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Abstract: For a graph G, the first, second and third leap Zagreb indices are the sum of
squares of 2-distance degree of vertices of G; the sum of product of 2-distance degree of end
vertices of edges in G and the sum of product of 1-distance degree and 2-distance degrees
of vertices of G, respectively. In this paper, we obtain the expressions for these three leap

Zagreb indices of generalized zyz point line transformation graphs T°Y*(G) when z = 1.
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§1. Introduction

Let G = (V,E) be a simple graph of order n and size m. The k-distance degree of a vertex
v € V(G), denoted by di(v/G) = |Nx(v/G)| where Ni(v/G) = {u € V(G) : d(u,v) = k} [17]
in which d(u,v) is the distance between the vertices v and v in G that is the length of the
shortest path joining v and v in G. The degree of a vertex v in a graph G is the number of
edges incident to it in G and is denoted by dg(v). Here Ni(v/G) is nothing but Ng(v) and
dy(v/@G) is same as dg(v). If u and v are two adjacent vertices of G, then the edge connecting
them will be denoted by uv. The degree of an edge e = uv in G, denoted by dy(e/G) (or dg(e)),
is defined by di(e/G) = di(u/G) + d1(v/G) — 2.

The complement of a graph G is denoted by G whose vertex set is V (G) and two vertices of
G are adjacent if and only if they are nonadjacent in G. G has n vertices and @ —m edges.
The line graph L(G) of a graph G with vertex set as the edge set of G and two vertices of L(G)
are adjacent whenever the corresponding edges in G have a vertex incident in common. The
complement of line graph W or jump graph J(G) of a graph G is a graph with vertex set as
the edge set of G and two vertices of J(G) are adjacent whenever the corresponding edges in G
have no vertex incident in common. The subdivision graph S(G) of a graph G whose vertex set

is V(G) E(G) where two vertices are adjacent if and only if one is a vertex of G and other is
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an edge of G incident with it. The partial complement of subdivision graph S(G) of a graph G
whose vertex set is V/(G) | E(G) where two vertices are adjacent if and only if one is a vertex
of G and the other is an edge of G non incident with it.

We follow [11] and [13] for unexplained graph theoretic terminologies and notations.

The first and second Zagreb indices [9] of a graph G are defined as follows:

Mi(G)= Y dg(v)? and My(G)= Y dg(u)de(v),
veV(G) weEE(G)
respectively. These are widely studied degree based topological indices due to their applications
in chemistry. For details see the papers [5, 7, 8, 10, 18]. The first Zagreb index [15] can also be

expressed as

Mi(G)= > ldg(u)+dg(v)]
weEE(G)

Ashrafi et al. [1] defined the first and second Zagreb coindices as

Mi(G)= ¥ ldo(u)+dg(v)] and Mx(G)= 3 [de(u)da(v)],
wgE(G) wgE(G)
respectively.
In 2004, Miliéevié¢ et al. [14] reformulated the Zagreb indices in terms of edge-degrees
instead of vertex-degrees. The first and second reformulated Zagreb indices are defined, respec-

tively, as

EM(G)= > dg(e)? and EM(G)= 3 ldc(e)da(f)]
e€E(G) e~f

In [12], Hosamani and Trinajstié defined the first and second reformulated Zagreb coindices

respectively as

EML(G) = > lda(e) + da(f)],
e~ f

EMy(G) = ) [da(e) +da(f)].

ewf

In 2017, Naji et al. [16] introduced the leap Zagreb indices. For a graph G, the first,
second, and third leap Zagreb indices [16] are denoted and defined respectively as:

LM(G) = Y da(v/G)?,

veV(G)

LLG) = Y dw/Gd(/6),
weEE(G)

LMs(G) = Z di(v/G)d2(v/G).
veV(G)

Throughout this paper, in our results we write the notations d; (v) and dj(e) respectively

for degree of a vertex v and degree of an edge e of a graph.



46 B. Basavanagoud and Chitra E.

§2. Generalized zyz-Point-Line Transformation Graph T*Y*(G)

The procedure of obtaining a new graph from a given graph by using incidence (or nonincidence)
relation between vertex and an edge and an adjacency (or nonadjacency) relation between two
vertices or two edges of a graph is known as graph transformation and the graph obtained by
doing so is called a transformation graph. For a graph G = (V, E), let G° be the graph with
V(G°) = V(G) and with no edges, G! the complete graph with V(G') = V(G), GT = G, and
G~ = G. Let G denotes the set of simple graphs. The following graph operations depending on
x,y,z € {0,1,4, —} induce functions T%%* : G — G. These operations are introduced by Deng et
al. in [6]. They called these resulting graphs as zyz-transformations of G, denoted by T%%*(G) =
G™Y% and studied the Laplacian characteristic polynomials and some other Laplacian parameters
of zyz-transformations of an r-regular graph G. In [2], Wu Bayoindureng et al. introduced the
total transformation graphs and studied the basic properties of total transformation graphs.
Motivated by this, Basavanagoud [3] studied the basic properties of the xyz-transformation
graphs by calling them zyz-point-line transformation graphs by changing the notion of xyz-
transformations of a graph G as T*Y*(G) to avoid confusion between parent graph G and its

xyz-transformations.

