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Maxwell field equations of electromagnetism. We also discuss the possibility that being restricted 
to three-dimensional spatial dimensions we may not be able to observe the whole geometric 
structure of a quantum particle but rather only the cross-section of the manifold that represents 
the quantum particle and the space in which we are confined. Even though not in the same 
context, such view of physical existence may comply with the Copenhagen interpretation of 
quantum mechanics which states that the properties of a physical system are not definite but can 
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A Classification of Quantum Particles 
Vu B Ho 

Abstract-  In this work, by summarising our recent works on the 
differential geometric and topological structures of quantum 
particles and spacetime manifolds, we discuss the possibility to 
classify quantum particles according to their intrinsic 
geometric structures associated with differentiable manifolds 
that are solutions to wave equations of two and three 
dimensions. We show that fermions of half-integer spin can be 
identified with differentiable manifolds which are solutions to a 
general two-dimensional wave equation, in particular, a two-
dimensional wave equation that can be derived from Dirac 
equation. On the other hand, bosons of integer spin can be 
identified with differentiable manifolds which are solutions to a 
general three-dimensional wave equation, in particular, a 
three-dimensional wave equation that can be derived from 
Maxwell field equations of electromagnetism. We also discuss 
the possibility that being restricted to three-dimensional spatial 
dimensions we may not be able to observe the whole 
geometric structure of a quantum particle but rather only the 
cross-section of the manifold that represents the quantum 
particle and the space in which we are confined. Even though 
not in the same context, such view of physical existence may 
comply with the Copenhagen interpretation of quantum 
mechanics which states that the properties of a physical 
system are not definite but can only be determined by 
observations.  

I. Covariant Formulations Of 
Classical And Quantum Physics 

n physics, the electromagnetic field has a dual 
character and plays a crucial role both in the 
formulation of relativity theory and quantum 

mechanics. However, since the electromagnetic field 
itself is regarded simply as a physical event whose 
dynamics can be described by mathematical methods 
therefore it is reasonable to suggest that it should be 
formulated in both forms of classical and quantum 
mathematical formulations. This amounts to suggesting 
that it should be derived from the same mathematical 
structure of classical theories, such as the gravitational 
field, and at the same time from the same mathematical 
structure of quantum theories, such as Dirac formulation 
of quantum mechanics. In this section we show that in 
fact this is the case. As shown in our works on 
spacetime structures of quantum particles [1], the three 
main dynamical descriptions of physical events in 
classical physics, namely Newton mechanics, Maxwell 
electromagnetism and Einstein gravitation, can be 
formulated in the same general covariant form and they 
can be represented by the general equation 
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 where  

 

is a mathematical object that represents the 
corresponding physical system and  

 
is a covariant 

derivative. For Newton mechanics, we have 
                    and  .  For 
       

Maxwell electromagnet ism,                                    with 
the four-vector potential                    and    can be 
identified with the electric and magnetic currents. And 
for Einstein gravitation,           and   can be defined in 
terms of a metric     and the Ricci scalar curvature. It is 
shown in differential geometry that the Ricci tensor     
satisfies the Bianchi identities  
 
 
 
 where                   is the Ricci scalar curvature [2]. Even 
though Equation (2) is purely geometrical, it has a 
covariant form similar to the electromagnetic tensor

              defined in Euclidean space. If the quantity 

can be identified as a physical entity, such as 

a four-current of gravitational matter, then Equation (2) 
has the status of a

 
dynamical law of a physical theory. In 

this case a four-current 
             

can be defined purely 
geometrical as 

 
 
 
 

If we use the Bianchi identities as field 
equations for the gravitational field then Einstein field 
equations, as in the case of the electromagnetic field, 
can be regarded as a definition for the energy-
momentum tensor       for the gravitational field [3]

 
 
 
 
 

For a purely gravitational field in which
                 

                

 

, the proposed field equations given in 

Equation (2) also give rise to the same results as those 
obtained from Einstein formulation of the gravitational 
field given in Equation (4). For a purely gravitational 
field, Equation (2) reduces to the equation
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From Equation (5), we can obtain solutions 
found from the original Einstein field equations, such as 
Schwarzschild solution, by observing that since                 

,                      Equation (5) implies  
 
 
 

where    is an undetermined constant. Furthermore, the 
intrinsic geometric Ricci flow that was introduced by 
Hamilton can also be derived from Equation (5) and 
given as follows 
 
 
 

where    is a scaling factor. Mathematically, the Ricci 
flow is a geometric process that can be employed to 
smooth out irregularities of a Riemannian manifold [4]. 
There is an interesting feature that can be derived from 
the definition of the four-current             given in Equation 
(3). By comparing Equation (3) with the Poisson 
equation for a potential  

 in classical physics                     

,              
 

we can identify the scalar potential  
 
with the 

Ricci scalar curvature and then obtain a diffusion 
equation 

 
 
 

where
 

is an undetermined dimensional constant. 
Solutions to Equation (8) can be found to take the form 
[5] 

 
 
 

 
 
 

Equation (9) determines the probabilistic 
distribution of an amount of geometrical substance   
which is defined via the Ricci scalar curvature and 
manifests as observable matter. It is interesting to note 
that in fact it is shown that a similar diffusion equation to 
Equation (8) can also be derived from the Ricci flow 
given in Equation (7) as follows [6] 

 
 
 
 
 

 

 

On the other hand, we have also shown that 
Maxwell field equations of electromagnetism and Dirac 
relativistic equation of quantum mechanics can be 
formulated covariantly from a general system of linear 
first order partial differential equations [7,8,9]. An explicit 
form of a system of linear first order partial differential 
equations can be written as follows [10] 

 
 
 
 

 
 
 

The system of equations given in Equation (11) 
can be rewritten in a matrix form as 
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where              
                                   and are 

matrices representing the quantities        and     and

and are undetermined constants. Now, if we apply the 

operator                    on the left on both sides of 

Equation (12) then we obtain

, 
, , 

, 

38

If we assume further that the coefficients    and      are constants and                    , then Equation (13) 
can be rewritten in the following form

                           

Λ𝑔𝑔𝛼𝛼𝛼𝛼

Λ

where is   the   Laplacian   defined   as                           
and      is a shorthand for a mathematical expression. 
Therefore, the Bianchi field equations of general relativity 
in the covariant form given in Equation (2) can be used 
to formulate quantum particles as differentiable 
manifolds, in particular 3D differentiable manifolds. 

                            
     

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 𝑘𝑘∇2𝜕𝜕



 

 

 
 

 

 

  

 

 

A Classification of Quantum Particles

In order for the above systems of partial 
differential equations to be used to describe physical 
phenomena, the matrices must be determined. We 

have shown that for both Dirac and Maxwell field 
equations, the matrices   must take a form so that 
Equation (14) reduces to the following equation 

Therefore, the general system of linear first 
order partial differential equations can be used to 
formulate the dynamics of quantum fields that include 
the electromagnetic field and matter field of quantum 
particles. In Sections 3 and 5 we will give explicit forms 
for the matrices for both Dirac and Maxwell field 
equations and show that these two systems of 
differential equations can be applied to classify quantum 
particles as fermions of half-integer spin and bosons of 
integer spin. 

