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Abstract

The purpose of this article is to introduce the theory of totherian
analysis in order to provide proof of the Riemann hypothesis: the
concepts introduced have been so effective and we can use it to build
a coherent and tangible analysis. Totherian analysis can be considered
as an effective remedy in solving a lot of problems in mathematics

1 INTRODUCTION

Totherian analysis is a new field of Mathematics which introduce new ana-
lytical tools to solve the most complex problems in mathematics. the basis
of totherian analysis is based on Totherian notions, which consists in gener-
alizing certain notions of classical algebra

2 TOTHERIAN SET

2.1 definition

Let E be a nonempty set, E is totherian if and only if

∀(x, y) ∈ E2, x+ y ∈ E, x− y ∈ E

2.2 TOTHERIAN SUBSET

let E be a set containing 0, a non-empty part B of E is said under totherian
, if it is totherian
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2.3 Property

•The set of totherian parts Z is of the form nZ
• if A and B are totherian then A ∩B is totherian
• if An∈N is totherian sequence such that An ⊂ An+1,∀n then ∪n∈NAn is
totherian

2.4 Predictive Application

let E and F be two totherian sets , f an application of E to F is said to be
predictive if and only if

∀(x, y) ∈ E2, f(x+ y) = f(x) + f(y), f(x− y) = f(x)− f(y)

2.5 Property

Let E, F and G be totherian sets, f an application from E to F and g an
application from F to G
•, Imf is totherian of F
•, Kerf is totherian of E
•f ◦ g est totherian

2.6 K-predictive Application

let E and F be two totherian sets and K a field, and f a predictive application
defined on E with value in F, f is K-predictive if and only if ∀a ∈ K, ∀x ∈
E, f(ax) = af(x)

3 Riemann hypothesis proof

3.1 Introduction

In mathematics, the Riemann hypothesis is a conjecture formulated in 1859
by the German mathematician Bernhard Riemann. She says that the non-
trivial zeroes of Riemann’s zeta function all have real 1/2. His demonstration
would improve the knowledge of the distribution of prime numbers. In this
article we give a conclusive proof of the Riemann Hypothesis. Our proof is
based on the Totherian analysis
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3.2 FONCTION ZETA

The link between the function and prime numbers had established by Leon-
hard Euler with the formula, valid for re(s) ∈]1,+∞[

ζ(s) =
∏
p∈P

1

1− p−s

Another link also exists with the function that counts the number of integers
first less than x π(x) :

∀s, re(s) ∈]1,+∞[, ln(ζ(s)) = s

∫ +∞

2

π(u)du

u(us − 1)

.This is undoubtedly what justifies his interest and the curiosity of any math-
ematician

3.3 Principle of the proof

Our proof is based on the following wording,

ζ(s) = ζ(1− s)⇔ re(s) =
1

2

From the Functional relationship ζ(s) = η(s)
1−2s with η(s) =

∑
n≥1

(−1)n−1

ns we
deduce

ζ(s)− ζ(1− s) =
+∞∑
n=1

(−1)n−1Bn(s)

n

where

Bn(s) =
n1−s

1− 21−s −
ns

1− 2s

.Although this formulation is simple, it remains difficult to prove As we
have said we will have to introduce notions of totherian analysis in order to
elucidate this mystery

4 Theorem

There is a Totherian set E containing Bn and a K-predictive injective On E
which zero is Bn
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4.1 Proof

As far as the proof is concerned, let us consider a complex number such as
re(s) ∈]0, 1[ and let’s designate by F(C 7→ C)the set of complex functions
and A set defined as follows

A = {f ∈ F(C 7→ C) : ∀s ∈ C, re(s) ∈]0, 1[, f(s) + f(1− s) = 0⇒ f = 0}

Let B be a totherian set formed by providing stability property by addition
and subtraction to A
Let Θ a complex function Θ(s) = 1 − s, ∀s ∈ C Let T be an application on
B define as follow : ∀f ∈ B, Tf = f + f ◦Θ It is clear that T is injective and
K-predictive Furthermore TBn(s) = (Bn +Bn ◦Θ)(s) = 0,∀s
then TBn = 0

4.2 The proof of Riemann hypothesis

Let consider
F (s) = T (s+ s− 1 + ζ(s)− ζ ◦Θ(s))

and suppose that
ζ(s) = ζ(1− s)

so
F (s) = T (s+ s− 1)

As
T (s+ s− 1) = T (id+ id− 1)(s)

T (s+ s− 1) = (id+ id− 1)(s) + (id+ id− 1) ◦Θ(s) = 0

T (id+ id− 1)(s) = 0

so
(id+ id− 1)(s) = 0

hence s + s = 1 for the following re(s) = 1
2

Reciprocally Let s such as
re(s) = 1

2
then s+ s = 1 so

F (s) = T (ζ − ζ ◦Θ)(s) = T (ζ(s)− ζ ◦Θ(s)) = T
+∞∑
n=1

(−1)n−1Bn(s)

n

As T is C-predictive then

T
+∞∑
n=1

(−1)n−1Bn(s)

n
=

+∞∑
n=1

(−1)n−1TBn(s)

n
= 0
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F (s) = T (ζ − ζ ◦Θ)(s) = 0

(ζ − ζ ◦Θ)(s) = 0

the result follows .
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