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By way of the Quantum/Classical Connection, the radii of nearby G 

and K-type Main Sequence stars map onto the atomic masses of 

Period 4 transition metals while the masses of the stars map onto the 

atomic radii of the same elements. 

‘Classical’ length scales (specifically the radii of astrophysical bodies)    map onto related ‘quantum’ 

masses            by way of the Quantum/Classical Connection [1, 2]: 

   
     

   (1) 

found in the Planck Model [3]. Planck units (ћ=c=G=1) are used in (1) and in equations throughout 

the paper, which explains the apparently unbalanced dimensions. 

First, mass values    are calculated from stellar radii       using (1) for six G and K-type Main 

Sequence stars within 4 pc of earth: the Sun, Alpha Centauri A & B, Tau Ceti, Epsilon Eridani and 

Epsilon Indi. The uncertainty in radius measurement for each of these stars is <1%. The stellar radii 

and masses are presented in Table 1. 

Star Type Radius (R⨀) Mass (M⨀) References 

Sun G 1 1  

Alpha Centauri A G 1.2234(53) 1.100(6) 4, 5 

Alpha Centauri B K 0.8632(37) 0.907(6) 4, 5 

Tau Ceti G 0.793(4) 0.783(12) 6 

Epsilon Eridani K 0.735(5) 0.82(2) 7, 8 

Epsilon Indi K 0.732(6) 0.762(38) 7 

Table 1: Stellar parameters of six nearby G and K-type Main Sequence stars 

The mass values    calculated from (1) are plotted in Figure 1 on the levels and sublevels of Planck 

Sequences 1 and 3, which descend in geometric progression from the Planck Mass with common ratio 

1/ and 1/e, respectively,
1
 and which may derive from an extra-dimensional geometry [9]. The level-

numbers    and    corresponding to    are calculated from: 

                        (2) 

                                                           
1
 Planck Sequence 2 is of common ratio 2/. 
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                   (3) 

Figure 1 should be compared with Figure 2, in which the atomic masses of nuclides with A in the 

range 48-61 are presented
2
. Atomic masses corresponding, through (1), to the radii of stars are 

marked. 

 

                                                           
2
 The mass excess is set to zero. 
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Figure 1: Masses    corresponding 

through the Quantum/Classical 

Connection of (1) to the radii    of 

nearby G and K-type Main Sequence 

stars - shown on the mass levels of 

Planck Sequences 1 and 3. The levels 

have been drawn at right angles. In 

such a representation the masses lie 

on a straight line since for all values 

of mass the corresponding level-

numbers    and    are in constant 

ratio. 

Figure 2: Masses of atoms with 

mass numbers A - shown on the 

mass levels of Planck Sequences 1 

and 3. 
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The radii of G and K-type stars are mapped onto the atomic masses of Period 4 transition metals using 

(1).
3
 Stable nuclides tend to occupy prominent levels and sublevels in the Planck sequences [10]. The 

tightly bound 
52

Cr and 
56

Fe, of which massive stellar cores are finally composed, lie close to 

superlevels
4
 at the near-coincidence (35, 40) in Planck Sequences 1 and 3. Nearly-coincident levels 

and superlevels are important locations for physics [3, 11]. 

We will now show that the masses of the G and K-type stars of Figure 1 map onto the atomic radii of 

the Period 4 transition metals of Figure 2 by way of the symmetrical counterpart of (1). The analysis 

will include other types of Main Sequence stars. The ‘classical’ stellar masses are measured relative to 

the inverse Bohr radius,   
    3.73 keV, and not relative to the Planck Mass. The symmetrical 

counterpart of (1) is then: 

       
     

  (4) 

The Bohr radius,                   , is a key scale in the Planck Model. It lies on the superlevel 

near-coincidence (50, 125) in Sequences 1 and 2, as shown in Figure 4.
5
 

 
Figure 4: The Bohr radius on levels of length scale in Planck Sequences 1 and 2 

Mass values    have been calculated from stellar radii    using (1) and radius values    have been 

calculated from stellar masses    using (4) for nearby, bright or spectral standard Main Sequence 

stars of types O, B, A, F, G, K and M, including the stars of Table 1. The stellar radii and masses of 

those stars not included in Table 1 are presented in Table 2. The values of    calculated from (4) for 

stars of type B, A, F, G, K and M are plotted in Figure 5 against the atomic mass numbers A 

corresponding to the values of    calculated from (1). Values of atomic (covalent) radius [12] are 

                                                           
3
 Values of A for the Period 4 transition metals lie in the range 45-65 (stable nuclides). 

4
 Superlevels have level-numbers that are multiples of 5. 

5
 In the Planck Sequences, levels of length scale ascend from Planck scale while mass levels descend from 

Planck scale. 
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plotted against relative atomic mass for each element of Period 4 for comparison with the radius 

values   . The values of    and    found for O-type stars will be considered later.  