Definition 2.1([6]) Given a graph G with vertex set V(G) and edge set E(G) and three variables
x,y,2z € {0,1,4, =}, the xyz-point-line transformation graph T*Y*(G) of G is the graph with
vertex set V(T**(G)) = V(G)UE(G) and the edge set E(T*¥*(G)) = E((G)*)UE((L(G))Y)U
E(W) where W = S(GQ) if z = +, W = S(G) if 2 = —, W is the graph with V(W) =
V(G)UE(G) and with no edges if z =0 and W is the complete bipartite graph with parts V(G)
and E(G) if z=1.

Since there are 64 distinct 3 - permutations of {0,1,+,—}. Thus obtained 64 kinds of
generalized xyz-point-line transformation graphs. There are 16 different graphs for each case

when z2=0,z2=1,2=4+, z = —.

In this paper, we consider the zyz-point-line transformation graphs T*¥*(G) when z = 1.

Example 2.1 Let G = K, - K3 be a graph. Then G be the graph with V(G°) = V(G) and
with no edges, G! the complete graph with V(G') = V(G), Gt = G, and G~ = G which are
depicted in the following Figure 1.

*
. 0. 1.
. .

Figure 1

The self-explanatory examples of the path P, and its zyz-point-line transformation graphs
T=¥1(Py) are depicted in Figure 2.
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§3. Leap Zagreb Indices of T%Y!(G)

Theorem 3.1([3]) Let G be a graph of order n and size m. Then

(1) [V(T**(G))| = n+m;
(2) |E(T**(Q))| = |E(G")| + |E(L(G)Y |+ |[E(W)|, where

if x=0.
if x=1.
if r=+4
-m ifz=—.
if y=0.
(’5) ify=1

—m + M1 ify=+
(" = IMy ify=-—.

0 if z=0.

mn if z=1.
BOW)|= /

m if z=+

m(n—2) if z=—.

The following Propositions are useful for calculating do (T"¥!(G)) in Observation 3.4.

Proposition 3.2([4]) Let G be a graph of order n and size m. Let v be a vertex of G. Then

m ZfI:O,y6{0,1,+,—}

n+m-—1 if =1,y € {0,1,4,-}
dTmyl(G) (’U) = )

m+ dg(v) if v=+,y € {0,1,+,—}

n+m—1—dg() ife=—y € {0,1,+,—-}

Proposition 3.3([4]) Let G be a graph of order n and size m. Let e be an edge of G. Then

n nyZO,IE{O,1,+,—}

n+m-—1 ify=1,2 € {0,1,4,—-}
dTmyl(G) (6) = )

n+ dg(e) ify=+,z € {0,1,+,—}

n+m-—1—dg(e) ify=—2 € {0,1,+,-}
Observation 3.4 Let G be a connected (n,m) graph. Then

(n—1) ifve V(G

1) dy(v/TON)(G)=
(1) da(v/T™)(G) (m—1) ifv=e € E(G)
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v 101 — 0 va © V(G)

o | n—1—diw/@) ifv e v(G)
(3) do(v/T )(G)—{ m—1) fo—e e BG)
{dl(v/G) ifvev(a)

(m—1) ifv=e € E(G)

n—1 ifve V(Q)

0 ifv=e € E(G)

:{ n—1=di(v/G) if v € V(G)
0 ifv=-e € E(G)
{ di(v/G) if v e V(G)
0 if v=e € E(G)
"1 ifve V(@)
{ m—1—di(e/G) ifv=e € E(G)
0 ifve V(G)
{ m—1-di(e/G) ifv=ec € B(G)
Jon-1-daiwie) ifeevie
_{ m—1—di(e/G) ifv=e € E(G)
:{ 0 (v/G) v evia
m—1-di(e/G) ifv=ec € E(G)
{ n—1 ifveV(G)
di(e/G) ifv=ec € E(Q)
0 ifveV(G)
{ di(e/G) if v=e € B(G)
{ n—1-d@/G) ifveV(G)
iy (e)C) ifv=-e € E(G)
i | i) ipe e vie
(16) do(v/T )(G)—{ di(e/G) ifv=e € BE(G)

The above Observation 3.4 is useful for computing leap Zagreb indices of transformation

graphs T*¥}(G) in the forthcoming theorems.

