
 

Particle Spin and Magnetic Moment as Quantum Field Effects 
Ray Fleming 

101 E State St. #152 Ithaca NY 14850 
 

 
In a prior paper the author explained how the physical constants arise due to the po-

larizability and van der Waals torque of the quantum field of standard model quantum 
field theory. A more detailed development of how spin and magnetic moment arise from 
the quantum field is presented here. Recognizing that a central charge causes polarization 
of the quantum field, it is a simple matter to explain how the polarization process, rather 
than being random, leads to quantum dipole rotation on a common axis. This leads to 
spin and magnetic moment even when the central charge is static. This model also shows 
why the g-factor is approximately two instead of one, and how a semi-classical electron 
model can avoid the speed of light limit problem. This model can also be applied to pro-
tons by considering that a proton’s magnetic moment is due to its actual radius rather 
than its Compton wavelength. The neutron magnetic moment is also predicted by this 
model more accurately than the quark model by assuming an orthogonal combination of 
the electron and proton magnetic fields.  

 
1. Introduction 

In a recent paper the author explained how the 
physical constants arise from the quantum field of 
standard model quantum field theory due to the polar-
izability and van der Waals torque of the quantum 
field.[1] A more detailed discussion of the physical 
origin of particle spin and magnetic moment is pre-
sented here. 

Standard model quantum field theory treats the 
quantum field as a sea of particle pairs that are short-
lived and thus often described as virtual particles. In 
practice this means that they are quantum resonators 
consistent with Planck’s theory of quantum harmonic 
oscillators where their energy (E) is equal to Planck’s 
constant (h) times their frequency (f), (E = hf). 

Due to the existence of the Casimir effect, which 
exists because of van der Waals forces between quan-
tum fluctuations, we know that quantum fluctuations 
behave like electric charge dipoles.[2] In Casimir the-
ory, quantum dipoles are normally treated as Dirac-
Fermion particle pairs. They are consistent with the 
Dirac equation and obey Fermi statistics. The elec-
tron-positron pair is the best-known representation of 
a Dirac-Fermion particle pair. 

In a sea of quantum dipoles, those dipoles are po-
larized in the presence of an electric charge. When a 
charge moves, the quantum dipoles rotate becoming 
quantum magnets. In this way the polarizability and 
magnetizability of space and the related constants ε0 

and μ0 are physically due to the polarizability and 
magnetizability of the quantum field.[3] 

Whenever there is a sea of dipoles, including those 
of the quantum field, they participate in van der 
Waals forces. One of those forces which receives lit-
tle attention is van der Waals torque. In order for po-
larization and magnetization of space to occur, quan-
tum dipoles must rotate. The inertia of the dipoles re-
sists rotation and this resistance causes van der Waals 
torque. The van der Waals torque of the quantum 
field limits linear and rotational motion of any electric 
charge or electric dipole, including the motion of the 
quantum dipoles themselves.  

  

2. Unit of Electric Charge 

When we consider the quantized electric charge of 
particles we have extraordinary difficulty explaining 
how charge is physically quantized. At the heart of 
the problem is that particles come in many different 
masses, and hypothetical compositions, structures, 
and sizes. It seems impossible for every particle to 
have precisely the same electric charge.  

We find a path forward by considering Gauss’s 
law. Based on Gauss’s Law, when we have a volume 
of space polarized by a unit charge (e) within that 
volume, the surface integral of the flux of the polari-
zation (P) for that unit charge over the surface area 
(A), gives us Equation 1. This equation gives the rela-
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tionship between the polarizability of the quantum 
field and the quantized unit for electric charge. 

 
Equation 1 

 
 
We can then note that the quantum field is uniform 

in free space. As such, the polarizability of free space 
is uniform. And, the unit electric charge is uniform 
given a single polarizer―charge.  