II. On The Dimensionality Of The 
Spatiotemporal Manifold

In classical physics, in order to formulate the 
dynamics of natural events that are observable we 
assume that spacetime is a continuum which consists of 
three spatial dimensions and one temporal dimension. 
At the macroscopic scale on which information about 
physical objects can be established with certainty the 
assumption seems to be reasonable because it can 
adequately be used for all dynamical formulations of 
physical theories. However, at the microscopic scale 
quantum responses of physical events have revealed 
that such simple picture of a four-dimensional 
spacetime continuum is in fact not adequate for physical 
descriptions, especially those that can be accounted for 
by observations that can only be set up within our 
perception of physical existence. This leads to a more 
fundamental problem in physical investigation of how we 
can justify the merit of a physical theory. From the 
perspective of scientific investigation, physical theories 
can only be evaluated on the subject of the accuracy to 
experimental results of their mathematical formulations 
that can be applied into the dynamical description of 
physical objects. But as far as we are concerned, the 
setup of a physical experiment is within the limit of three-
dimensional domain, therefore, the dimensionality of the 
spatiotemporal manifold in fact still remains the most 
fundamental problem that needs to be addressed 
before any attempt to formulate physical theory can be
justified. In our previous works on spacetime structures 
of quantum particles and geometric interactions we 
showed that it is possible to formulate quantum particles 
as three-dimensional differentiable manifolds which 
have further geometric and topological structure of a 
CW complex whose decomposed n-cells can be 
associated with physical fields that form the 
fundamental physical interactions between physical 

objects [11,12 ,13]. We also showed that it is possible to 
suggest that spacetime as a whole is a fiber bundle 
which admits different types of fibers for the same base 
space of spacetime and what we are able to observe 
are the dynamics of the fibers but not that of the base 
space itself [14]. Even though the fiber bundle 
formulation of the spatiotemporal manifold may provide 
a more feasible framework to deal with the dynamics of 
physical existence, the questions about the nature of the 
base space of the spatiotemporal fiber bundle, whether 
it can be observable and whether matter are physical 
entities or they are simply geometric and topological 
structures of the spacetime manifold still remain 
unanswered. We may also ask the question of how 
many dimensions the universe really has then even 
though the answer to this type of question will depend 
on our epistemological approach to the physical 
existence, within our geometric and topological 
formulation of spacetime we would say that it would 
depend on what is the highest dimension of the n-cells 
that are decomposed from the spacetime bundle that 
we can perceive. However, it seems natural that being 
apparently three-dimensional we perceive the physical 
existence in three spatial dimensions. It is also natural 
that due to our perception of the progress of physical 
events that occur in sequence that we recognise time as 
one-dimensional. In physics, practically, we describe the 
physical existence in terms of those that can be 
observed and measured. In classical physics, what we 
are observing are physical objects that move in a three-
dimensional Euclidean space and the motion occurs in 
sequence that changes spatial position with respect to 
time, which itself can be measured by using the 
displacement of the physical objects. However, in 
quantum physics, the observation of physical objects 
itself is a new epistemological problem. The 
fundamental issue that is related to this epistemological 
problem of observation is the difficulty in knowing how 
quantum particles exist. In Einstein theory of special 
relativity the dimensionality of spacetime is assumed to 
be that of one-dimensional time and three-dimensional 
Euclidean space , together they form a four-
dimensional spacetime which has the Minkowski 
mathematical structure of pseudo-Euclidean geometry. 
This mathematical structure seems to be complete in 
itself if spacetime is not curved. However, in Einstein 
theory of general relativity, spacetime is assumed to be 
curved by matter and energy. As a consequence from 
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where and are constants which can be determined 
from physical considerations. Using equations of motion 
from both the spatial and temporal Newton’s second 
laws of motion 

it is seen that a complete geometric structure would be 
the structure that is resulted from the relationship 
between space and time that satisfies the most general 
equation in the form 

,                                                               

of a four-dimensional spacetime, the mathematical 
objects that are used to describe physical objects can 
only be described as two-dimensional manifolds 
embedded in the three-dimensional Euclidean space   . 
In fact, as shown in Section 3 below, this may be true for 
the case of massive quantum particles of half-integer 
spin. On the other hand, in order to describe physical 
objects that are assumed to possess the mathematical 
structures of three-dimensional manifolds an extra 
dimension of space must be used. For example, with 
Einstein field equations given as

                                                       and the cosmological 

model that uses the Robertson -Walker  metric  of  the 

form                  ,

 
                            

manifolds of dimension which can emit submanifolds 
of dimension          by decomposition. In order to 
formulate a physical theory we would need to devise a 
mathematical framework that allows us to account for 
the amount of subspaces that are emitted or absorbed 
by a differentiable manifold. This is the evolution of a 
geometric process that manifests as a physical 
interaction. We assume that an assembly of cells of a 
specified dimension will give rise to a certain form of 
physical interactions and the intermediate particles, 
which are the force carriers of physical fields 
decomposed during a geometric evolution, may 
possess a specified geometric structure, such as that of 
the n-spheres and the - tori. Therefore, for observable 
physical phenomena, the study of physical dynamics 
reduces to the study of the geometric evolution of 
differentiable manifolds. In particular, if a physical object 
is considered to be a three-dimensional manifold then 
there are four different types of physical interactions that 
are resulted from the decomposition of 0-cells, 1-cells, 
2-cells and 3-cells and these cells can be associated 
with the corresponding spatial forces           and 
temporal forces            with              . In the case of       

,     for a definite perception of a physical existence, we 
assume that space is occupied by mass points which 
interact with each other through the decomposition of 0-
cells. However, since 0-cells have dimension zero 
therefore there are only contact forces between the 
mass  points. When the mass points join together 
through the contact forces they form elementary 
particles. The 0-cells with contact forces can be 
arranged to form a particular topological structure [17]. 
Therefore, we can assume that a general spatiotemporal 
force which is a combination of the spatial and temporal 
forces resulted from the decomposition of spatio-
temporal n-cells of all dimensions can take the form

in    order    to    derive    the 

Robertson-Walker metric from Einstein field equations 
we assume that the quantity       is the radius of a 3-sphere 
embedded in a four-dimensional Euclidean space   .
This raises the question of whether this extra spatial 
dimension is real or just for convenience. Furthermore, 
we may ask whether there are any other physical 
formulations of physics that also require an extra 
dimension of space. This is in fact also the case when 
we discussed the wave-particle duality in quantum 
mechanics in which quantum particles can be assumed 
to possess the geometric and topological structures of a 
three-dimensional differentiable manifold [15]. As a 
matter of fact, the anthropic cognition of spacetime with 
higher dimensions is a subject of scientific investigation 
and with open-mindedness there is no reason why we 
should avoid any attempt to formulate a physical theory 
that requires such perception with reasoning thinking. 
Even though the CW complex and fiber bundle 
formulations give a general description of the geometric 
structures of both quantum particles and the 
spatiotemporal manifold, the more important question 
that still remains is how to determine the specific 
structure of each quantum particle. For example, if 
quantum particles are considered as three-dimensional 
differentiable manifolds then it is reasonable to suggest 
that generally their geometric structures should be 
classified according to Thurston geometries [16]. 
However, even with a correct classification of quantum 
particles according to their intrinsic geometric 
structures, this type of geometric classification lacks the 
more important aspects of physical descriptions that are 
required for a physical theory which encompasses the 
dynamics and the interactions between them. With the 
assumption that quantum particles possess the intrinsic 
geometric structures of a CW complex and each 
geometric structure manifests a particular type of 
physical interactions, it is reasonable to assume that 
there is a close relationship between geometric 
structures in terms of decomposed n-cells from a CW 
complex and physical interactions. In general, we may 