 

Star Type Radius (R⨀) Mass (M⨀) References 

BI253 O 10.7 84 13, 14 

HD93129 Aa O 22.5 110 15, 16 

HD93129 Ab O 13.1 70 17, 16 

HD93129 B O 13 52 18 

Regulus A B 3.092 3.8 19, 20 

Sirius A A 1.711 2.063 21, 22 

γ Ursae Majoris A 3.04 2.94 23, 24 

Formalhaut A 1.842 1.92 25 

Tabby’s Star F 1.58 1.43 26 


3
 Orionis F 1.323 1.236 27, 28 

61 Cygni A K 0.665 0.70 29, 30 

61 Cygni B K 0.595 0.63 29, 30 

Struve 2398 A M 0.351 0.334 31 

Groombridge 34 A M 0.3863 0.404 32, 33 

Lalande 21185 M 0.393 0.46 7, 34 

Lacaille 9352 M 0.459 0.503 7 

Luyten’s Star M 0.35 0.26 35, 34 

Table 2: Stellar parameters of the Main Sequence stars studied that are not in Table 1 

 

It can be seen from Figure 5 that (4) maps the masses of types A, F, G and K-type Main Sequence 

stars onto values of    that are closely aligned with the atomic (covalent) radii of Period 4 elements. 

Values of    calculated from the radii of M-type stars diverge from the Period 4 atomic radii. A stellar 

mass    of 0.08 M⨀ (~smallest mass of a true star) maps onto an    value of 0.05 nm (~Bohr radius). 
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Figure 5: Values of    calculated from stellar masses    using (4), 

plotted against atomic mass numbers A corresponding to the values of 

   calculated from stellar radii    using (1). Also shown are values of 

atomic (covalent) radius [12] for each element of Period 4, plotted 

against relative atomic mass. The range of relative atomic mass for the 

Period 4 transition metals (Sc – Zn) is marked. 

From Figure 5, it can also be seen that the masses of G and K-type Main Sequence stars map onto the 

atomic radii of Period 4 transition metals. Do the stellar mass and radius map onto the radius and 

mass, respectively, of the same nuclide? Consider the values of corresponding mass number A found 

for the six G and K-type stars of Figure 1. For each of these stars there is only one corresponding 

stable nuclide: for Alpha Centauri A, 
49

Ti; for the Sun, 
53

Cr; for Alpha Centauri B, 
56

Fe; for Tau Ceti, 
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58
Fe; and for Epsilon Eridani and Epsilon Indi, 

60
Ni. The value of    found for each of the six stars is 

plotted against atomic number Z in Figure 6. Also plotted are values of atomic (covalent) radius. The 

agreement between    and atomic radius is good. By way of the Quantum/Classical Connection - at 

least for these G and K-type Main Sequence stars - stellar radii map onto atomic masses and stellar 

masses map onto the radii of the same atoms. 

 

 

Figure 6: Values of    calculated from stellar masses    using (4), 

plotted against atomic number Z of the corresponding nuclides 

identified from the values of    calculated from stellar radii    using 

(1). Also plotted are values of atomic (covalent) radius [12]. The error 

bars signify one standard deviation. 
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We will now consider giant stars that have left the Main Sequence after having burned up their core 

hydrogen. Values of    calculated, using (1), from the radii    of the stars of Table 3 are plotted on 

the mass levels and sublevels of Planck Sequences 1 and 3 in Figure 6. The values of    coincide 

with sublevels rather than with atomic masses. 

Star Type Radius (R⨀) Mass (M⨀) References 

Pollux K 8.8(1) 1.91(9) 36, 37 

Arcturus K 25.4(2) 1.08(6) 38 

Aldebaran K 44.13(84) 1.16(7) 39, 40 

Canopus A 71(4) 8.0(3) 41 

Table 3: Stellar parameters of giant stars 

 
Figure 7: Masses    corresponding, through the Quantum/Classical 

Connection in (1), to the radii    of giant stars - shown on the mass levels 

and sublevels of Planck Sequences 1 and 3. 
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Values of    calculated for the giant stars of Figure 6 and all the stars of Table 2, including those of 

O-type, are plotted against values of A (corresponding to   ) in Figure 7. A ‘quantum’ Main 

Sequence can be seen. 

 

 

 
Figure 8: Values of    calculated from stellar masses    using (4), 

plotted against atomic mass numbers A corresponding to the values of 

   calculated from stellar radii    using (1). Included are type-O 

Main Sequence stars and giant stars that have left the Main Sequence. 

 

  

0 

0.2 

0.4 

0.6 

0.8 

1 

0 20 40 60 80 100 

r Q
 (

n
m

)  

A 

Main Sequence 

Giant non-Main Sequence 

stars 

O-type 



9 
 

Conclusions 

1. The Quantum/Classical Connection maps the radii of nearby G and K-type Main Sequence 

stars onto the masses of Period 4 transition metals. 

2. The Quantum/Classical Connection maps the masses of the G and K-type Main Sequence 

stars onto the atomic radii of the same Period 4 transition metals as above. 

3. The smallest mass characterising a true star maps onto a length scale of ~Bohr radius. 

4. The radii of giant non-Main Sequence stars map onto mass sublevels in the Planck sequences 

rather than onto atomic masses. 
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