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ABSTRACT 
 

The Kerr–Newman metric describes a special rotating charged mass and is the most general solution for the 
asymptotically stable “black-hole” solution in the Einstein–Maxwell equations in general relativity. Because 
these are nonlinear partial differential equations, it is difficult to find an exact analytical solution other than 
spherical symmetry. This study presented a new derivation of the Kerr–Newman metric which is an extension of 
the authors’ previous research. Using the ellipsoid symmetry of space-time in the Kerr metric, an ellipsoidal 
coordinate transformation method was performed and the Kerr–Newman metric was more intuitively obtained.  
 
Keywords: Einstein–Maxwell equations; exact solutions; Kerr–Newman black holes. 
 

1. INTRODUCTION 
 

According to the no-hair theorem of black hole, the 
only physical characteristics of the Einstein–Maxwell 
equations are three quantities: mass (M), electric 
charge (Q), and angular momentum (J). In a static 
case, the angular momentum vanishes and a spherical 
symmetry, well-known as Schwarzschild metric, is 
present [1]. The Reissner–Nordstr metric [2,3] 
depends on whether there is an electric charge. The 

rotating axisymmetric generalization of the 
Schwarzschild metric is the Kerr metric [4], whereas 
the charged rotating generalization of the Reissner–
Nordstr metric is the Kerr–Newman metric [5]. These 
four metrics are often referred to as the “black hole” 
exact solutions of general relativity.  
 

The Einstein field equations are a set of nonlinear 
differential equations, where finding an exact 
analytical solution has proven to be difficult. 
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Numerous methods for solving the Einstein field 
equations have been proposed [6,7] (e.g., the 
Newman–Janis algorithm using complex transforma-
tion [8,9], the Newman–Penrose formalism [10,11], 
and Bäcklund transformations [12,13]). The solution 
of the rotating Einstein equation has axis symmetry, 
and the physical derivation can be made from the 
Ernst equation [14,15]. Despite their great success in 
dealing with Einstein’s equations, these methods are 
technically complex and expert-oriented.  
 
The Kerr–Newman metric is the most general 
static/stationary black-hole solution of the Einstein–
Maxwell equations. Therefore, it is obviously 
pertinent to the mathematical framework of general 
relativity. Traditionally, the general method of the 
Kerr–Newman solution can be found in The 
Mathematical Theory of Black Holes written by 
Chandrasekhar [16]. However, the calculation is 
based on familiarity with spin coefficients and the 
Newman–Penrose formalism for general relativity, 
meaning that college students find it too difficult to 
understand. A concise method for solving the 
Einstein–Maxwell equations is required.  
 
One study showed that space-time in the Kerr metric 
has ellipsoid symmetry [17]. Using the oblate 
coordinate transformation, it is possible to derive the 
Kerr metric [18]. Another study further rewrote the 
empty ellipsoidal coordinate into an orthogonal metric 
form [19]. Our previous research proved that the Kerr 
metric can be obtained from the ellipsoidal metric 
ansats in orthogonal form [20]. The aim of this study 
was to extend our previous research to derive the 
Kerr–Newman metric by using ellipsoid coordinate 
transformation. The proposed derivation is similar to 
that by Schwarzschild, but different from that by 
Newman and Chandrasekhar. 
 

2. EINSTEIN–MAXWELL EQUATIONS 
 
For all physical quality detailed in this paper, we have 
adopted c = G = 1. Einstein’s equation of general 
relativity is as follows:  
 

��� −
�

�
���� = 	8����			                                        (1) 

 

��� is the Ricci tensor, which can be obtained from 

the Riemann tensor:  
 

��� = ����
�

= ∂�Γ��
�

− ∂�Γ��
�

+ Γ��
�

Γ��
� − Γ��

�
Γ��

�          (2) 

 

���  is the energy-momentum tensor, which in our 

problem is electromagnetism.  
 

��� = 	
�

�
��������� − ���������                             (3) 

Where ���  is the electromagnetic field strength tensor 

(note the ��� has a zero trace) 
 

� = ������ = 	
1

4
������������ − ����

�������� = 0 

                          (4) 
 

Because there are four dimensions ������ = 4 , 

Chrostoffel symbols Γ�s  are the connection 
coefficients obtained through 
 

Γ��
� = 	

�

�
��������� + ����� − ������                   (5) 

 
Einstein’s equation can be rewritten in the following 
form (See Appendix A) 
 
��� = 	8����                                                            (6) 

 
Maxwell’s equations are as follows: 
 

���∇���� = 0                                                           (7) 
 

∇[����] = 0                                                               (8) 
 