consider physical objects of any scale as differentiable 
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The above discussions suggest that the 
apparent geometric and topological structures of the 
total spatiotemporal manifold are due to the dynamics 
and the geometric interactions of the decomposed cells 
from the base space of the total spatiotemporal 
manifold, and the decomposed cells form different types 
of fibers which may also geometrically interact with each 
other and manifest as physical interactions. In this case 
we can only perceive the appearance of the intrinsic 
geometric structures that emerge on the base space of 
the total spatiotemporal manifold and the base space 
itself may not be observable with the reasonable 
assumption that a physical object is not observable if it 
does not have any form of geometric interactions. It 
could be that the base space of the spatiotemporal 
manifold at the beginning was only a six-dimensional 
Euclidean spatiotemporal continuum   which had no 
non-trivial geometric structures therefore contained no 
physical objects. How could physical objects be formed 
from such a plain spacetime continuum? Even though 
we could suggest that physical objects could be formed 
as three-dimensional differentiable manifolds from mass 
points with contact forces associated with the 
decomposed 0-cells, it is hard to imagine how they can 
be formed from a plain continuum without assuming that 
there must be some form of spontaneous symmetry 
breaking of the vacuum. Since the apparent spacetime 
structures are formed by decomposed cells from the 
base spacetime and since there are many different 
relationships that arise from the geometric interactions 
of the decomposed cells of different dimensions, 
therefore there are different spactime structures each of 
which can represent a particular spacetime structure 
and all apparent spacetime structures can be viewed as 
parallel universes of a multiverse. If we assume that the 
spatiotemporal manifold is described by a six-
dimensional differentiable manifold which is composed 
of a three-dimensional spatial manifold and a three-
dimensional temporal manifold, in which all physical 
objects are embedded, then the manifold   can be 
decomposed in the form ,                             where

and    are spatial and temporal 3-spheres, respectively. 
Despite this form of decomposition can be used to 
describe gravity as a global structure it cannot be used 
as a medium for any other physical fields which possess 
a wave character. Therefore we would need to devise 
different types of decomposition to account for these 
physical fields that require a local geometric structure. 
For example, we may assume that n-cells can be 
decomposed from the spatiotemporal manifold at each 
point of the spatiotemporal continuum. This is equivalent 
to considering the spatiotemporal manifold as a fiber 
bundle                   , where    is the base space, which is 

the spatiotemporal continuum, and the fiber , which is 
the n-cells. We will discuss in more details in Section 4 
the local geometric and topological structure of the 
spatiotemporal manifold when we discuss the possibility 
to formulate a medium for the electromagnetic field in 
terms of geometric structures. From the above 
discussions on the dimensionality of spacetime it is 
clear that the observation of natural events needs to be 
addressed. It seems that due to our physical existence 
we do not have the ability to observe a complete picture 
of a physical object. We can only observe part of a 
physical object due to the fact that it may exist in a 
higher spatial dimension than ours. For example, if 
quantum particles exist as three-dimensional 
differentiable manifold embedded into a four-
dimensional Euclidean space then we are unable to 
observe the physical object as a whole but only the 
cross-section of it. We can use mathematics to 
determine the whole structure of the object but we 
cannot measure what we can calculate. The seemingly 
strange behaviour of quantum particles may also be 
caused by bringing over their classical model into the 
quantum domain. For example, when interacting with a 
magnetic field an elementary particle shows that it has 
some form of dynamics that can only be represented by 
intrinsic angular momentum that is different from the 
angular momentum encountered in classical physics in 
which elementary particles are assumed to be simply 
mass points without any internal geometric structure. In 
the next section we will show that half-integer values of 
the intrinsic angular momentum of an elementary 
particle can be obtained by taking into account its 
possible internal geometric and topological structures. 

III. Quantum Particles With Half 
Integer Spin

In this section we will discuss a possible 
physical structure possessed by a quantum particle of 
half-integer spin that exists in three-dimensional space. 
If quantum particles are considered as differentiable 
manifolds then they should have intrinsic geometric 
structures, therefore, in terms of physical formulations 
they are composite physical objects. As suggested in 
Section 2 on the geometric interactions, a composite 
physical object can be formed from mass points by 
contact forces associated with the 0-cells decomposed 
from the CW complex that represents the quantum 
particle. The intrinsic geometric structure can be 
subjected to a geometric evolutionary process which 
manifests as the dynamics of the mass points that form 
the quantum particle. The manifested physical process 
may be described as that of a fluid dynamics that can 
be formulated in terms of a potential, like the Coulomb 
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potential of the electrostatic interaction in classical 
electrodynamics. Also discussed in Section 3 on the 
dimensionality of spacetime and the observability of 
quantum particles, physical objects can be observed 
completely if they can be described by a two-
dimensional wave equation in which the solutions of the 
wave equation gives the description of the geometric 
structures of the physical object in a third spatial 
dimension. We now show how they can be obtained 
from a general two-dimensional wave equation, from 
two-dimensional Schrödinger wave equation and from 
Dirac equation in relativistic quantum mechanics. In 
particular, we will show that the two dimensional-

 wave equation does describe quantum 
particles with half-integer spin. Consider a quantum 
particle whose mass distribution is mainly on a two-
dimensional membrane and whose charge is related to 
the vibration of a homotopy class of 2-spheres in which 
the charge can be described topologically in terms of 
surface density. The circular membrane is assumed to 
be made up of mass points that join together by contact 
forces which allow vibration. Without vibrating the 
membrane is a perfect two dimensional physical object, 
however when it vibrates it becomes a three dimensional 
physical object described as a two-dimensional 
manifold embedded in three-dimensional Euclidean 
space . In this section we discuss the geometric 
structure of the quantum particle with regard to its 

distribution of mass and in the next section we will 
discuss the topological structure with regard to its 
distribution of charge density in terms of the homotopy
fundamental group of surfaces. In this section we 
assume that a spacetime has three spatial dimensions 
and one temporal dimension. In general, the wave 
dynamics of a physical system in a two-dimensional 
space can be described by a wave equation written in
the Cartesian coordinates        as 

                            

where              is the Bessel function of order    and  

the   quantities                          and          can  be 

specified by the initial and boundary conditions. It is also 
observed that at each moment of time the vibrating 
membrane appears as a 2D differentiable manifold 
which is a geometric object whose geometric structure 
can be constructed using the wavefunction given in 
Equation (22). We now show that the curvature of the 
surfaces obtained from the vibrating membrane at each 
moment of time can also be expressed in terms of the 
derivatives of the wavefunction given in Equation (22). In 
differential geometry, the Ricci scalar curvature is shown 
to

 
be related to the Gaussian curvature by the relation 

,      where is expressed in terms of the principal radii    

 

 

, , 

   and   of   a   surface  as                  . 
Consider a surface defined by the relation               in 
Cartesian coordinates .        The Ricci scalar curvature  

can be found as [18] 

where                 and .                                           It is 

seen that the wavefunction            that is obtained from 
the wave equation given in Equation (22) can be used to 
determine the Ricci scalar curvature of a surface, which 
shows that the geometric structure of the vibrating 
membrane can be described by a classical 
wavefunction. In other words, wavefunctions that 
describe the wave motion of a vibrating membrane can 
be considered as a representation of physical objects. 
For the benefit of representation in the next section we 
now give a brief discussion on the geometric formation 
of quantum particles from a wave equation. We 
assumed that the circular membrane is made up of 
particles which are connected with each other by an 

42

Schrödinger

(20)

In particular, Equation (20) can be used to describe the 
dynamics of a vibrating membrane in the       -   plane. If 
the membrane is a circular membrane of radius   then 
the domain   is given as                            . In the polar 
coordinates given in terms  of  the Cartesian coordinates 

as                             ,                         the two dimensi--
 as 

                           𝑦𝑦

,     

The general solution to Equation (21) for the vibrating 
circular membrane with the condition on the 
boundary of can be found as [5] 
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With the Lagrangian given in Equation (24), the 
canonical momentum is found as 