If we consider particles as unit polarizers then the 
quantized nature of charge is readily explained by the 
uniform polarizability of the quantum field in free 
space. This interpretation moves the idea of electric 
charge from a property of a particle to the property of 
the quantum field surrounding the particle. Then in-
stead of asking how a particle has charge we ask how 
it polarizes quantum dipoles. Note that there was ad-
ditional discussion of issues related to this approach 
to understanding unit charge and its advantages in the 
prior paper.[1] 

 

3. Particle Spin Quantum  

As with electric charge it is difficult to conceive of 
a physical mechanism that allows particles of varying 
mass, and hypothetical size and structure to have the 
same quantized spin. And as with charge, the most 
obvious path forward is to consider spin as a property 
of something other than the particle that is uniform 
throughout space. Given the above approach to un-
derstanding charge, we can consider that spin and 
magnetic moment somehow arise from the polariza-
tion of the quantum field due to a unit polarizer.  

 
Equation 2 

 
 
Spin quantization of particles occurs in increments 

of the reduced Planck’s constant divided by two 
(±½ħ), which can also be written in terms of Planck’s 
constant as ±h/4π. The spin quantum (S) is usually 
stated as simply ±½, with the ħ assumed and can be 
expressed in terms of electric charge, the permittivity 
of space (ε0), the fine structure constant (α), and the 
speed of light (c) as shown in Equation 2.  

Equation 2 can be simplified by expressing it in 
natural units where ε0, and c are equal to one to obtain 
Equation 3. The spin quantum and Planck’s constant 
are related to the ratio between the electric charge 
squared and the fine structure constant.  

 
Equation 3 

 
  
It was also shown in prior papers that the fine 

structure constant is due to the volumetric polarizabil-
ity of the quantum field due to a unit polarizer.[1][4] 
We can make that conclusion based on the relation-
ship that α = e2/2 in one set of natural units. This re-
sult tells us the spin quantum, and consequently mag-
netic moment, arise due to physical processes related 
to the polarization of the quantum field. 

Historically, it was unknown if spin is a physical 
kind of spin, or something else. But since Planck’s 
constant appears when we consider angular momen-
tum, treating the spin quantum as a physical spin of 
some kind is a good place to start. Given that charge 
arises as a property of quantum field polarization we 
can consider whether physical spin occurs as the 
quantum field is polarized around a polarizer. 

 

4. How does the Quantum Field Spin?  

A unit polarizer in free space causes the quantum 
dipoles in the surrounding space to be polarized. Our 
immediate reaction may be to think that no net rota-
tion comes from that because the dipoles rotate in 
many directions such that the polarization process is 
neutral with respect to spin. However, that initial re-
action is wrong. 

To understand how quantized spin comes about we 
must first recognize that quantum dipoles undergoing 
polarization are continually being produced and anni-
hilated. Polarization is an on-going process rather 
than a one-time event. Additionally, since there are 
vastly more quantum dipoles in space than are needed 
to form an electric field, only a few quantum dipoles 
need to rotate a fraction of a degree to achieve the 
correct field strength. 

Most quantum dipoles are randomly oriented when 
produced, and we might assume that any reorientation 
with respect to a charged particle would also be ran-
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dom. In that case, however, adjacent dipoles would 
sometimes rotate in opposing directions.  

If we envision two dipoles with similar wave-
lengths side-by-side, their like charges are near each 
other as they become polarized. As they rotate in op-
posite directions, one pair of like charges moves fur-
ther apart while the other pair of like charges on the 
other end of the dipoles moves closer together. Ener-
gy is required for like charges to move toward each 
other as they naturally repel. 

If on the other hand we imagine that the dipoles ro-
tate the same direction when forming the electric 
field, the distance between the charges can remain 
relatively constant. Rotation of adjacent dipoles ori-
ented with their axis of rotation in the same direction 
requires less energy than rotating similar dipoles in 
opposing directions. In a related situation it has been 
determined that a stable dipole on a rotating spherical 
surface tends to travel in a geodesic along the surface 
of that sphere.[5] So, it is expected that a collection of 
stable dipoles does the same. 