Theorem 3.5 Let G be (n,m) graph. Then
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Proof The graph T°'(G) has n + m vertices and mn edges, refer Theorem 3.1. By
definitions of the first, second and the third leap Zagreb indices along with Propositions 3.2,
3.3 and Observation 3.4 we get the following.

LMl(TOOl(G)) — Z dQ(v/T001(G))2
VeV (T901(G))
= Y /TG + Y dofe/TVNG)’
VeV (G) c€E(G)
= n(n—12%+m(m—-1)>~%

LMy(T™(G)) = [d2(u/T*N(G))] [d2(v/T"(G))]
uwv€E(T1(G))

= Y [de(u/TNG))] [da(v/T™NG))]

uwweE(S(G))

> [/ TG)] [da(v/T™HG))

wveE(S(G))
= (n=1)(m-=12m+ (n—1)(m—1)(mn—2m) =mn(n—1)(m —1).

LM3(T*™(G)) = Y /TG [da(v/TONG))]
veV(TH(@))
= Y [h/TNG)] [da(o/T*(G))]
veV(G)
+ Y [d(e/T*NG))] [da(e/TNG))]
e€E(Q)
= mn(n—1)+mn(m—1) =mn(m+n —2). O

Theorem 3.6 Let G be (n,m) graph. Then

(1) LM, (T'4(G)) = m(m — 1)%;
(2) LM(T™1(G)) = 0;

(3) LM3(T(G)) = mn(m — 1).

Proof Notice that the graph T'°Y(G) has n + m vertices and mn + @ edges by

Theorem 3.1. According to the definitions of first, second and third leap Zagreb indices along
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with Propositions 3.2, 3.3 and Observation 3.4, calculation shows the following.

LMl(Tlol(G)) — Z dg(U/TlOl(G))Q

veV (T101(Q))

= > d@/TNG)P+ D da(e/TNG))?
veV(Q) e€E(Q)

= m(m—1)>=2

LMy(TY(G)) = > [da(u/T HG))] [da(v/T™H(G))]

weB(T101(G))

= Y [da/TNG))] [da(v/T™N(G))]
weEE(G)
+ > [de(uw/TNG))] [da(v/THN(G))]
w¢ E(G)
+ Y [da(w/TNG))] [da(v/THNG))]
weE(S(Q))
+ > [de(u/TNG))] [da(v/TNG))] = 0.
weE(S(G))

LM3(TN (@) = > [d/TNG))] [da(v/TNG))]
veV(T101(Q@))
= Y [di(w/TYG))] [da(v/T*(G))]

veV(G)

+ > [di(e/TN(@G))] [dale/T™(G))] =mn(m —1). O

e€E(Q)

Theorem 3.7 Let G be (n,m) graph. Then

(1) LMy(TTY@)) = n(n —1)2 + m(m — 1)* + My (G) — 4m(n — 1);

(2) LMa(T (@) = Ma(G) — (n — )My (G) +ml(n — )2 + (m — 1)(n? — n — 2m)};

(3) LM3(TT°H(G)) = m[n(n+m) —2(m + 1)] — M1(G).

Proof By Theorem 3.1, we know that the graph T+%(G) has n +m vertices and m(n + 1)

edges.

By using the definitions of first, second and third leap Zagreb indices and applying
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Propositions 3.2, 3.3 and Observation 3.4 we get the following.

LM, (TY@)) = Yo da(v/TTNG))?

VeV (T+0L(G))

= > /TG + Y dao(e/TTNG))
veV(G) e€E(G)

= > (-1-d@/6)*+ > (m-1)
veV(G) e€E(G)

= Y [(n=1)?+di(0/G)?-2(n—1Ddi(v/G)] + Y (m-1)
veV(G) e€E(G)

= n(n—1)2%+m(m—1)2+ M (G) — 4m(n — 1).

LMy(T*N(G)) = > [d2(u/TTHG))] [da(v/TTHG))]
weE(TH01(G))
= > [d@/TTNG))] [da(v/THNG))]
weE(G)
+ > [de(w/THNG)] [de(o/TTONG))]
weE(S(Q))
+ Y (/TN A2 (0/THNG))]
weE(S(G))
= Y (=12 (1= )i (@/G) + di (v/G)) + da(u/G) - dy (v]G)]
uwv€EE(G)
+ Y (m-Dn-1-di(u/(@)
uwweE(S(G))
+ ) (m=Dn-1-di(u/(Q)
wweE(S(Q))

= My(G) - (n—1)M(G) +m[(n —1)*+ (m — 1)(n® — n — 2m)).