The canonical momentum given in Equation 
(25) is the angular momentum of the system. By 
applying the Lagrange equation of motion 

where are the generalised coordinates, we obtain 

The areal velocity      ,  which is the area swept 
out by the position vector of the particle per unit time, is 
found as 

On the other hand, in classical dynamics, the 
angular momentum of the particle is defined by the 
relation 

From Equations (28) and (29), we obtain the 
following relationship between the angular momentum 
of a particle and the areal velocity 

It is seen from these results that the use of 
conservation of angular momentum for the description 
of the dynamics of a particle can be replaced by the 
conservation of areal velocity. For example, consider the 
circular motion of a particle under an inverse square 
field .                 Applying Newton’s second law, we 
obtain

Using  Equations (30)  and (31) and the relation 
,         we obtain 

hypothesis that a vibrating object is made up of mass 
points that join together by contact forces. When the 
membrane vibrates it takes different shapes at each 
moment of time. Each shape is a 2D differentiable 
manifold that is embedded in the three-dimensional 
Euclidean space. Now, if we consider the whole 
vibrating membrane as a particle then its geometric 
structure is described by the wavefunction   . It is a time-
dependent hypersurface embedded in a three-
dimensional Euclidean space. Now imagine an observer 
who is a two-dimensional object living in the plane 
       and who wants  to  investigate the geometric 
structure of the vibrating membrane. Even though he or 
she would not be able to observe the shapes of the 
embedded 2D differentiable manifolds in the three-
dimensional Euclidean space, he or she would still be 
able to calculate the value of the wavefunction   at each 
point      that belongs to the domain              . What 
would the observer think of the nature of the 
wavefunction   ? Does it  represent a mathematical 
object, such as a third dimension, or a physical one, 
such as fluid pressure? Firstly, because the 
wavefunction   is a solution of a wave equation 
therefore it must be a wave. Secondly, if the observer 
who is a 2D physical object and who does not believe in 
higher dimensions then he or she would conclude that 
the wavefunction should only be used to describe 
events of physical existence other than space and time. 
In the next section we will show that this situation may in 
fact be that of the wave-particle duality that we are 
encountering in quantum physics when our view of the 
physical existence is restricted to that of a 3D observer. 
It is also observed that according to the 2D observer 
who  is  living  on the          - plane,  the  vibrating 
membrane appears as an oscillating motion of a single 
string. If the vibrating string is set in motion in space 
then it can be seen as a particle. With a suitable 
experimental setup, the moving vibrating membrane 
may be detected as a wave. And furthermore, it can also 
generate a physical wave if the space is a medium. In 
fact, as shown in the following, a two-dimensional wave 
equation can be applied into quantum mechanics to 
describe the dynamics of a quantum system which is 
restricted to a two-dimensional space. This can be 
formulated either by the Schrödinger non-relativistic 
wave equation or Dirac relativistic wave equation. 
However, in order to obtain a classical picture of a 
quantum particle in two-dimensional space, let consider 
the classical dynamics of a particle moving in two 
spatial dimensions. In classical mechanics, expressed in 
plane polar coordinates, the Lagrangian of a particle of 
mass   under the influence of a conservative force with 
potential  is given as follows [19] 
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elastic force. This assumption leads to a more general 
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A Classification of Quantum Particles

Using Equations (32) and (33), the total energy 
can be rewritten as 

Equation (35) shows that the rate of change of 
the area swept out by the electron is quantised in unit of 

.

 

      The two-dimensional Bohr model of a hydrogen 
atom has a classical configuration that provides a clear 
picture of the motion of the electron around a nucleus. 
As shown in our work on the quantization of angular 
momentum, the Schrödinger wave mechanics when 
applied to the two-dimensional model of the hydrogen 
atom also predicts that an intrinsic angular momentum 
of the electron must take half-integral values for the Bohr 

spectrum of energy to be retained [20]. Using the two-
dimensional model of the hydrogen atom, in the 
following we will describe an elementary particle of half-
integer spin as a differentiable manifold whose physical 
configuration is similar to that of a rotating membrane 
whose dynamics can be described in terms of the two-
dimensional motion using the Schrödinger wave 
mechanics and Dirac relativistic quantum mechanics. 
First, if elementary particles are assumed to possess an 
internal structure that has the topological structure of a 
rotating membrane then it is possible to apply the 
Schrödinger wave equation to show that they can have 
spin of half-integral values. Consider an elementary 
particle whose physical arrangement can be viewed as 
a planar system whose configuration space is multiply 
connected. Since the system is invariant under rotations 
therefore we can invoke the Schrödinger wave equation 
for an analysis of the dynamics of a rotating membrane. 
In wave mechanics the time-independent Schrödinger 
wave equation is given as [21]

Solutions of the form                        
reduce Equation (37) to two separate equations 
for the functions      and        as follows 

where is identified as the intrinsic angular momentum 
of the membrane. Equation (38) has solutions of the 
form 

Normally, the intrinsic angular momentum must 
take integral values for the single-valuedness condition 
to be satisfied. However, if we consider the configuration 

space of the membrane to be multiply connected and 
the polar coordinates have singularity at the origin then
the use of multivalued wavefunctions is allowable. As 
shown below, in this case, the intrinsic angular 
momentum can take half-integral values. If we define, 
for the case         ,

then Equation (39) can be re-written in the following form

The total energy of the particle is 

 
If we also assume that the overall potential     

that holds the membrane together has the form        
,                  where    is a physical constant that is 

needed to be determined, then using the planar polar 
coordinates in two-dimensional space, the Schrödinger 
wave equation takes the form [22] 
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If we seek solutions for   in the form                   

equation for the function 
then we obtain the following differential 
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It is seen from Equation (34) that the total 
energy of the particle depends on the rate of change of 
the area         . In the case of Bohr model of a hydrogen-
like atom, from the quantisation condition                        
we have
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Equation (43) can be solved by a series 
expansion of   as ,                      with the

    
satisfying the recursion relation

Then the energy spectrum can be written 
explicitly in the form 

It is seen that if the result given in Equation (45) 
can also be applied to elementary particles which are 
assumed to behave like a hydrogen-like atom, which is 
viewed as a two-dimensional physical system, then the 
intrinsic angular momentum must take half-integral 
values. 

