Fermat's theorem: First case: ABC is not a multiple of n

All calculations are done with numbers in base n, a prime number greater than 2.

Notations: A', A'', A''' – the first, second, third digit from the end of the number A.

0°) **Lemma**.

The sum of the numbers a_i^n (where i=1, 2... n-1) ends by d00, where d is a digit and $d=(n-1)/2$.

Let's assume that for co-prime natural numbers A, B, C, where $(ABC)\neq 0$ and n is a prime number n>2,

1°) [D=] A^{n} +Bⁿ-Cⁿ=0, where, as it is known [see $viXra:1707.0410$ ^{*}], 2°) $(A+B-C)_{[2]}=0$ From here we find that $A' + B' - C'$ is either 0 or n-1, and therefore the digit 3°) u"= $(A'' + B'' - C'')'$ is either 0 or n-1.

 4°) If we multiply 1° by g^{mn} , where $g=1, 2, ...$ n-1, we find n-1 equivalent equations..

Proof of the FLT

For A=A', B=B', C=C', the sum of powers for each of the letters A, B, C, as well as the sum of all n-1 numbers D from 4° , has an ending d00 [where d=(n-1)/2 – see 0°].

In all the equations 4° the digit D" \neq 0, otherwise after the operation 4° with this equality with D"'=0 the digit D"' in the total sum is also zero.

Hence, the maximum number of equations in which $D^{\prime\prime}=1$, is (n-1)/2. This means that there is an equality with D"'>1.

Now if we put back the digits A", B", C" into this equality, this digit can not be transformed into 0, because, as it follows from the binomial theorem

 $Aⁿ=(...+Aⁿn+Aⁿ)ⁿ, Bⁿ=(...+Bⁿn+Bⁿ)ⁿ, Cⁿ=(...+Cⁿn+Cⁿ)ⁿ$

and the Small Theorem, they add to the digit D''' ($>1!$) only the digit

 $(Aⁿ⁻¹Aⁿ+Bⁿ⁻¹Bⁿ-Cⁿ⁻¹Cⁿ)'$ [=u", i.e. 0 or n-1, – see 3°], where $Aⁿ⁻¹$ = Bⁿ⁻¹ = Cⁿ⁻¹ = 1.

From what follows the truth of FLT.