for small backward times T < 0 of,

σt0+T
t0 (x0) = s1(x0, t0) + a(x0, t0)T +O(T 2). (126)

Note that the first and second terms have explicit dependence on both initial
position and initial time.
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