Now, we show that the wave equation for two-
dimensional space given in Equation (20) can also be 
derived from Dirac equation that describes a quantum 
particle of half-integer spin. In our previous works 
[7,8,9], we have shown that both Dirac equation and 
Maxwell field equations can be formulated from a 
system of linear first order partial differential equations. 
Except for the dimensions that involve with the field 
equations, the formulations of Dirac and Maxwell field 

equations are remarkably similar and a prominent 
feature that arises from the formulations is that the 
equations are formed so that the components of the 
wavefunctions satisfy a wave equation. However, there 
are essential differences between the physical 
interpretations of Dirac and Maxwell physical fields. On 
the one hand, Maxwell electromagnetic field is a 
classical field which is composed of two different fields 
that have different physical properties even though they 
can be converted into each other. On the other hand, 
despite Dirac field was originally formulated to describe 
the dynamics of a single particle, such as the electron, it 
turned out that a solution to Dirac equation describes 
not only the dynamics of the electron with positive 
energy but it also describes the dynamics of the same 
electron with negative energy. The difficulty that is 
related to the negative energy can be resolved if the 
negative energy solutions can be identified as positive 
energy solutions that can be used to describe the 
dynamics of a positron. The seemingly confusing 
situation suggests that Dirac field of massive particles 
may actually be composed of two physical fields, similar 
to the case of the electromagnetic field which is 
composed of the electric field and the magnetic field. 
Dirac equation can be derived from Equation (12) by 
imposing the following conditions on the matrices 

For the case of              ,   the matrices       can be shown to take the form 

With ,             and          ,           the system of linear first order partial differential equations given in Equation (12) 
reduces to Dirac equation [23]
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coefficients

 
,

 

, 

With the form of the field equations given in 
Equations (49-52), we may interpret that the change of 
the field                  with  respect  to  time  generates the 
field             ,         similar to the case of Maxwell field equations 
in which the change of the electric field generates the 
magnetic field. With this observation it may be 
suggested that, like the Maxwell electromagnetic field 
which is composed of two essentially different physical 
fields, the Dirac field of massive particles may also be 
viewed as being composed of two different physical 
fields, namely the field ,            which plays the role of 
the electric field in Maxwell field equations, and the field        
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A Classification of Quantum Particles

where                          and the real matrices     are given as 

The matrices satisfy the following commutation relations

,                which  plays the  role  of  the magnetic field. 
The similarity between Maxwell field equations and Dirac 
field equations can be carried further by showing that it 
is possible to reformulate Dirac equation as a system of 
real equations. When we formulate Maxwell field 
equations from a system of linear first order partial 
differential equations we rewrite the original Maxwell field 
equations from a vector form to a system of first order 
partial differential equations by equating the 
corresponding terms of the vectorial equations. Now, 
since, in principle, a complex quantity is equivalent to a 
vector quantity therefore in order to form a system of 
real equations from Dirac complex field equations we 
equate the real parts with the real parts and the 
imaginary parts with the imaginary parts. In this case 
Dirac equation given in Equations (49-52) can be 
rewritten as a system of real equations as follows

       

The system of Dirac field equation given 
in Equations (53-60) can  be  considered as a particular
case of a more general system of field equations written
in the matrix form
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By applying                                          to 

Equation (61) and using the commutation relations 
given in Equations (63-67), then it can be shown that all 

components of the wavefunction                                              
satisfy the following equation  

 
 
 
 
 
If the wavefunction    satisfies  Dirac  field 

equations given in Equations (53-60) then we obtain the 
following system of equations for all components  

 
 
 
 
 

Solutions to Equation (69) are

 
 
 
 
 

where and are
 

undetermined functions of        , 
which may be assumed to be constant. The solutions 
given in Equation (71) give a distribution of a physical 
quantity, such as the mass of a quantum particle, along 
the y-axis. On the other hand, Equation (70) can be 
used

 
to describe the dynamics, for example, of a 

vibrating membrane in the - plane. Solutions to 
Equation (70) can also be found in the form given in 
Equation (20). Even though elementary particles may 
have the geometric and topological structures of a 3D 
differentiable manifold, it is seen from the above 
descriptions via the Schrödinger wave equation and 
Dirac equation that they appear as 3D physical objects 
that embedded in three-dimensional Euclidean space. 
In Section 5 we will show that this may not be the case 
for elementary particles of integer spin, such as 
photons. However, in the next section we will show that 
the appearance of elementary particles of half-integer 
spin as 3D physical objects can be justified further by 
considering other physical properties that are 
associated with them, such as charge and magnetic 
monopole. 

 

IV.
 

On The Electric Charge And 
Magnetic Monopole

 

In Section 3 we show that massive quantum 
particles of half-integer spin can be described as 2D 
differentiable manifolds which are endowed with the 
geometric and topological structure similar to that of a 
gyroscope whose main component is a rotating and 
vibrating membrane that can be described by the 
solutions of a two-dimensional wave equation, in 
particular a 2D wave equation that is derived from the 
Dirac equation of relativistic quantum mechanics. 
However, the dynamics of the quantum particle is 
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associated only with the distribution of mass of the 
particle but not other equally important physical matter, 
such as charge and magnetic monopole. In this section 
we will discuss further these physical properties of a 
quantum particle and show that they may be associated 
with the topological structure of the particle rather than 
physical quantities that form or are contained inside the 
particle. As shown in our works on the principle of least 
action and spacetime structures of quantum particles, 
the charge of a physical system may depend on the 
topological structure of the system and is classified by 
the homotopy group of closed surfaces [24]. In 
quantum mechanics, the Feynman’s method of sum 
over random paths can be extended to higher-
dimensional spaces to formulate physical theories in 
which the transition amplitude between states of a 
quantum mechanical system is the sum over random 
hypersurfaces [25]. This generalisation of the path 
integral method in quantum mechanics has been 
developed and applied to other areas of physics, such 
as condensed matter physics, quantum field theories 
and quantum gravity theories, mainly for the purpose of 
field quantisation. In the following, however, we focus 
attention on the general idea of a sum over random 
surfaces. This formulation is based on surface integral 
methods by generalising the differential formulation as 
discussed for the Bohr’s model of a hydrogen-like atom. 
Consider a surface in defined by the relation                 

. The Gaussian curvature    is given by 

the relation                                        ,                                        where 
                     

and                                ,      [18]. Let be a 
three-dimensional physical quantity which plays the role 
of the momentum    in the two-dimensional space 
action integral. The quantity can be identified with the 
surface density of a physical quantity, such as charge. 
Since the momentum is proportional to the curvature ,  
which determines the planar path of a particle, it is seen 
that in the three-dimensional space the quantity   should 
be proportional to the Gaussian curvature   , which is 
used to characterise a surface. If we consider a surface 
action integral of the form                 ,

                       

where     is a universal constant, which plays the role of 
Planck’s constant, then we have
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It can be verified that with the functional of the 

form given in Equation (72) the differential equation 
given by Equation (73) is satisfied by any surface. 
Hence, we can generalise Feynman’s postulate of 
random path to formulate a quantum theory in which the 
transition amplitude between states of a quantum 
mechanical system is a sum over random surfaces, 
provided the functional    in the  action  integral                

               is taken to be proportional to the Gaussian 
curvature of a surface. Consider a closed surface and 
assume that we have many such different surfaces 
which are described by the higher dimensional 
homotopy groups. As in the case of the fundamental 
homotopy group of paths, we choose from among the 
homotopy class a representative spherical surface, in 
which case we can write  
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According to the calculus of variations, similar 
to the case of path integral, to extremise the action 
integral                     ,        the functional 

must satisfy the differential equations 

[26] 

 
      

 

© 2018   Global Journals1

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
V
III
  
Is
s u

e 
  
  
 e

rs
io
n 

I
V

IX
Y
ea

r
20

18
  

 
( A

)

     
  
  
                                                                                                  

where is an element of solid angle. Since     
depends on the homotopy class of the spheres that it 
represents, we have            where   is the topological 
winding number of the higher dimensional homotopy 
group. From this result we obtain a generalised Bohr 
quantum condition 

     

       

From the result obtained in Equation (75), as in 
the case of Bohr’s theory of quantum mechanics, we 
may consider a quantum process in which a physical 
entity transits from one surface to another with some 
radiation-like quantum created in the process. Since this 
kind of physical process can be considered as a 
transition from one homotopy class to another, the 
radiation-like quantum may be the result of a change of 
the topological structure of the physical system, and so 
it can be regarded as a topological effect. Furthermore, 
it is interesting to note that the action integral   

           is identical to Gauss’s law in electrodynamics 
[27]. In this case the constant can be identified with 
the charge of a particle, which represents the 
topological structure of a physical system and the 
charge of a physical system must exist in multiples of 