LM3(T*H(G)) = S [di(w/TTNG))] [de(v/THNG)))]

VeV (T+01(G))

= Y [di(w/TTNG))] [da(v/TONG))]
veV(G)
+ D [di(e/TNG))] [da(e/THONG))]

ecE(G)

= Y [m+di@/G)(n-1-di(w/G)+ > n(m-1)
veEV(G) e€E(G)

= m[n(n+m)—2(m+1)] — My(G). a

Theorem 3.8 Let G be (n,m) graph. Then

(1) LMy(T~°H(@)) = My (G) +m(m — 1)*;
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(2) LMo (T~°Y(G)) = Ma(G) + 2m?(m — 1);
mln(m + 1) + 2(m — 1)] — My(G).

Proof We know the graph T-(G) has n + m vertices and (n — 1)(% + m) edges, refer
Theorem 3.1. By definitions of the first, second and third leap Zagreb indices and applying
Propositions 3.2, 3.3 and Observation 3.4 we have the following.

LM(T~N@)) = > da(v/TTNG))?
VeV (T-01(G))

= Y /T NG+ Y dae/TNG))?
veV(G) e€E(G)
= Mi(G)+m(m— 1)

LM(T7°UG)) = > [d2(w/T™"H(G))] [da(v/T~H(G))]
weE(T-1(Q@))

= Y [b@/TG))] [da(v/T~(G))]

wé¢ E(GQ)

+ Y [de(w/TTOUG))] [da(v/T~NG)))]

weE(S(Q))

+ Y [de(w/TTOUG))] [da(v/T~NG)))]

wweE(S(G))
= > @/ h/@+ > (m—1)d(u/G)
wg B(G) weE(S(Q))

+ Y (m=1)di(u/G)

weE(S(Q))

= M(G) +2m*(m —1).

LMs(T~°4(G)) = Yo /TN [do(o/TON@))]

veV(T-H(G))

= X [/TNG)] [dao/TG))]

veV(G)
+ Y [di(e/T7NG))] [da(e/T~N(@))]
e€E(Q)
= mn(m+1)+2(m—1)] — M1(G). O

Theorem 3.9 Let G be (n,m) graph. Then
(1) LM(T**(G)) = n(n — 1)%;
(2) LMy (TM(G)) = 0;
(3) LM3(T' (@) = mn(n — 1).

Proof We are easily know that the graph T°'(G) has n + m vertices and m(™5L + n)
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edges by Theorem 3.1. By definitions of the first, second and the third leap Zagreb indices
along with Propositions 3.2, 3.3 and Observation 3.4 we know the following.

LMl(TOH(G)) — Z d2(1)/T011(G))2
veV(TO1L(Q))
= D BTG + D dale/TG))?
veV(G) e€E(G)

n(n —1)2.

LMy(T*'(G)) = Yoo [/ TG [da(v/T(G))]
w€E (T (G))

= D [RW/TG)] [da(o/TO(G))]
wveE(L(G))
+ ) [da(w/TONG)] [da(v/TM(G))]
w¢ E(L(G))
+

vEE )

>

weE(S(Q))

by

[da(u/TOM(G))] [da(v/T°M(G))]
+ [do(u/TO"(G))] [do(v/T°"(G))] = 0.

u

(5(@)

LMs(T™(G)) = Yo /TG [da(o/TH(@))]
veV (TP (G))

= > [di(/T"G))] [da(v/T"(@))]

veV(G)
+ Y [di(e/TN(G))] [da(e/TO(G))] = mn(n —1). O
e€E(Q)

Theorem 3.10 Let G be (n,m) graph. Then

LM, (THY(G)) = LMy(THY(G)) = LM3(TH(G)) = 0.

Proof Notice that the graph T*!1(G) has n +m vertices and @ + W + mn edges
by Theorem 3.1. By definitions of the first, second and third leap Zagreb indices along with
Propositions 3.2,3.3 and Observation 3.4, we get similarly the desired result as the proof of
above theorems. O

Theorem 3.11 Let G be (n,m) graph. Then

(1) LMy(THHH(@))
(2) LMy(THHH(@))
(3) LMs(T+1H(@))

(n—1)(n? —n —4m) + M1 (G);
m(n —1)2 — (n — 1)M1(G) + Ma(G);
m[(n —1)(n+ 2) — 2m] — M1(G).

Proof Clearly, the graph TH11(G) has n +m vertices and W + mn edges by Theorem
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3.1. By definitions of the first, second and the third leap Zagreb indices, we get the following
by applying Propositions 3.2, 3.3 and Observation 3.4.

LM(TTY(@)) = S dao/TTHG))?
veV(TT1(G))
= Y /TG + ) da(e/TTG))
veV(G) e€E(Q)
= > (=1 +d/G)? = 2n— )i (v/G)]
veV(G)

= (n—1)(n*—n—4m)+ M (G).

