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In the conventional approach of renormalization, divergent loop integrals are regulated and com-
bined with counterterms to satisfy a set of renormalization conditions. While successful, the process
of regularization is tedious and must be applied judiciously to obtain gauge-invariant results. In
this Letter, I show that by recasting the renormalization conditions as the initial conditions of
momentum-space differential equations for the loop amplitudes, the need for regularization disap-
pears because the process of differentiating under the loop integrals renders them finite. I apply this
approach to successfully renormalize scalar φ4 theory and QED to one-loop order without requiring
regularization or counterterms. Beyond considerable technical simplifications, the ability to perform
renormalization without introducing a regulator or counterterms can lead to a more fundamental
description of quantum field theory free of ultraviolet divergences.

INTRODUCTION

Divergences are considered an unavoidable part of
quantum field theory [1–3]. Scattering amplitudes for
processes involving one or more loops are evaluated by
integrating over internal momenta, resulting in formally
divergent quantities. To obtain finite physical results,
divergent integrals are regulated by introducing an arbi-
trary regulator parameter, and then combined with coun-
terterms in the process of renormalization to obtain finite
quantities independent of the regulator. This process of
regularization and renormalization has proved very suc-
cessful, and forms the basis of the standard model [4–8].

Several regularization methods have been developed
and applied [9–18]. They can be evaluated based on
their convenience and preservation of symmetries. The
simplest is cutoff regularization, which imposes an upper
limit on the loop momentum [14]. While simple, cut-
off regularization breaks translation invariance, making
it difficult to apply Feynman parametrization. It is also
difficult to maintain gauge invariance when imposing a
cutoff on the gauge covariant derivative. Related meth-
ods such as Gaussian or higher-derivative cutoff can be
gauge invariant [15, 18], but suffer from lack of trans-
lation invariance. Pauli-Villars regularization [9], which
introduces a divergent integral with much larger mass,
maintains translation and gauge invariance, but is not
gauge covariant, so it cannot be applied to QCD [19].
The most common approach is dimensional regulariza-
tion, in which the spacetime dimension is treated as a
continuous parameter [10, 11]. Dimensional regulariza-
tion maintains translation and gauge invariance, but is
difficult to apply to dimension-specific quantities, such
as the Dirac gamma matrices [12], and is insensitive to
quadratic divergences, which are important for under-
standing scaling behavior [16, 20].

Beyond superficial technical distinctions, the need for
regularization in any form raises doubt about the logical
foundations of quantum field theory [21–23]. In this arti-

cle, I address this issue head on by developing a method
of renormalization that does not require regularization or
counterterms, and preserves all properties of the original
theory. The approach is based on differentiation under
the integral and the fact that any loop integral can be
rendered finite by taking a sufficient number of deriva-
tives with respect to external momenta. This process
leads to momentum-space ordinary differential equations
for the amplitudes which can be readily integrated to ob-
tain the original amplitude up to integration constants.
By imposing initial conditions, traditionally referred to as
renormalization conditions, the renormalized amplitude
is obtained without introducing counterterms. I apply
this method to reproduce the results of dimensional reg-
ularization for several common loop integrals, and then
apply it to renormalize scalar φ4 theory and QED with-
out ever involving regularization or counterterms. The
ability to evaluate loop effects without introducing coun-
terterms can greatly simply the calculation of higher-
order processes, and more importantly, provide a more
fundamental description of quantum field theory free of
ultraviolet divergences.