Where ∇ is the covariant derivative operator, and the 
covariant derivative of a rank two tensor ���  is 
defined as 
 

∇���� = 	����� + Γ��
� ��� + Γ��

� ���                        (9) 
 

3. SCHWARZSCHILD, REISSNER–
NORDSTR, AND KERR SOLUTIONS 

 

The Schwarzschild metric is the first exact solution 
for the Einstein field equations of general relatively. 
Although the metric has spherical symmetry, it cannot 
be used to describe rotation or a charged heavenly 
body. The Schwarzschild metric is as follows: 
 

��� = �1 −
2�

�
���� − �1 −

2�

�
�

��

��� − ����� − �� sin� ���� 

                  (10) 
 

Where, M is the mass of a celestial body. 
 

The Reissner–Nordstr metric is another exact solution 
for the Einstein field equations, which describe a 
spherically charged celestial body, as shown in Eq. 
(11):  
 

��� = �1 −
2�

�
+

��

��
���� − �1 −

2�

�
+

��

��
�

��

��� − �����

− �� sin� ���� 
                                              (11) 

 

Where, Q is the charge of a celestial body. 
 

When Q approaches zero, the Reissner–Nordstr 
metric becomes the Schwarzschild metric. When M 
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approaches zero, the Reissner–Nordstr metric 
becomes Minkowski space-time with an electric field, 
as shown in Eq. (12)  
 

��� = �1 +
��

��
���� − �1 +

��

��
�

��

��� − ����� − �� sin� ���� 

                                                        (12) 
 
The Kerr metric is a generalized form of the 
Schwarzschild metric and another exact solution for 
general relativity. It is used to describe a vacuum 
space-time near a rotational, spherical, symmetrical 
heavenly body. The Kerr metric in the Boyer–
Lindquist coordinate system can be expressed as 
 

��� = �1 −
2��

��
���� +

4��� sin� �

��
���� −

��

∆�

��� − �����

− (�� + �� +
2���� sin� �

��
)sin� ���� 

(13) 
 

Where, �� ≡ �� + �� cos� �  and ∆�	≡ �� − 2�� +
��  is the delta function of the Kerr metric. a is the 
spin parameter or specific angular momentum, which 
is related to the angular momentum J by a = J /M. 
 
The Kerr metric has been rewritten in an orthogonal 
form in some studies [21] as 
 

��� =
∆�

��
(�� − � sin� � ��)� −

��

∆�

��� − �����

−
(�� + ��)� sin� �

��
��� −

�

�� + ��
���

�

 

(14) 
 

4. TRANSFORMATION OF THE 
ELLIPSOID SYMMETRICAL 
ORTHOGONAL COORDINATE  

 
According to the covariance principle of general 
relativity covariance, the gravity equation remains 
unchanged in the coordinate transformation. Thus, 
Minkowski space-time can be applied as a beginning 
coordinate: 
 

��� = ��� − ��� − ��� − ���	                            (15) 
 
Applying the following ellipsoid to coordinate 
changes to Eq. (15), with �  being the coordinate 
transformation parameter [22] 
 

� → (�� + ��)
�

� sin� cos� ,� → (�� + ��)
�

� sin� sin� ,
� → � cos� ,� → �                                                   (16) 
 

The metric under the new coordinate system becomes 
 

��� = ��� −
��

�� + �� ��� − ����� − (�� + ��)sin� ���� 

                        (17) 

Eq. (17) represents an empty space-time of ellipsoid 
symmetry. If � approaches zero, it morphs into a polar 
coordinate with spherical symmetry, as shown in Eq. 
(18): 
 
��� = ��� − ��� − ����� − ��sin� ����           (18) 
 
To eliminate the off-diagonal terms (����) in Kerr 
metric or Kerr-Newman metric and to let ������ =
−1 , we can refer to Eq. (14) to define a new 
coordinate system (���∅) as follows:  
 
�� = �� − � sin� � ��                                         (19a) 
 

�∅ = �� −
�

����� ��                                             (19b) 

 
After the coordinate transformation, Eq. (17) is 
transformed into a simplified orthogonal metric, as 
presented in Eq. (20): 
  

��� =
�����

��
��� −

��

�����
��� − ����� −

(�����)� ���� �

��
�∅�                                               

(20) 
 

5. CALCULATING THE RICCI TENSOR 
 
To solve the Kerr–Newman metric, this study started 
from the ansats of equation Eq. (21) and introduced 
two new terms ��ν(�,�),���(�,�): 
 

��� = ��ν(�,�)��� − ���(�,�)��� − ����� −
ℎ� sin� �

�� �∅� 

                                                            (21) 
Where �� ≡ �� + �� cos� � ,ℎ ≡ �� + ��                  
                     
The metric tensor in the matrix form is as follows: 
 