.  Hence, the charge of a physical system may depend 
on the topological structure of the system and is 

classified by the homotopy group of closed surfaces. 
This result may shed some light on why charge is 
quantised even in classical physics. As a further remark, 
we want to mention here that in differential geometry, the 
Gaussian is related to the Ricci scalar curvature by 
the relation    .         And it has been shown that the 
Ricci scalar curvature can be identified with the potential 
of a physical system, therefore our assumption of the 
existence of a relationship between the Gaussian 
curvature and the surface density of a physical quantity 
can be justified [1]. Now, in order to establish a 
relationship between the electric charge and the 
magnetic monopole associated with a quantum particle, 
similar to Dirac relation ,                  we need to extend 
Feynman’s method of sum over random surfaces to 
temporal dynamics in which the magnetic monopole 
can also be considered as a topological structure of a 
temporal continuum. Even though the following results 
are similar to those obtained for the spatial Euclidean 
continuum, for clarity, we will give an abbreviated 
version by first defining a temporal Gaussian curvature 
in the temporal Euclidean continuum and then 
deriving a quantised magnetic charge from Feynman 
integral method. As in spatial dimensions, we consider a 
temporal surface defined by the relation                 .
Then, as shown in differential geometry, the temporal 
Gaussian curvature denoted by     can be determined 
by      and  given  as                                     

                                                                                                                                      

           
 

  

 
    

  

         

  

           

  
                        

  

     
    

   
                                                              

,                             where            and                       .

Let   be a 3-dimensional physical quantity which will 
be identified with the surface density of a magnetic 
substance, such as magnetic charge of an elementary 
particle. We therefore assume that an elementary 
particle is assigned not only with an electric charge but 
also a magnetic charge . We further assume that the 
quantity      is proportional to the temporal Gaussian 
curvature   .   Now,  as  in the case with spatial 
dimensions, if we consider a surface action integral of 
the form                        ,   
we have 

       
       

         

  

  
  

  
  

                      then
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Similar to the case of the spatial integral, to 
extremise the action integral given in Equation (76), the 
functional                   must satisfy the differential 
equation given in Equation (73). Hence, we can also 
generalise Feynman’s postulate of random surfaces to 
formulate a quantum theory in which the transition 
amplitude between states of a quantum mechanical 
system is a sum over random surfaces, provided the 
functional    in the action integral                     is taken to 
be proportional to the temporal Gaussian curvature    of 
a temporal surface. Similar to the random spatial 
surfaces, we obtain the following result 

                      
  

            
     

n
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If we assume further that        , where is an 
undetermined constant, then using the results                 

          and                                           

,            we obtain a general relationship between the 
electric charge     and the magnetic charge 

In  particular, if                            and               , or 
        

          and        ,  then  we recover the relationship 
obtained by Dirac, 

In the classical electromagnetic field, Maxwell 
field equations describe a conversion between the 
electric and magnetic field. If the electric field is 
associated with the electric charge, which is in turn 
associated with the spatial continuum, and the magnetic 

associated with the tempor
field with the magnetic charge, which is in turn 

al continuum, then we may 
speculate that the electromagnetic field is a 
manifestation of a conversion between the spatial and 
temporal manifolds. In the following we show that if we 
consider the spatiotemporal manifold as a spherical 
fiber bundle then it is possible to describe the 
electromagnetic field as a wave through a medium of 
fibers that are composed of 3-spheres [14, 28]. In 
classical physics, the formation of a wave requires a 
medium which is a collection of physical objects 
therefore with this classical picture in mind we may 
assume that the medium for the electromagnetic and 
matter waves is composed of quantum particles which 

have the geometric and topological structures of 
spatiotemporal n-cells that are decomposed from the 
spatiotemporal manifold at each point of the 
spatiotemporal continuum. This is equivalent to 
considering the spatiotemporal manifold as a fiber 
bundle              , where is the base space, which is 
the spatiotemporal continuum, and the fiber , which is 
the n-cells. In the following we will only consider an n-
cell as an n-sphere and the total spatiotemporal 
manifold will be regarded as an n-sphere bundle. It is 
reasonable to suggest that there may exist physical 
fields that are associated with different dimensions of 
the n-spheres, however, as an illustration, we will 
consider only the case with so that     is 
homeomorphic to       ,  hence the medium of the 
electromagnetic and matter waves will be assumed to 
be composed of          cells at each point of the 
spatiotemporal manifold. In other words, the 6-sphere 
fibers form the required medium for the electromagnetic 
and matter waves. Consequently, the problem that we 
want to address reduces to the problem of the 
conversion between the spatial and temporal manifolds 

and . It is expected that the formulation of such 
conversion should be derived from a general line 
element                          . As examples, we will show in 
the following that  the  conversion  between the spatial 
and temporal manifolds and can be described by 
assuming the general line element to take the form of 
either a centrally symmetric metric or the Robertson-
Walker metric [29]. A general six-dimensional centrally 
symmetric metric can be written as 
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The action integral                            is similar to 
Gauss’s law in electrodynamics. In this case the 
constant can be identified with the magnetic charge   
of a particle. In particular, the magnetic charge   
represents the topological structure of a physical system 
must exist in multiples of Hence, the magnetic charge 
of a physical system, such as an elementary particle, 
may depend on the topological structure of the system 

                                       

  
  

   
     

and is classified by the homotopy group of closed 
surfaces. We are now in the position to show that it is 
possible to obtain the relationship between the electric 
charge and the magnetic charge   derived by Dirac 
by considering a spatiotemporal Gaussian curvature 
which is defined as a product of the temporal Gaussian 
curvature   and the spatial Gaussian curvature as 
follows 

       
 

      

The spatiotemporal submanifold that gives rise to this form of curvature is homeomorphic to 
  

If      
and        are independent from each other then we can write 

               
  

If we rearrange the    directions of both the spatial and the temporal cells so that they coincide 
, and                         then  we have
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where we have defined the new quantity that has the 
dimension of speed as .               It  is  seen that if                   
then the line element given in Equation (83) can lead to 
the conventional structure of spacetime in which, 
effectively, space has three dimensions and time has 
one dimension, and that if          then  the  line element 
given in Equation (83) can lead to the conventional 
structure of spacetime in which time has three 
dimensions and space has one. However, for the 
purpose of discussing a conversion between the 
temporal manifold and the spatial manifold of spacetime 
we would need to consider possible relationship 
between space and time and how they change with 
respect to each other continuously. In order to fulfil this 
task we need to utilise the results obtained in our works 
on geometric interactions that show that there are 
various forces associated with the decomposed n-cells 
from which, by applying Newton’s law of dynamics, 
different possible relationships between space and time 
could be derived [12,13]. For example, by applying the 
temporal Newton’s second law for radial motion to the 

force that is associated with decomposed 1-cells we 
obtain 

General solutions to the equation given in Equation (84) 
are 

If                      and                        then the following solution can 
be obtained

where                         . By differentiation we have 

If we assume a linear approximation between space and time for the values of                               then 
Equation (83) becomes 

It is seen from Equation (88) that if                                       
                then effectively spacetime appears as a spatial manifold 

in which there are three spatial dimensions and one 
temporal dimension. Therefore it is expected that for                   
                                   spacetime  would  appear  as  a 

temporal manifold. This is in fact the case as can be 
shown as follows. Instead of the metric form given in 
Equation (83), the line element given in Equation (82) 
can also be re-written in a different form as follows 

Using Equation (87) we obtain 

                       
  

  
                                                                     

        

 

   

                                                                      

     
          

                                                                                                             

        

                                                                                        

       

  

  
                                                                                          

   , i.e.,            
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There are profound differences in the structure 
of the spatiotemporal manifold that arise from the line 

element given in Equation (82). The line element in 
Equation (82) can be rewritten in the form 

Therefore, if the condition                                 
is satisfied then Equation (90) is reduced to a line element 
for the spatiotemporal manifold which effectively has 
three temporal dimensions and one spatial dimension.