LMy(T*H(G)) = > [d2(u/TTH(G))] [da(v/TT(G))]
w€E(T+1(G))

= > [d(/TTHG))] [da(v/TTHG)))]

uwweE(G)

+ Y [de(w/TTHG))] [de(v/THG))]

+ Y [d@/TTHE))] [da(0/THHG))]

LM(TTH(G)) = S [diw/TTHG))] [da(v/TTHG)))]
VeV (TH11(Q))
= Y [di(w/TTHG))] [da(v/TTHG))]
veV(G)
+ Y [di(e/TTHG))] [dale/THH(G))]
ecE(G)
= m[(n—1)(n+2) — 2m] — My(G). O

Theorem 3.12 Let G be (n,m) graph. Then

(1) LMy(T~'1(G)) = My (G);
(2) LMy(T~'H(G)) = Ma(G);
(3) LMs(T~'Y(G)) = 2m(n +m — 1) — My(G).

Proof Obviously, the graph T~1(G) has n +m vertices and @ + W + mn edges,
refer Theorem 3.1. Similarly, by definitions of the first, second and the third leap Zagreb indices
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along with Propositions 3.2, 3.3 and Observation 3.4 we know the following.

LM{(T7N@)) = Y da(v/TTHG))
eV (T11(G))

= ) /TG + D da(e/THH(G))

veV(G) e€E(G)
= My(G).
LMy(T~H(@)) = > [do(u/T~H(G))] [da(0/T~HH(G))]

weE(T-11(G))

= X /TG [/ T (G)]

uww¢ E(G)

+ Y [d/TTHE)] [da(o/THE))]

weE(L(G))

Y [d/TTHE)] [da(o/THE))]

w¢E(L(G))

Y de(w/TTHE)) e (/T (@)

uveE(S(

uveE(S(
_ 5©)

@)
+ Y [de(w/TTHE)) e (v/TH(G)))
@)

LM(T™H(G)) = Yo /T [da(o/TTHHA))]

veV(T-11(G))

= > (/TG [da(0/T~H(G))]

veV(G)
+ Y [di(e/TH@))] [dale/THG))]
e€E(Q)
= 2m(n+m—1)— M (G). O

Theorem 3.13 Let G be (n,m) graph. Then

(1) LMy (TH(@)) = n(n — 1) + m(m — 1)(m + 3) — 2(m — 1) M1 (G) + EM;(G);

(2) LMy (TOH(G)) = [25 — n(n — DM (G) — (m — 1)EMy(G) + EMa(G)
+m(m—1)[n(n—1)— (m—1)] +2mn(n — 1);

(3) LM3(T*+(G)) = (m +n — 1)Mi(G) — EMy(G) + m[n(n +m) — 2(m — 1)].

Proof Notice that the graph T°*1(G) has n + m vertices and m(n — 1) +
Theorem 3.1. By definitions of the first, second and the third leap Zagreb indices we get the

w edges by
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following by applying Propositions 3.2, 3.3 and Observation 3.4.

o7

LM,(T°*Y(G)) = Y da(/TOTG))?
VeV (TO+1(G))
= Y BTGP+ D da(e/TOH(G))?
VeV (G) c€E(G)
= Y. =1+ > [(m=1)*+di(e/G)* - 2(m — 1)di(e/G)]
VeV (G) c€E(G)
= nn—12+m(m—1)(m+3)—2(m—1)M(G) + EM,(G).
LMy(T**H(G)) = > [do(u/T*TH(@))] [da(v/TO+H(@))]
weB(TO+1(G))
= Y [eW/TNG))] [da(/TG))]
weE(L(G))
+ Y [de(u/TTHG))] [da(v/TOTHG))]
weE(S(Q))
+ Y [da(w/TG))] [da(v/TOTH(G))]
wweE(S(Q))
= Z [(m—1)? — (m — 1)(d1(u/G) + di(v/G)) + di(u/G) - di (v/G)]
uwweE(L(G))
+ Y (n=1)m—-1-d(v/G))
wveE(S(G))
+ Y (n=1)m—-1-d(/G))
weE(S(Q))
(m—1)

=

2

—n(n—DIMi(G) — (m = 1)EM;(G) + EM>(G)

+m(m —1)[n(n—1) — (m — 1)] 4+ 2mn(n — 1).

LM5(T°*(G))

> [dy (/T (@))] [da(v/TOTHG))]

veV(TOTH(G))

>

[di (v/T*THG))] [da(v/T"(G))]

veV(G)

+ > [dile/TTHG))] [da(e/TOTH(G))]

ecE(G)

Yo =1+ > [(n+di(e/G))(m 1 - di(e/G))]

veV(G) c€E(G)

(m+n—1)M(G) — EM(G) + m[n(n+ m) — 2(m — 1)].

Theorem 3.14 Let G be (n,m) graph. Then

(1) LM(T*H(@))

(2) LMy (THH(@)) =

(m—1)?