APPROACH

The approach derives from the observation that the
degree of divergence of a loop integral can be reduced
by differentiating with respect to the external momenta.
For example, consider the following integral frequently
encountered in one-loop calculations

I1(∆)=

∫
d4`

(2π)4
1

(`2−∆)2
, (1)

where Wick rotation is assumed. This integral is formally
divergent, with a degree of divergence of zero. However,



2

differentiating with respect to ∆ gives

dI1(∆)

d∆
=

d

d∆

∫
d4`

(2π)4
1

(`2−∆)2

=

∫
d4`

(2π)4
∂

∂∆

1

(`2−∆)2

=

∫
d4`

(2π)4
2

(`2−∆)3

=− 1

16π2

1

∆
. (2)

This is a consequence of the Leibniz rule of differentiation
under the integral [24], which is perfectly valid because
the integration limits are independent of ∆. The original
divergent loop integral has been transformed into a fi-
nite differential equation for I1(∆), which can be readily
integrated to obtain

I1(∆)=− 1

16π2
log ∆+c1, (3)

where c1 is an integration constant. Equation (3) is
equivalent to the result obtained by dimensional regu-
larization with the replacement

c1→
1

16π2

[
2

ε
−γ+log(4π)

]
, (4)

where ε=4−d and γ is the Euler-Mascheroni constant.
Thus, what are normally understood as counterterms be-
come initial conditions in the new approach. Consider
another divergent integral often encountered in one-loop
mass renormalization

I2(∆)=

∫
d4`

(2π)4
1

(`2−∆)
. (5)

In this case, the degree of divergence is two, so to obtain
a finite result we must differentiate twice to obtain

d2I2(∆)

d∆2
=

d2

d∆2

∫
d4`

(2π)4
1

(`2−∆)

=

∫
d4`

(2π)4
∂2

∂∆2

1

(`2−∆)

=

∫
d4`

(2π)4
2

(`2−∆)3

=− 1

16π2

1

∆
. (6)

Thus, I2(∆) satisfies a second-order differential equation
with the solution

I2(∆)=− 1

16π2
∆ log ∆+c2∆+c1, (7)

which, up to integration constants, also agrees with the
result obtained by dimensional regularization [3]. Lastly,
consider the common divergent integral

I3(∆)=

∫
d4`

(2π)4
`2

(`2−∆)2
, (8)

which is also quadratically divergent. To render it finite,
we must again differentiate twice to obtain

d2I3(∆)

d∆2
=− 1

8π2

1

∆
, (9)

which can be integrated to obtain

I3(∆)=− 1

8π2
∆ log ∆+c2∆+c1, (10)

again in agreement with the result obtained by dimen-
sional regularization [3]. Having successfully reproduced
several results from dimensional regularization, I now
proceed to apply the method to renormalize scalar φ4

theory and QED.

APPLICATION TO φ4 THEORY

Consider scalar φ4 theory with the Lagrangian

L=
1

2
(∂µφ)2− 1

2
m2φ2− λ

4!
φ4. (11)

In conventional quantum field theory, the coupling con-
stant, mass, and propagator residue are fixed at a partic-
ular momentum scale by a set of renormalization condi-
tions. In the new formalism, renormalization conditions
become the initial conditions of the theory.

Wavefunction and mass renormalization are derived
from the one-loop amplitude

−iM2=−iλ
2

∫
d4`

(2π)4
1

`2+m2
. (12)

Coupling constant or vertex renormalization is calculated
from the two particle scattering amplitude

iM=−iλ+(−iλ)2[iV (s)+iV (t)+iV (u)], (13)

where s, t, and u, are the Mandelstam variables, and

V (p2)=−1

2

∫ 1

0

dx

∫
d4`

(2π)4
1

(`2−∆)2
, (14)

where ∆=x(1−x)p2−m2. Requiring the propagator pole
to be at m with unit residue, and setting iM=−iλ at
zero momentum leads to the initial conditions

M2(p2)
∣∣
p2=m2 =0,

d

dp2
M2(p2)

∣∣
p2=m2 =0,

iM
∣∣
s=4m2,t=u=0

=−iλ. (15)

Since M2(p2) has two initial conditions, it obeys a
second-order differential equation. From Eq. (12),

−i d
2

dp4
M2=−iλ

2

∫
d4`

(2π)4
∂2

∂p4
1

`2+m2

=0, (16)
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with the solution

M(p2)=c1+c2p
2. (17)

The first two conditions in Eq. (15) imply c1=c2=0 and
M(p2)=0. Thus, in agreement with the standard result,
there is no wavefunction or mass renormalization at one-
loop order in φ4 theory.