 

 
  
Fig. 1. Quantum dipoles around an electric charge, such as an 

electron, tend to rotate in a single direction in any given plane in 
order to achieve the correct state of polarization with the least 
amount of energy expended.  

 
During quantum field polarization, nature automat-

ically adapts to the process that requires the least 
amount of energy. This supports the idea that a group 
of quantum dipoles in a plane tend to rotate on a 
common axis as illustrated in Fig. 1.  

When we consider the physical volume of a sphere 
filled with a continuum of quantum dipoles, the di-
poles cannot all rotate on the same axis. The axis 
must change as the latitudinal angle with respect to 
the electric polarizer changes. Nonetheless, quantum 
dipoles undergoing polarization in a spherical field 
must preferentially rotate in one direction. 

The net effect of the quantum dipoles undergoing 
polarization having a preferred direction of rotation 
gives the appearance that the particle is rotating, even 
though the polarizer at the center may not be rotating. 

The center of each quantum dipole does not neces-
sarily move with respect to the central polarizer ei-
ther.  

The natural quantum dipole rotation that must arise 
during the polarization process gives us an explana-
tion of how particle spin and magnetic moment come 
about. In this way particle spin is independent of the 
particle and the particle’s internal structure. Rotating 
quantum dipoles produce a magnetic field thus giving 
a particle its magnetic moment. So, spin and magnetic 
moment have the same axis of rotation.  

 

5. The Speed of Light Problem 

Classical models of electrons as a distribution of 
charge on a spherical shell ran into a problem. In or-
der for a classically modeled spherical electron to 
have the correct magnetic moment, the velocity of the 
surface of the sphere has to exceed the speed of light. 
This problem has doomed many attempts at physical-
ly modeling the electron. 

The quantum dipole spin model solves that prob-
lem. To understand how it is important to note that 
under the constraints of a Planck resonator, a quantum 
dipole can rotate 180 degrees during its existence 
without exceeding the speed of light limit or other 
physical limitations. It is also important to remember 
that only a small percentage of the dipoles are needed 
to produce a polarized field, and thus they also only 
need to rotate a small fraction of a degree. 

Consequently, the polarization of the dipoles 
around a polarizer can progress very rapidly from one 
to the other such that they almost appear to be rotat-
ing in unison. This gives the physical appearance of 
charges rotating on a spherical surface at a rate faster 
than the speed of light, while in truth, the center of 
each of the dipoles may not be moving at all relative 
to the central polarizer. It can be thought of in the 
same way individual lights in a string of lights can be 
turned on and off in progression to make it look like a 
single light is moving very rapidly. And thus, the 
speed of light limit is not violated. 

 

6. Why is the g-Factor ≈2 

Another of the great unanswered questions in 
physics is; why is the g-factor approximately equal to 
two? The g-factor came about as something of a 
fudge factor that is necessary when computing the 
magnetic moment of an electron. In early modeling of 
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the electron’s magnetic moment, physicists consid-
ered the electron as a rotating spherical surface of 
charge and computed the magnetic moment accord-
ingly. What they realized is that the electron’s mag-
netic moment is slightly more than two times what we 
expect based on this simple model.  

 
Equation 4 

 
 
In Equation 4 the electron spin magnetic moment 

(μs) is expressed in terms of the g-factor (g), electric 
charge, spin quantum and mass of the electron (me). It 
can alternatively be expressed in terms of the Bohr 
magneton (uB) and reduced Planck’s constant. And it 
is approximately equal to the Bohr magneton since 
g=2.00231930436182, and S/ħ = ½.  

The g-factor is not precisely equal to two as there 
is a small correction factor due to properties of the 
quantum field including the self-energy of the elec-
tron. Those correction terms unsurprisingly tell us 
that there is a close connection between the magnetic 
moment and the quantum field. 