��� =

⎝

⎜
⎛

��ν(�,�) 0 0 0
0 −���(�,�) 0 0
0 0 −�� 0

0 0 0 −
������ �

�� ⎠

⎟
⎞

          (22) 

 
Chrostoffel symbols and the Ricci tensor                         
can be calculated via Eq. (5) and Eq. (2). In                       
this research, we use the Wolfram Cloud to ensure                      
the correctness of calculations. Totally 14                 
non-zero Chrostoffel symbols are listed in Eqs. (23)–
(32): 
 

Γ��
� = �2(ν-�)∂�ν                                                      (23) 

 

Γ��
� = ∂�λ                                                          (24) 

 

Γ��
� = Γ��

� = ∂�ν                                                      (25) 
 

Γ��
� = Γ��

� =
�

��                                                       (26) 
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Γ��
� = Γ��

� =
��

�
−

�

��                                               (27) 

 

Γ��
� = −��-2�                                                          (28) 

 

Γ��
� = Γ��

� = cot� �
�

���                                           (29) 

 

Γ��
� = −��-2�sin�� �

��

�� −
��

���                                 (30) 

 

Γ��
� = −

�� ���� ����

��                                                 (31) 

 

Γ��
� = −sin� cos� �

��

���                                        (32) 

 
After such calculations, the Ricci tensor of                       
all non-zero components can be obtained as           
follows: 
 

 
 

6. COMPONENTS OF THE 
ELECTROMAGNETIC FIELD 
STRENGTH TENSOR AND THE 
STRESS TENSOR 

 
Because of spherical symmetry, the only non-zero 
components of the electric and magnetic field are the 
radial components, which should be independent of � 
and �. Therefore, the radial component of the electric 
field has a form of  
 
�� = �� = ��� = −��� = �(�,�)                          (38) 
 
The other components are zero because there are no 
currents or magnetic monopoles. In the matrix form, 
we have  
 

��� = �

0 �(�,�) 0

−�(�,�) 0 0
0
0

0
0

0
0

				

0
0
0
0

�                            (39) 

 
The components of the stress-energy tensor can now 
be computed using Eq. (3). By considering the first 
term in parenthesis, conducting the summation gives 
 
1

4
��������� =

1

4
��������

�� + ����
���

=
1

4
���(����

�� + ����
��)

=
1

4
���(2����

��)=
1

2
�������

�� 

(40) 
For the second term, we get 
 
��������� = �������

�� + �������
�� =

�������
�� + �������

��                                        (41) 

 
Thus, we can write Eq. (3) as  
 

��� =
�

�
�������

�� − �������
�� − �������

��    (42) 

 
The components of the stress-energy tensor can now 
be easily obtained. We have  
 

��� = −
�

�
�������

�� =
�

�
��ν(�,�)�(�,�)�              (43) 

 

��� = −
�

�
�������

�� = −
�

�
��λ(�,�)�(�,�)�           (44) 

 

��� =
�

�
�������

�� =
�

�
���(�,�)�	                             (45) 

 

��� =
�

�
�������

�� =
�

�
�� �

��

��
�sin���(�,�)� = ��� �

��

��
� sin��     

(46) 

��� = 0                                                                   (47) 

 

From, ��� = 8���� = 0, we get 
�

�
��� = 0,� = �(�) 

λ is time dependent. 

 
Using the results and adding them to Eqs. (33) and 
(35), we obtain 

 
�-2�(�)��� + �-2ν(r,T)��� =

��

�
(���(�,�)+ ���(�))= 0            (48) 

 
Solving this equation yields �(�,�)+ �(�)= �����. 
Next, the time coordinate is redefined in Eq. (21) by 
replacing �� → ������.�� , so that �(�,�)= �(�)=
−�(�). 

 

Therefore, �2ν(r) = �-2�(�)                                       (49) 
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7. SOLVING THE MAXWELL 
EQUATIONS 

 

To solve the Maxwell equations for the form of the 
electromagnetic field strength tensor in Eq. (41), the r 
component of Eq. (9) gives us 
 

����� − Γ��
� ��� − Γ��

� ��� = 0  
 
����� − Γ��

� ��� − Γ��
� ��� = ����� − ���(Γ��

� + Γ��
� )= 0   

  (50) 
 
Because	Γ��

� = 0	and Γ��
� = ∂�� = 0  from the above 

equation, we have ����� = 0, implying that the time-
radial component of the electromagnetic field strength 
tensor is not time dependent:  
 

��� = �(�)                                                              (51) 
 

To find the explicit form of f, we use the following 
identity: for any given antisymmetric rank two tensor, 
���  , and diagonal metric, the following identity is 
true 
  

∇��
�� =

�

� |�|
��(�|�|���)                                     (52) 

 

In our metric, we have �|�|= ��sin�. If we apply 
the aforementioned identity to Eq. (9), we obtain  
 

∇��
�� =

�

������
��(��sin����)= 0                      (53) 

 

For the t component, we have  
 

��(�
����)= ��(�

����������)= ��(�
��)= 0    (54) 

 

Therefore, 
 

�(�)=
�����.