For the case                       the line element 
given in Equation (82) can be determined by applying 
Einstein field equations of general relativity 
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and as discussed in our previous works that spacetime 
that is endowed with this particular metric appears to 
behave as a wave where the functions and satisfy 
the wave equation

where .

                   

By differentiation, we obtain 

If we also assume a linear approximation between space and time for the values of                      
then the line elements become 

If we also arrange the            directions of both spatial 
and the temporal manifolds so that

         
and                  

            then the general space-time metric given in 
Equation (101) becomes 

                                                                                                         

  

   

     
 
   

   
                              

 

        
                                                          

 
   

   
                                                                                                                                               

     
          

                                                                                                                   

                                                                                            

        

  

  
                               

    
                                                           

   , i.e.,            then 

                       
  

            
                                              

                         
            

  
                                          

Now, we consider the case when the 
decomposed           cells from the spatiotemporal 

manifold are furnished with the Robertson-Walker 
metric. In the spatiotemporal manifold which has three 
spatial dimensions and one temporal dimension, the 
Robertson-Walker metric is given as 
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It should also be mentioned here that for the 
case                                     the line element given in Equation 
(82) reduces to the simple form 

,         

We can also obtain a conversion between the 
spatial and temporal manifolds similar to those that have 
been discussed above if we use the spatial Newton’s 
second law instead. In this case the following results 
can be obtained 

If we consider the case            and         then 
we can obtain a simple solution

               

It is seen from Equations (98) and (99) that 
there is also a conversion between the spatial and 
temporal submanifolds of the 6-spherical cells that are 
decomposed from the total spatiotemporal manifold. 

With  the  decomposition  of                  cells 
from the spatiotemporal manifold which has the 
mathematical structure of an n-sphere bundle, the 

Robertson-Walker metric is assumed to be extended to 
a six-dimensional line element of the form
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Equation (102) can be rewritten in the following form 

where we have also defined     .     Now, we need to 
look for possible relationships between space and time
so that they can show a conversion between the 
temporal component    and the spatial component    
of  the  decomposed  spatiotemporal cells              .
Even though the conditions that will be imposed are 
rather arbitrarily they do show that the temporal manifold 

and the spatial manifold can actually be converted 
into one another. It should also be mentioned that these 

are not the only conditions that can give rise to a 
conversion between space and time and, as shown in 
our works on Euclidean relativity, Euclidean special 
relativity also produces such conversion [30]. Now, if we 
impose the following condition 

then the line element given in Equation (103) reduces to

If we further impose the condition 

then we obtain

If we impose the following condition 
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Equation (105) describes particular structures of 
the temporal manifold with respect to the change of the 
spatial manifold. Using a linear approximation between 

space and time for the values of     , then from the 
relation 

                     
, Equation (105) becomes 

       
                                      

It is seen from the line element given in 
Equation (108) that if                                        then 
effectively the spatiotemporal manifold behaves as a 

spatial manifold endowed with the Robertson-Walker 
metric. On the other hand, the six-dimensional 
Robertson-Walker metric can also be written as 
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then we obtain 

               

  

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
V
III
  
Is
s u

e 
  
  
 e

rs
io
n 

I
V

IX
Y
ea

r
20

18
  

 
( A

)

© 2018   Global Journals

     

       

    
        

      
   

             
    

       
  

     
                              

From the linear approximation 
                          

, Equation (111) becomes 

If we further impose the condition 

then we obtain 

                 

    
        

      
   

    

         
  

       
  

                 
                                              

     

      
   

                                                                                                           

    
        

      
   

             
 

              
                              

          
   

      
                     

                                                          

    
        

      
 
        

      
                                                                                                              

V. Quantum Particles With Integer 
Spin

In Sections 3 and 4 we show that a complete 
picture of quantum particles can be visualised in the 
three-dimensional Euclidean space if their associated 

in a two-dimensional space given in Equation (45) also 
suggests that there may be massive quantum particles 
of integer spin associated with differentiable manifolds 
that are solutions of a two-dimensional wave equation. 
Nonetheless, it has been shown that quantum particles 
with integer spin, such as the massless quantum 
particles of the electromagnetic field, are described by a 
three-dimensional wave equation, therefore it is 
reasonable to suggest that the differentiable manifolds 
that are associated with these quantum particles, called 
bosons, not only should have different geometric and 

differentiable manifolds are solutions of a two-
dimensional wave equation, and these massive 
quantum particles have half-integer spin therefore they 
can be identified with fermions. Actually, the energy 
spectrum obtained from the Schrödinger wave equation 

topological structures but also render different 
perceptions with regard to our observation of their 
physical behaviour. In classical physics, the dynamics of 
physical phenomena can be formulated based on the 
notion of elementary particles that exist as 3D solid balls 
containing all physical entities that are needed for 

53

Therefore if                                                 then 
effectively the spatiotemporal manifold behaves as a 

temporal manifold endowed with the temporal 
Robertson-Walker metric 

                    

It is also noted from the line element given in 
Equation (102) that when space and time satisfy the 
condition                                            then we have                                             

The metric given in Equation (116) is a particular 
form of the general line element given in Equation (92) 
with                                                and 
therefore the wave motion of spacetime which is 
endowed with the Roberson-Walker metric also occurs 
at the position of conversion between the temporal and 
spatial manifolds. 

                                         
        ,                                

      



 
 

 
 

 
 
 
 
 
 
 
 
 
 

A Classification of Quantum Particles

© 2018   Global Journals1

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
V
III
  
Is
s u

e 
  
  
 e

rs
io
n 

I
V

IX
Y
ea

r
20

18
  

 
( A

)

physical formulations, such as mass and charge. It is 
then simply assumed that in order to interact these solid 
balls somehow generate physical fields, such as the 
gravitational field and the electromagnetic field, which 
can be derived from a three-dimensional wave equation. 
Despite with the fact that the existence of these physical 
fields is self-evident and they are widely applied their 
true natures are very much still unknown. However, in 
quantum physics bosons are quantum particles 
therefore as in the case of fermions considered in the 
previous sections we may suggest that bosons also 
possess the geometric and topological structures of 
differentiable manifolds which are solutions of a wave 
equation. Along the line of Einstein’s perception of 
physical existence in which a 3-sphere can be 
constructed from a four -dimensional Euclidean space   ,
in this section we will discuss the possibility to extend 
the notion of wave motion into a fourth spatial dimension 
so that we can have a unified dynamical description in 
terms of wave equations for quantum particles of any 
spin. With this in mind, in this section we discuss a 
spacetime in which space has four dimensions and time 
has one dimension. Despite a spatial space with four 
dimensions is simply a mathematical extension of the 
concept of a spatial space with three dimensions it is 
still considered to be rather speculative in contrast to the 
three-dimensional space which is a direct application 
from the observation from physical existence that we 
can perceive. In classical physics, the three-dimensional 
wave equation written in Cartesian coordinates           of 
the form

       

 

  
   

   
 
   

   
 
   

   
 
   

   
                              

            