If we take another look at Fig. 1 we can see why 
the g-factor is close to two instead of one. In the 
quantum field spin explanation of an electron it is 
composed of quantum dipoles that are rotating as they 
are polarized. Dipoles have both a negative and posi-
tive charge, so we do not have a simple model of a 
collection of negative charges on a spherical surface 
that appear to rotate in one direction. Instead we 
would have to model it as two spherical surfaces with 
a negatively charged surface inside a positively 
charged surface. The negative charges rotate in one 
direction and positive charges rotate in the opposite 
direction effectively doubling the strength of the 
magnetic field for a given quantum of angular mo-
mentum. That is where the factor of two comes from. 

 

7. How is Mass Electromagnetic? 

We must also note when looking at Equation 4 that 
electron mass is related to the magnetic field. This 
tells us that mass is a fundamentally electromagnetic 
property, but it does not explain precisely how mass 
is electromagnetic. We must think of mass in terms of 
quantum field theory to get a better understanding of 
magnetic moment in terms of quantum field theory.  

 

Equation 5 

 
 
To investigate how mass relates to electromagnetic 

theory we can look at Equation 5 for the Compton 
wavelength of the electron. Then we can then substi-
tute and rearrange Equation 4 to get the second term 
of Equation 6. And since the spin quantum equals 
h/4π we can further simplify it as shown, eliminating 
Planck’s constant and the spin quantum altogether.  

  
Equation 6 

 
 
Note that the mass-energy of the electron is 

equivalent to the mass-energy of a Compton wave-
length sized spherical shell. This can be shown by 
using the equation for the energy density (ρ) of the 
quantum field shown in Equation 8 in terms of circu-
lar frequency (ω) of the quantum fluctuations. And 
then computing the energy of a Compton wavelength 
diameter spherical shell with a thickness based on 
quantum uncertainty.[6] Note that this approach is 
similar to a hypothesis originated by Dirac that the 
electron mass-energy may be due to the energy re-
quired for it to push against the Dirac Sea, his early 
model of the quantum field. 

 
Equation 8 

 
 
In this way we can see that both the electron’s 

magnetic field and mass-energy are consistent with 
something spherical that displaces quantum fluctua-
tions the size of the electron’s Compton wavelength. 
Per Gauss’s law, electric charge can be thought of as 
the distributed quantum dipole polarization over a 
spherical surface. This allows us to consider an elec-
tron consisting partially of a spherical shell composed 
of quantum dipoles with a diameter equal to the 
Compton wavelength. 

In this way the electron appears to be a very small, 
polarizer, perhaps approximating a point in some re-
spects, that is surround by a quantum field. We can 
think of it as a bare electron. The quantum field 
around the bare electron gives it its properties of elec-
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tric charge, spin, magnetic moment, and mass. Ex-
plaining how an electron comes to cause scattering 
like it has a spherical formation of quantum dipoles 
the diameter of the Compton wavelength is a question 
that still must be dealt with in the future. 

8. Proton Spin and Magnetic Moment 

We can consider the quantum field around protons 
in a similar way. A bare proton is a positive polarizer 
polarizing the quantum field around it. As with an 
electron it is more useful to think of the proton’s ef-
fective wavelength rather than its mass (mp) when 
attempting to derive the proton’s magnetic moment. 
The proton’s magnetic moment is usually put in terms 
of the nuclear magneton (μN) shown in Equation 9. 

 
Equation 9 

 
 
For consistency with the electron mathematics we 

can express the proton’s magnetic moment (μsp) in 
terms equivalent to Equation 4 as shown in Equation 
10, where gp is the g-factor for the proton in equiva-
lent terms to the electron g-factor.  

 
Equation 10 

 
 
 Now we can put it in terms of wavelength rather 

than mass, since it is easier to understand how the 
proton’s physical size relates to its magnetic moment. 
The current CODATA value for the proton’s Comp-
ton wavelength is 1.321409853 x 10−15 meters, so we 
could use that. The problem is that the proton’s 
Compton wavelength does not match up with the 
known physical dimensions of a proton.  