��                                                            (55) 

 

The Gauss flux theorem gives .= � √4�⁄  , where Q is 
the total electric charge of a black hole. Finally, the 
electromagnetic field strength tensor is obtained as 
 

��� =
�

√��
�

0 ���� 0

−���� 0 0
0
0

0
0

0
0

				

0
0
0
0

�                    (56) 

 
Only one unknown variable is left, �(�) ,                    
which is obtained by Eq. (49). To solve this, one 
equation is enough to determine the unknown. Let us 
consider 
 
lim�→ � ��� = lim�→ � 8π���                                  (57) 
 
We also need the following limit conditions 
 
lim�→ � ℎ = �� ,lim�→ � � = �                                 (58) 

lim
�→ �

	��� = �-2�(�(���− ���)− 1)+ 1 = �2��–2���� −

1�+ 1                                                                      (59) 
 

lim
�→ �

8���� =
��

�
�� �

�

√�����
�

=
��

��	                           (60) 

 
Combining Eqs. (59) and (60), we obtain the 
following equation 
 

��(��
2�)= 1 −

��

��	                                                 (61) 

 
After integrating and solving Eq.(61), we get 
 

lim
�→ �

�2� = 1 +
�

�
+

��

�� ,���	� = −2�	                     (62) 

 

lim
�→ �

�2� = 1 −
��

�
+

��

�� =
���������

��                        (63) 

 

lim
�→ �

�2� =
���������

����� ���� �
                                              (64) 

 

�2� =
������������

����� ���� �
≡

∆��

�� ,�2� = �-2� ≡
��

∆��
      (65) 

 
Where, ∆��	≡ �� − 2�� + �� + ��  is the delta 
function of the Kerr–Newman metric. 
 
Finally, we obtain the Kerr–Newman metric through 
 

��� =
�� − 2�� + �� + ��

�� + �� cos� �
(�� − � sin� � ��)�

−
�� + �� cos� �

�� − 2�� + �� + ��
��� − �����

−
(�� + ��)� sin� �

��
��� −

�

�� + ��
���

�

 

                      (66) 
 

8. DISCUSSION 
 
Two axi-symmetric rotation solutions of general 
relativity, the Kerr metric and Kerr–Newman metric, 
have the same ellipsoid orthogonal coordinates 
embedded delta function (∆�	and	∆��	). When mass 
M and charge Q approach zero, both delta functions 
degenerate to �� + �� , and two rotation solutions 
degenerate to vacuum ellipsoidal coordinates, as 
shown in Eq. (20).  
 
From the aforementioned discussion, we can see that 
the Kerr metric and Kerr–Newman metric have an 
ellipsoid, space-time geometry. This geometry can                
be obtained through the proposed ellipsoid coordinate 
transformation or the Newman–Janis algorithm 
complex transformation coordinates [23]. In 1965, 
Newman used this algorithm to obtain the Kerr–
Newman metric. This close association led us to 
speculate that all axi-symmetric rotation solutions     
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can be represented in the same ellipsoidal          
coordinate. 
 
In summary, the coupled Einstein–Maxwell equations 
have been solved and a metric has been presented that 
describes the geometry of the space-time surrounding 
a rotating black hole with a static electric charge. The 
proposed metric is a straightforward derivation, which 
deserves further study to determine whether this 
method could be extended to other rotating Einstein 
field equations. 
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Appendix A Derivation of Eq. (6) 
 

Apply ��� to Einstein’s field equation of general relativity to obtain 
 

��� ���� −
�

�
����� = 	8�������                                                                                                    (A.1) 

� −
�

�
(4�)= 8��                                                                                                                               (A.2) 

−� = 8��                                                                                                                                           (A.3) 
 
Because the trace � = 0, Therefore 
 

��� =
�

�
���� + 8����                                                                                                                       (A.4) 

=
�

�
���(−8��)+ 8����                                                                                                                    (A.5) 

= 8� ���� −
�

�
�����                                                                                                                          (A.6) 

= 8����                                                                                                                                              (A.7) 
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