From Eq. (2), the three initial conditions on M lead
to three first-order differential equations of the form

dV (p2)

d∆
=−1

2

∫ 1

0

dx

∫
d4`

(2π)4
∂

∂∆

1

(`2−∆)2

=
1

32π2

∫ 1

0

dx
1

∆
, (18)

with the solution

V (p2)=
1

32π2

∫ 1

0

dx log[m2−x(1−x)p2]+c1. (19)

Imposing the initial condition in Eq. (15) gives,

c1=−(−iλ)2[iV (4m2)+i2V (0)]. (20)

Thus, the renormalized amplitude is

iM=−iλ− iλ2

32π2

∫ 1

0

dx

[
log

(
m2−x(1−x)s

m2−x(1−x)4m2

)
+ log

(
m2−x(1−x)t

m2

)
+log

(
m2−x(1−x)u

m2

)]
, (21)

which agrees with the standard result obtained by dimen-
sional regularization [2, 3]. This completes the one-loop
renormalization of scalar φ4 theory.

APPLICATION TO QED

I now apply the method to QED with the Lagrangian

L=−1

4
(Fµν)2+ψ̄(i/∂−m)ψ−eψ̄γµψAµ. (22)

The renormalization conditions are

Σ(/p)
∣∣
/p=m

=0,
d

d/p
Σ(/p)

∣∣∣∣
/p=m

=0,

Π(q2)
∣∣
q2=0

=0,
dΠ(q2)

dq2

∣∣∣∣
q2=0

=0, (23)

−ieΓµ(q2)
∣∣
q2=0

=−ieγµ,

where the first and second lines fix the mass and prop-
agator residue of the electron and photon, respectively,
and the last condition fixes the vertex coupling. The first
two conditions involve the electron self energy, which af-
ter applying Feynman parametrization and dropping the
term linear in ` takes the form [3]

−iΣ2(p)=−e2
∫ 1

0

dx

∫
d4`

(2π)2
−2x/p+4m

(`2−∆)2
, (24)

where ∆=−x(1−x)p2+(1−x)m2. Since Σ2(p) has two
initial conditions, it obeys a second order differential
equation. Taking the second derivative,

−id
2Σ2(p)

d/p
2 =−e2

∫ 1

0

dx

∫
d4`

(2π)4

{
16/p(1−x)x2

(`2−∆)3

+(4m−2x/p)

[
24p2(1−x)2x2

(`2−∆)4
− 4(1−x)x

(`2−∆)3

]}
. (25)

All integrals are rendered finite by differentiation. Inte-
grating over `,

−id
2Σ2(p)

d/p
2 =− e2

8π2

∫ 1

0

dx

{
−

4/p(1−x)x2

∆

+(4m−2x/p)

[
2p2(1−x)2x2

∆2
+

(1−x)x

∆

]}
, (26)

and then solving for Σ2(p),

−iΣ2(p)=− e2

8π2

∫ 1

0

dx
[
(x/p−2m) log(m2−xp2)

+c1+c2/p
]
.(27)

Applying the initial conditions in Eq. (23),

c1=m(2−x) log[m2(1−x)]+m

{
2x(2−x)

1−x

+x log[m2(1−x)]

}
,

c2=−2x(2−x)

1−x
−x log[m2(1−x)]. (28)

The final renormalized expression for Σ2(p) is

−iΣ2(p)=− e2

8π2

∫ 1

0

dx

{
(m−/p)

[
2x(2−x)

1−x
+x log[m2(1−x)]

]
−(2m−x/p) log(m2−xp2)+m(2−x) log[m2(1−x)]

}
, (29)

in agreement with the result obtained by dimensional
regularization [3]. The second two conditions in Eq. (23)
involve the photon self energy [3]

iΠµν
2 (q2)=−4ie2

∫ 1

0

dx

∫
d4`

(2π)4

×
gµν [ 12`

2+m2+x(1−x)q2]−2x(1−x)qµqν

(`2+m2−x(1−x)q2)2
.(30)