 If we want to consider physical reality with re-
spect to a proton’s spin and magnetic moment, we 
must use the proton’s charge radius. The current 
CODATA value for the charge radius is 0.8751×10−15 
meters. That gives us a value for the diameter of the 
proton of 1.7502 ×10−15 meters, which is 1.3245 times 
larger than the proton’s Compton wavelength. 

If we then consider the energy density equation for 
the quantum field (Equation 8) and compute the ener-
gy displaced by a spherical shell of 1.7502 ×10−15 me-
ters diameter with a thickness due to quantum uncer-

tainty, we can derive the mass-energy of the pro-
ton.[6] In physical reality, the mass of the proton 
should not be considered as a relationship with the 
proton’s Compton wavelength as the true relationship 
is with the proton’s actual diameter.  

We can define the proton diameter as being 
equivalent to a wavelength we can denote as λp and 
enter that into an equation equivalent to Equation 6 to 
get Equation 11. 

 
Equation 11 

 
 
By using the proton diameter based on the charge 

radius instead of the proton mass or Compton wave-
length and including the basic proton g-factor of 2, 
we compute a value for the proton’s magnetic mo-
ment that is 2.649 times the nuclear magneton. This is 
much closer to the true magnetic moment which has a 
CODATA value of 2.7928473508 times the nuclear 
magneton.  

So instead of using a g-factor of ~2.79285 we in-
stead have a g-factor of ~2.1086 when we use the pro-
ton radius magneton that we can symbolize μPr. This 
opens up the possibility that like the electron, the cor-
rection to the g-factor for the proton may be due to 
similar quantum field and self-energy corrections. We 
might even expect that the proton’s g-factor correc-
tion terms would be proportionally greater than those 
of the electron due to the much smaller wavelength, 
smaller magnetic moment, and higher mass-energy of 
the proton. Since the computation of the correction to 
the proton g-factor with respect to this model is an 
involved process, it is being left for a future paper.  

The large difference between the standard proton 
g-factor and the electron g-factor has been pointed to 
as evidence for a structural difference between elec-
trons and protons. If, however, we consider the pro-
ton’s real physical diameter and the related proton 
radius magneton, it opens up the possibility that the 
electron and proton have the same structure. And that 
structure is due to the polarization of the quantum 
field surrounding a bare electron or proton.  

 

9. Neutron Spin and Magnetic Moment 

Neutrons are fascinating in that even though they 
are electrically neutral they still have a magnetic mo-
ment. The CODATA value for the neutron magnetic 
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moment happens to be negative and equal to 
−1.91304272 μN. That is equal to -1.44435 μPr in 
terms of the proton charge radius. The ratio between 
the proton and neutron magnetic moment is 
1.45989806. Or, to consider the inverse, the neutron 
magnetic moment is ~0.68498 smaller than the pro-
ton’s. This is still much larger than we would expect 
for an electrically neutral particle, which we might 
assume to have zero magnetic moment. 

A neutron is not, however, electrically neutral in 
the center as we might naively assume from the trans-
position of two point-like opposing polarizers. It also 
does not contain three distinct fractional point-like 
charges as we might naively assume from the quark 
model. The predicted neutron magnetic moment due 
to the quark model is -1.86 μN, so the quark model is 
not very precise in that respect either. 

In scattering experiments, protons and neutrons 
behave like they are composed of a collection of vac-
uum fluctuations rather than distinct stable particles. 
This is more in line with Feynman’s original parton 
theory of the proton.[7] And, it is also consistent with 
the quantum field model suggested in this paper. 

 The neutron has a negatively charged center, a 
spherical band of positive charge around that, and is 
weakly negatively charged outside the positive band 
of charge.[8] This nonuniformity is not at all unex-
pected in the quantum field approach given that the 
neutron is filled with quantum electric dipoles. The 
nonuniformity dominated by negative electric charge 
leads to the negative magnetic moment. Since we cur-
rently have no idea what bare electrons and protons 
might look like it is impossible to properly model the 
bare neutron at this stage. 