2

m(m —1)(m+3) —2(m — 1)M1(G) + EM;,(G);

Mi(G) — (m — 1)EM,(G) + EM>(G) — m(m — 1)%;
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(3) LM3(T*(@)) = (m —n — 1)M1(G) — EM;(G) +m[n(m + 1) — 2(m — 1)].
Proof Clearly, the graph T'*!(G) has n+m vertices and (n—1)(% +m)+ Ml( )
Theorem 3.1. By definitions of the first, second and the third leap Zagreb indices we therefore

edges by

get the following by Propositions 3.2, 3.3 and Observation 3.4.

LM(T*N(G)) = S da/THHG))?
VeV (TH1(G))
= Y /TG + D da(e/THG))?
veV(G) e€E(Q)
= Y [m=1*+d(e/G)? —2(m ~ 1)di(e/G)]
e€E(Q)

= m(m—1)(m+3)—2(m—1)M(G) + EM(G).

LMy(T'H(G)) = > [do(u/T'H(G))] [da(v/THH(@))]
weE(T+1(Q))
= Y [da(uw/THG))] [da(v/THHG))]
uwweE(G)
+ >0 [de(uw/THG))] [da(v/THH(G))]
w¢E(GQ)

+ Y [da(w/THG))] [da(v/THH(G))]

weE(L(G))

+ [ 2 (u/THG))] [d2(v/TH(G))]

Z
+ Z [(a/TlH(G»] [da (v/ T (G))]

wweE(S(G))
= (=12 = (= ) W/G) + di (v/G)) + di (1] G) - di (]G]
uwweE(L(G))
Y
= (m 5 ) M;i(G) — (m — 1)EM1(G) + EM2(G) — m(m — 1)*.
LETHE) = Y [me/T6)] [/ (E)]
veV(THH1(G))

= Y [di(w/THG))] [da(v/T"TH(G))]

veV(G)
+ Y [dile/THH@))] [da(e/THG))]
e€E(G)
= (m—n—-1)M(G) - EM:1(G) + m[n(m +1) — 2(m — 1)]. O

Theorem 3.15 Let G be (n,m) graph. Then

(1) LM, (T+(G)) = (n — Dn(n — 1) — 4m] + m(m — 1)(m + 3)
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— (2m — 3)M1(G) + EM1(G);

(2) LMy(THH(@)) = [<m;1>2 —(n—1)(n+ 1)) M1(G) + Ma(G) — (m — 1) EM;(G)

(n
+EM3(G) + m[n(2n — 3) — m(3m — 4) + mn(n — 1)]

+ > dz(u/G)dz(v/G)
uweV(G),veE(G),u~v
+ > d2(u/G)da(v/G);

uweV(G),veE(G),unv

(3) LM3(TT(G)) = mn(m +n —2) + (m —n —2)M(G) — EM:(G).

: ML (G)
Proof Clearly, the graph T+*!(G) has n-+m vertices and mn+ ==

Now by definitions of the first, second and the third leap Zagreb indices, applying Propositions

edges by Theorem 3.1.

3.2,3.3 and Observation 3.4 we have the following.

LMy (T (@) = S da/TTHG))?
veV(THH1(G))

= Y /TG + D da(e/TTHHG))

VeV (G) c€E(G)

= Y In-1-d@/a)P+ Y [m—1-de/G)?
VeV (G) c€E(G)

= (n—=1hnn-1)—4m]+m(m —1)(m+3) — (2m — 3)M1(G)
YEM,(G).

LMy(THH(G)) = > [da(u/THHH(@))] [da(0/THHH(G))]
wEE(T++1(G))

= > [da/TTG))] [da(v/TTHG))]

uwveE(G)

+ > [da(w/TTHG))] [da(o/THH(G))]

wveE(L(G))

+ > [da(w/TTHG))] [da(v/THH(G))]

wveE(S(G))
+ D /T [da(o/TTHE))]
wweE(S(Q))
_ ((m — 1)
= 5 _
+EM3(G) + m[n(2n — 3) — m(3m — 4) + mn(n — 1)]
+ > da(u/@)da(v/G)

ueV(G),veE(G),u~v

+ > da(u/@)da(v/@).

weV(G),veE(G),unv

(n—1)(n+ 1)) My (G) + M3(G) — (m — 1) EM;(G)
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LM3(T*H(@)) = Yo /TG [de(v/THHG))]
veV(T+H+H1(Q))
= Y /TG [da(/TTHG))]
veV(G)
+ Y [dile/THHG))] [dale/THHH(G))]
e€E(G)
= mn(m+n—2)+ (m—n—2)M(G) — EM(G). O

Theorem 3.16 Let G be (n,m) graph. Then

(1) LMy(T—+Y(G)) = m(m — 1)(m + 3) — (2m — 3)M1(G) + EM,(G);

(2) LMo(T(G)) = @52 My(G) + TEB(G) — (m — )EMi(G) + EMa(G) + m(m — 1)(m + 1)

- 2 d2(u/G)d2(v/G) + 2 d2(u/G)d2(v/G) | ;

ueV(G),veEE(G),u~v ueV(G),veEE(G),uxv

(3) LM3(T~4(G)) = (m — n — 2)My(G) — EM1(G) + mn(m + 3).