                                                              

can be used to describe the wave motion of different 
physical fields. However, if we want to generalise the 
above discussions for 2D wave equations that describe 
a vibrating membrane then what geometrical 
characteristic should we assign to the wavefunction   ? 
Since in 2D wave equations, the wavefunction are the 
actual height of the particles that form the medium 
which can be viewed in the third spatial dimension of the 
space in which they are embedded, therefore we may 
suggest that the wavefunction which is a solution to the 
wave equation given in Equation (117) should also be 

given the meaning of the height of the particles that form 
the medium. However, if we want to give the meaning of 
the height to the 3D wavefunction then the space in 
which the 3D vibrating object is embedded must be 
extended to a four-dimensional Euclidean space. 
Whether such extension can be justified is a subject that 

  

requires further investigation and in fact this can be 
shown to be related to the fundamental question of why 
we exist as 3D physical objects. Now, consider a region 

which is embedded in a three-dimensional Euclidean  
space and bounded by a closed surface. As in the case 
of the membrane considered above, we assume that the 

region is a physical object that is made up of mass 
points joined together by contact forces so that it can 
vibrate. In general, the region can be any shape, 
however, as an illustration, we consider a simple case of 
which the region    is a solid ball embedded in the         
             - space  defined  by the relation                                         

with the condition on the boundary of   .   
In a three-dimensional Euclidean space, such physical 
objects can only be assumed to vibrate internally inside 
the solid ball and the mathematical object represented 
by the function can only be assumed to be a physical 
entity, such as fluids and acoustics. However, as in the 
case of the membrane considered in Section 3 in which 
the mass points of the membrane can vibrate into the 
third dimension of the three-dimensional Euclidean 
space, we may assume that the mass points that form 
the physical object contained in the three-dimensional            

                               region                                  can vibrate into the fourth 
dimension of a four-dimensional Euclidean space, 
therefore the mathematical object represents a spatial 
dimension. When vibrating, at each moment of time, the 
solid ball becomes a three-dimensional differentiable 
manifold that is embedded in a four-dimensional 
Euclidean space. In this case, an observer who  is  a  3D 
physical object can only observe the cross-section 
which is the intersection of the time-dependent 
differentiable manifold and the three-dimensional 
Euclidean space into which that the observer is 
embedded. And the cross-section appears as a 3D 
wave to the 3D observer. Written in the spherical polar 
coordinates, which are defined in terms of the Cartesian 
coordinates        as                                        

the three-dimensional wave equation given 
in Equation (117) becomes 
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The general solution to Equation (118) for the vibrating solid ball with a given initial condition can be found 
by separating the variables in the form                        
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where       is the associated Legendre function and            
               is the Bessel function. The wavefunction given 

in Equation (119) is the general time-dependent shape 
of the vibrating solid ball embedded in the four-
dimensional Euclidean space. Similar to the vibrating 
membrane, at each moment of time the vibrating solid 
ball appears as a 3D differentiable manifold which is a 
geometric object whose geometric structure can be 
constructed using the wavefunction given in Equation 
(119) and can be identified with a quantum particle. 
Therefore, what we observe as a wave may in fact be a 
particle and this kind of dual existence may be related to 
the problem of wave-particle duality we encounter in 
quantum mechanics. A simpler case is that of a 
quantum particle that appears as a spherical wave. In 
this case the wave equation given in Equation (119) 
reduces to 

  
       

 
  
 
 
       

 

  
   

   
 
   

   
 
 

 

  

  
                           

 
    

                                                                       

     

        

The general solution to Equation (120) can be found as 

       
                   

 
                                                                                               

where is an undetermined dimensional constant. 
Using the relation between the scalar potential and the 
Ricci scalar curvature given in Equation (122), we can 
show that the Ricci scalar curvature can be constructed 
from the wavefunctions obtained from the Schrödinger 
wave equation in wave mechanics. In his original works, 
Schrödinger introduced a new function which is real, 
single-valued and twice differentiable, through the 
relation ,        where the action is defined by          

           

and is the Lagrangian defined by            with is the 
kinetic energy and is the potential energy [21]. By 
applying the principle of least action defined in classical 
dynamics, Schrödinger arrived at the wave equation to 
describe the stationary state of the hydrogen atom
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The above wavefunctions describe the 
geometric structures of quantum particles as 
differentiable manifolds embedded in a four-dimensional 
Euclidean space, therefore, if the Ricci scalar curvature 
of the vibrating solid ball can be formulated in terms of 
the wavefunction    then the geometric structure of the 
vibrating solid ball can be determined. Actually we can 

 

show how such relation can be realised for the case of 

the hydrogen atom when the Ricci scalar curvature can 
be constructed from the Schrödinger wavefunctions in 
wave machanics [1]. We showed that the scalar 
potential can be identified with the Ricci scalar 
curvature as 

 

Now we show that Schrödinger wavefunction  
can be used to construct the Ricci scalar curvature 
associated with the spacetime structures of the 
quantum states of the hydrogen atom. By using the 
defined relations                                                               

                         
and 

           the following relation can be obtained 

 

       ,            
 
   

      
     ,               

        , 

Using the relations           and             we obtain the following relationship between the Schrödinger 
wavefunction     and the Ricci scalar curvature 

          ,         

  

Finally, we would like to give more details how 
to formulate Maxwell field equations from the general 
system of linear first order partial differential equations 
given in Equation (12). In order to derive Maxwell field 
equations from Equation (12) we would need to identify 
the matrices .  For the case of Dirac equation, we 
simply impose the condition                             for          

and           However, as shown below, for 
Maxwell field equations the identification of the matrices 

is almost impossible without relying on the form of 
Maxwell field equations that have been established in 
classical electrodynamics. With the notation 
                                                                                    
and      the most symmetric form of Maxwell field 
equations of the electromagnetic field that are derived 
from Faraday’s law and Ampere’s law can be written as

    
                                      

   .            
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where                                         is the electromagnetic 
current in which the electric current is              

,                        and the magnetic current is                  .         The system 
of equations given in Equations (126-131) can be written 
the following matrix form 

with the matrices       are given as 

Now, if we apply the differential operator to Equation (132) then we arrive at
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Furthermore, if an additional condition that 
imposes on the function    that requires that it also 
satisfies the wave equation given by Equation (15) then 

Gauss’s laws will be recovered. From Equation (133) we 
obtain  

(𝐴𝐴1𝜕𝜕 𝜕𝜕𝑡𝑡⁄ +𝐴𝐴2 𝜕𝜕 𝜕𝜕 𝑥𝑥⁄ +𝐴𝐴 3 𝜕𝜕 𝜕𝜕𝑦𝑦⁄ + 𝐴𝐴4 𝜕𝜕 𝜕𝜕 𝑧𝑧⁄ )

𝐴𝐴1
2 𝐴𝐴2

2
3
2

𝐴𝐴4
2       𝐴𝐴5

2 =

⎝

⎜
⎜
⎛

𝜇𝜇2 0 0 0 0 0
0 𝜇𝜇2 0 0 0 0
0 0 𝜇𝜇2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1⎠

⎟
⎟
⎞

𝐴𝐴2𝐴𝐴3 + 𝐴𝐴3𝐴𝐴2      𝐴𝐴2𝐴𝐴4 + 𝐴𝐴4𝐴𝐴2 𝐴𝐴3𝐴𝐴4 + 𝐴𝐴4𝐴𝐴3

  𝐴𝐴1𝐴𝐴𝑖𝑖 + 𝐴𝐴𝑖𝑖𝐴𝐴1    for    𝑖𝑖 = 2, 3, 4
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