Differentiating twice with respect to q2 and using the
relation qµqν= 1

4g
µνq2,

i
d2Πµν

2 (q)

dq4
=−i e

2

2π2

∫ 1

0

dx

∫
d4`

(2π)4
gµν [x(1−x)]2

×
[

1

m2−x(1−x)q2
+

1

2

(m2+ 1
2x(1−x)q2)

[m2−x(1−x)q2]2

]
. (31)
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Integrating twice with respect to q2,

iΠµν
2 (q)=−i e

2

2π2

∫ 1

0

dx
3

4
gµν
[
m2 log(−1)+c1+c2q

2

−x(1−x)q2 log[m2−x(1−x)q2]

]
. (32)

Imposing the renormalization conditions in Eq. (23),

c2=x(1−x) log(m2), c1=−m2 log(−1). (33)

Thus, the final expression for the photon self energy is

iΠµν
2 (q)=i

e2

2π2
(q2gµν−qµqν)

×
∫ 1

0

dxx(1−x) log

[
m2−x(1−x)q2

m2

]
, (34)

consistent with the Ward identity and in agreement with
the standard result [2, 3]. The last condition involves the
electron vertex function

δΓµ(∆)=2ie2
∫ 1

0

dxdydzδ(x+y+z−1)

∫
d4`

(2π)4
2

(`2−∆)3

×
(
γµ
[

1

2
`2+(1−x)(1−y)q2+(1−4z+z2)m2

]
+
iσµνqν

2m

(
2m2z(1−z)

))
, (35)

where ∆=−xyq2+(1−z)2m2. Differentiating once with
respect to ∆, and integrating over `,

d

d∆
δΓµ(∆)=

e2

8π2

∫ 1

0

dxdydzδ(x+y+z−1)

×
(
γµ
[
− 1

∆
− 1

∆2

(
(1−x)(1−y)q2+(1−4z+z2)m2

) ]
− iσ

µνqν
2m

[
1

∆2
2m2z(1−z)

])
.(36)

Integrating with respect to ∆,

δΓµ(∆)=
e2

8π2

∫ 1

0

dxdydzδ(x+y+z−1)

×
(
γµ
[
− log ∆+c1+

1

∆

(
(1−x)(1−y)q2+(1−4z+z2)m2

)]
+
iσµνqν

2m

[
1

∆
2m2z(1−z)

])
. (37)

Imposing the initial condition gives

c1=log[(1−z)2m2]− 1−4z+z2

(1−z)2
. (38)

Thus, the final renormalized expression for the electron
vertex is

δΓµ(∆)=
e2

8π2

∫ 1

0

dxdydzδ(x+y+z−1)

×
(
γµ
[
− log ∆+c1+

1

∆

(
(1−x)(1−y)q2+(1−4z+z2)m2

)]
+
iσµνqν

2m

[
1

∆
2m2z(1−z)

])
, (39)

in agreement with the standard result [2, 3]. This com-
pletes the one-loop renormalization of QED.

SUMMARY

In the traditional approach of renormalization, diver-
gent loop integrals are regulated by introducing an arbi-
trary parameter, and then combined with counterterms
and renormalization conditions to obtain a renormalized
physical result independent of the regulator. While suc-
cessful, this approach is tedious and must be applied with
caution to ensure gauge-invariant results. More impor-
tantly, the need for regularization of any form raises ques-
tions about the logical foundations of quantum field the-
ory. In this article, I address this issue head on by show-
ing that when renormalization conditions are recast as
initial conditions for momentum-space differential equa-
tions, the need for regularization disappears because the
process of differentiation under the loop integrals renders
them finite. I applied this method to successfully renor-
malize scalar φ4 theory and QED without introducing
a regulator or counterterms. Beyond considerable tech-
nical simplifications, the ability to perform renormaliza-
tion without introducing a regulator or counterterms may
provide a more fundamental formulation of quantum field
theory free of ultraviolet divergences.
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