Proof Notice that the graph T~*!(G) has n + m vertices and @ +m(n—2)+
edges, refer Theorem 3.1. We are easily get the following by definitions of the first, second and

My (G)
2

the third leap Zagreb indices along with Propositions 3.2, 3.3 and Observation 3.4.

LMy(T~HN(G)) = S d/THHG))?
veV(T—1t1(Q))
Y /TG + Y da(e/THHG))?
veV(G) e€E(G)
m(m — 1)(m +3) — (2m — 3)M1(G) + EM:(G).

LMx(T™ (@) = > [d2(u/T~7H(G))] [da(v/T~TH(G))]

we€E(T—+1(G))

= Y [d(w/T7H@)] [d2(0/T7 (@)

wvg B(G)

+ ) [de(/TTTHGE))] [da(v/T~THG))]
wweE(L(G))

+ ) [de(w/TTTHG)] [de(v/T~ (@)
uwv€EE(S(G))

+ ) [de(uw/TTTHG))] [da(v/T~TH(G))]
wve€E(S(G))

- = 3 s Mi(G) +M2(G) — (m — 1) EM:(G)

+EM2(G) + m(m — 1)(m + 1)

- > do(u/G)da(v/G) + > do(u/G)da(v/G) | .

ueV(G),veEE(G),u~v ueV(G),veEE(G),uxv
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LM3(T~H(G)) = > [di(v/T~THG))] [da(v/T~HH(G))]
veV(I—+1(@))

= X [T G [dalo/THE))]

veV(G)
+ > [dile/T™THG))] [dale/T~THG)))]
e€E(G)
= (m—n-2)M(G) — EM;(G) +mn(m + 3). O

Theorem 3.17 Let G be (n,m) graph. Then

(1) LMy (T°7H(@)) = n(n — 1)* + EM;(G);
(2) LM(T°~1(@)) = EM2(G) + n(n — 1)M1(G) — 2mn(n — 1);

(3) LM3(T°~Y(@)) = (n+m — 1)M1(G) — EM;(G) + m(n? — 3n — 2m + 2).

Proof Notice that the graph T°7!(G) has n + m vertices and m (L 4+ n) — Ml(G)

refer Theorem 3.1. By definitions of the first, second and the third leap Zagreb 1ndlces along

edges,

with Propositions 3.2,3.3 and Observation 3.4 we get the following.

LM(T*7H(@)) = Y. d@/T7NG))
veV (T~ 1(Q))
= > /TN + D da(e/T7HG))?
veV(G) e€E(G)

= n(n—1)>+ EM;(G).

LMy(T"7H(G)) = Yo [da(w/TN@)] [do(o/TOH@))]

weE(T°-1(Q))

= > [de(uw/TOHG))] [da(v/TOHG))]
wgE(L(Q))

+ Y [d@/T7HE))] [da(v/T07H(@))]

weE(S(Q))

+ Y [d@/T7HG))] [da(v/TO7H(@))]

weE(S(G))

= Y WO e+ Y (- Ddw/C)

weE(L(Q)) weE(S(Q))
FY - Daw/o)
wweE(S(Q))
= EMs(G)+n(n—1)Mi(G) — 2mn(n — 1).
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LM3(T"1(@)) = S [d/THG))] [da(0/TOH(G)))]

vEV(TO-1(G))

= > [di(/T"NG))] [da(v/T"H(G))]

veV(G)
+ ) [di(e/TO7H@))] [da(e/TO7H(G))]
e€E(Q)
= (n+m—1)M(G) — EM(G) +m(n® — 3n — 2m + 2). 0

Theorem 3.18 Let G be (n,m) graph. Then

(1) LM(T'7H(G)) = EMy(G);
(2) LMo (T* (@) = EM(G);

(3) LM3(T'=(G)) = (n +m — 1)M(G) — EM1(G) — 2m(n +m — 1).

Proof Clearly, the graph T'~1(G) has n + m vertices and @ +m(Zt +n) —
edges by Theorem 3.1. Whence, by definitions of the first, second and the third leap Zagreb
indices along with Propositions 3.2,3.3 and Observation 3.4 we get the following.