 It is interesting that the square root of the proton 
g-factor relative to the charge radius 2.1086 is 1.4521 
which is 0.5% from the absolute value of the meas-
ured neutron g-factor of -1.44435 μPr. This equates to 
-1.9233 μN. These results are substantially closer than 
the commonly cited number from quark theory. 

To understand what this means physically we can 
think of it in terms of combining the magnetic mo-
ments of a proton and electron. As part of that we can 
consider that as an electron combines with a proton, 
its quantum field collapses around it to the proton 
charge radius. Something like this is physically nec-
essary since the neutron radius is similar to that of a 
proton and much smaller than the electron’s Compton 
wavelength. By collapsing in this way an electron’s 

new g-factor, which we can call -ger, should become 
closer to the proton g-factor in μPr terms.  

We can subtract this electron g-factor from the pro-
ton μPr g-factor and divide by 2 to account for the 
neutron being a spin ½ particle rather than spin 1. 
And then we can take the square root, to get the neu-
tron g-factor in μPr terms as shown in Equation 12. 
There are several different ways to mathematically 
compute this result so consider Equation 12 a conver-
sation starter. 

 
Equation 12 

 
 
This equation hints at a physical interpretation 

where the magnetic moments of the electron and pro-
ton combine orthogonally to form a neutron. This also 
implies that the separate spin of the electron and pro-
ton also combine together into the neutron’s rotating 
quantum field―spin. Then half the spin would be 
spun off into a separate field effect―particle. Further 
work on the quantum field of the neutron and deriva-
tion of a precise form of Equation 12 is left for a fu-
ture paper. 

 

10. Conclusion 

When considering spin and magnetic moment ex-
plained as quantum field effects it is necessary to first 
understand that polarization causes charge rather than 
charge causing polarization. Under Gauss’s Law, the 
polarized quantum field due to a unit polarizer, such 
as a bare electron, yields a unit charge. 

Then we must recognize that spin arises during 
quantum field polarization. Polarization is not a spin 
neutral process as that would require additional ener-
gy expenditure. The virtual simultaneity of the dipole 
rotation even makes it appear like a sphere rotating 
faster than the speed of light, instead of a whole 
bunch of dipoles rotating about their own axis without 
moving much if at all relative to a bare electron or 
proton. This makes spin a function of the polarizabil-
ity and van der Waals torque of the quantum field. 

Since the bare particle is now surrounded by a 
quantum field of rotating dipoles, those dipoles pro-
duce a magnetic field, which is the magnetic moment 
of the particle. So magnetic moment is a function of 
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the polarizability and van der Waals torque of the 
quantum field.  

And, since the dipoles have one charge rotating 
one way and the opposite charge rotating the other 
way, the magnetic moment is twice as large as we 
would get from a spherical model with a single 
charge, thus telling us why the g-factor is approxi-
mately two instead of one. 

It is also important to note that it does not make 
much sense to think of the magnetic moment in terms 
of mass, because we do not usually think of mass as 
an electromagnetic effect, even though it is. Instead 
we can write the electron magnetic moment in terms 
of its Compton wavelength, and since we are no long-
er converting the wavelength to mass-energy, 
Planck’s constant drops out of the equation. 

With protons we find that we have been using the 
wrong wavelength all along since the proton Compton 
wavelength is smaller than the proton’s real physical 
dimension. Once we treat the proton’s real wave-
length as twice its charge radius, we find that the pro-
ton’s true g-factor is close to two, as we expect if 
electrons and protons have the same structure.  

Combining all that together we can see that the 
electron and proton charge, spin, magnetic moment, 
and mass are all properties of the quantum field rather 
than the particle. And these are ultimately properties 
of the polarizability and van der Waals torque of the 
quantum field.   

By considering the actual neutron radius it is easy 
to see that its magnetic moment appears to be the or-
thogonal combination of the quantum field magnetic 
moments of a proton and electron. Computing the 
neutron magnetic moment using the g-factor based on 

the actual proton radius, yields a more precise compu-
tation of the neutron magnetic moment than achieved 
with the quark model. 
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