My (G)
2

LM\(T'"Y(@)) = Y d/THG))?
veV(T'=H(G))
C S @R Y b
veV(G) e€E(G)
— EM(G).
LMy(T'H(G)) = > [d2(u/T"HG))] [da(v/T'H(G))]
weE (T~ 1(G))
= > [dW/THE))] [da(/THG))]
weEE(G)
+ Y [da(w/THG))] [de(o/T'H(G))]
wg E(G)
+ > [de/THG))] [da(o/T'H(G))]
wg B(L(G))
+ > [de(w/THG))] [de(o/TH(@))]
wveE(S(G))
+ Z [da(u/TH(G))] [d2(v/T'H(G))]
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LM(T'7H(G)) = Yo /TN [d(o/THA))]

vEV(T1-1(G))

= > (/TG [da(v/THG))]

veV(G)
+ Y [die/THE))] [da(e/THHG))]
e€E(G)
= (n+m—1)Mi(G) — EM;(G) —2m(n+m —1). O

Theorem 3.19 Let G be (n,m) graph. Then

(1) LMy(T+=Y(@)) = Mi(G) + EMi(G) + (n — 1)[n(n — 1) — dm;

(2) LM2(T*" (@) = (n — 1)2 My (G) + M2(G) + EMa(G) — m(n—1)(n + 1)

- 2 d2(u/G)d2(v/G) + 2 d2(u/G)d2(v/G) | ;

ueV(G),veE(G),u~v uweV(G),veEE(G),umv

(3) LM3(T+ (@) = (n+m —2)M1(G) — EM1(G) + m[(n — 1)(n+2) —2(2m +n — 1)].

Proof Clearly, the graph T7~!(G) has n 4+ m vertices and m (22 +n) —

MI(G) edges by

Theorem 3.1. By definitions of the first, second and the third leap Zagreb indlces along with

Propositions 3.2, 3.3 and Observation 3.4 we therefore get the following.

LMy(TH @) = S b/ TTHG))?
veEV(TT-1(G))
= Y bwTHOR Y dle/ TG
veV(Q) e€E(Q)

LMz (T*7H(@))

= M(G)+ EM(G)+ (n—1)[n(n—1) —4m].

> [d2(u/TT7H(G))] [da(v/TTH(G))]

wveB(TT-1(Q))

Y /TG [da(o/THH(@))]

uveE(G)

+ Y [/ TTTHE))] [da(o/THG))]

uwvg E(L(G))

+ > [d/TTHE))] [da(o/THG))]

wveE(S(G))

+ ) [de(w/TTTHG))] [de(v/TH (@)
wveE(S(G))

(n — 1)2My(G) + Ma(G) + EMG(G) — m(n — 1)(n + 1)

- > do(u/G)da(v/G) + > do(u/G)da(v/G) | .

ueV(G),veEE(G),u~v ueV(G),veEE(G),uxv
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veV(T+-1(G))

= Y [b/TTO)] [da(o/THE))]

veV(G)

+ > [dile/TTHE))] [dale/TTH(G)))]

ecE(G)
= (n+m—=2)M(G)— EM(G)+m[(n—1)(n+2)—2(2m+n—1)]. O

Theorem 3.20 Let G be (n,m) graph. Then

(1) LM(T~~1(G)) = M1(G) + EM,(G);

(2) LMx(T~74(G))

Mi(G) + EM>(G) +

ueV(G),veE(G),u~v
> dz(u/G)d2(v/G);

uweV(G),veE(G),unv

(3) LM3(T~~1(G)) = (n+ m — 2)My(G) — EMy(G).

Proof Notice that the graph T~ ~!(G) has n+m vertices and @ +m(2ZL +n)—

[di(v/T*HG))] [da(v/T*H(G))]

da(u/G)da(v/G)

M. (G)
2

edges by Theorem 3.1. By definitions of the first, second and the third leap Zagreb indices,

Propositions 3.2, 3.3 and Observation 3.4, we are easily get the following.

LM(T~7HG))

LMy(T~7H@G)) =

- ¥

da(v/T~~H(@))?
VeV (T-—1(G))

veEV(G) c€E(G)

— M (G) + EMy(G).

>

weE(T—-1(Q))

Yo d/TTTHP+ Y dale/TH@)?

[do(u/T~~Y@G))] [da(v/T~H(@))]

37 [do(w/T~7HG))] [dalv/T~"HG))]

w¢E(G)
[do(w/T~"1G))] [do(v/T

>

ueV(G),veE(G),u~v
+ > dy(u/G)da(v/G).

uweV(G),veE(G),unv

—HG)]
[d2(u/T~7HG))] [da(v/T~7H(G))]

[do(u/T~~Y@G))] [da(v/T~H(@))]

dg (U/G)dQ (’U/G)
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LMs(T~7Y(G)) = Yo [di/THG))] [da(v/T~7HG))]

veV(T——1(G))

= Y [di(/THG))] [da(v/T~7HG))]

veV(G)
+ 3 [dile/T™7HG))] [dale/T~7H(G))]
e€E(Q)
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