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Abstract

A fully relativistic numerical program is used to calculate the ad-
vance of the peri-helium of Mercury or the deflection of light by the
Sun is here used also to discuss the case of S2, a star orbiting a very
heavy central mass of the order of 4.3 106 solar masses.

1 Equations of motion

Given an space-time metric:

ds2 = gαβdx
αdxβ (1)

it is usual to refer to the equations of motion of free bodies as the the geodesic
equations:

d2xα

ds2
+ Γαβγ

dxβ

ds

dxγ

ds
= 0 (2)

but it is important to keep in mind that this is only the case if the space-time
trajectories of free particles are parameterized by the proper space-time s or
any other affine parameter s′ = k1s + k2. This is not always the best choice
to make.

I shall use here a different parametrization that was introduced by Eisen-
hart ([1]) when dealing with general linear connections, but can be used
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also when dealing with Riemannian ones. This consists in using instead the
equations of motion:

d2xα

ds2
+ Γαβγ

dxβ

ds

dxγ

ds
= a

dxα

ds
(3)

where a depends on the parameter that is used to describe the solutions. by
The purpose of this paper is to look for models of test objects orbiting a
central mass, described by the Schwarzschild solution in some of the more
used coordinates. I consider two cases. The first case is that of the isotropic
coordinates:

ds2 = −

(
1− m

2r

)2
(
1 + m

2r

)2 c2dt2 +
(

1 +
m

2r

)4

(dr2 + r2(dθ2 + sin2 θdϕ2) (4)

where m = GM/c2.
The second case is that of of a family of coordinates depending on a

parameter λ

ds2 = −(r − λm)c2dt2

r + (2− λ)m
+
r + (2− λ)m

r − λm
dr2 + (r+ (2−λ)m)2(dθ2 + sin2 θdϕ2)

(5)
λ = 0 corresponds to Brillouin coordinates; λ = 1 corresponds to Fock
coordinates, and λ = 2 corresponds to Droste-Hilbert coordinates

Considering that the space trajectory of the object lies on the plane θ =
π/2 the only Christoffel symbols to consider are the following:

Γ1
33 =

r(−2r +m)

2r +m
, Γ3

13 = − −2r +m

r(2r +m)
, (6)

Γ1
44 = −64r4(−2r +m)c2m

(2r +m)7
, Γ4

14 =
4m

(2r +m)(−2r +m)
,Γ1

11 = − 2m

r2r +m
,

(7)
in Isotropic coordinates. And

Γ1
33 = λm−r, Γ3

13 = − 1

λm− 2m− r
, Γ1

11 = − 1

(λm− r)(λm− 2m− r)
(8)

Γ1
44 =

(λm− r)c2m
(λm− 2m− r)3

, Γ4
14 =

m

(λm− r)(λm− 2m− r)
(9)
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in parameterized coordinates.
My second choice is to choose the coordinate ϕ as the evolution parameter

and therefore describe the motion of the object with the functions r(φ) and
t(φ). In which case we have:

a = −2(−2r +m)vr

r(2r +m)
or a = − 2

λm− 2m− r)
(10)

where here and later:

vr =
dr

dϕ
, vt =

dt

dϕ
, (11)

The equations to solve are then the following

dvr

dϕ
+ Γ1

33 + Γ1
44vt

2 + Γ1
11vr

2 = a vr (12)

dvt

dϕ
+ 2Γ4

14vr vt = a vt (13)

or more explicitly:

dvr

dϕ
=

2vr2m

r(2r +m)
+

64vt2r4(−2r +m))mc2

(2r +m)7
(14)

−2(−2r +m)vr2

r(2r +m)
− (−2r +m)r

2r +m
(15)

dvt

dϕ
=

8vrmvt

(2r +m)(−2r +m)
− 2(−2r +m)vr vt

r(2r +m)
(16)

when using isotropic coordinates and:

dvr

dφ
= +

mvr2

(λm− r)(λm− 2m− r)
− (λm− r)c2mvt2

(λm− 2m− r)3
−λm+r− −2vr2

λm− 2m− r
(17)

dvt

dφ
= − 2mvt vr

(λm− r)(λm− 2m− r)
− 2vr2

λm− 2m− r
(18)

ds2 = −(r − λm)c2dt2

r + (2− λ)m
+
r + (2− λ)m

r − λm
dr2 + (r+ (2−λ)m)2(dθ2 + sin2 θdϕ2)

(19)
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when using λ coordinates.
An important feature of this system of differential equations is its scale

invariance. This meaning that the substitutions:

r, t, m→ kr, kt, km (20)

leaves the system invariant.
From now on isotropic coordinates will be used, but any of the numerical

results to be mentioned have been checked, to the required precision, to co-
incide with the corresponding result using Brillouin, Fock or Droste-Hilbert
coordinates. This would not be the case at a much higher precision of the
observational data since the covariance of the theory does not imply the in-
variance of the numerical results when using different systems of coordinates.

2 The planet Mercury

In this case we know the mass m of the Sun, the length of the perihelion rp
and the maximal orbital velocity vmax:

m = 1484.851528, rp = 46 109, vmax = 58.98 103 (21)

With these data the numerical integration proceeds smoothly, wherefrom
we can obtain known Mercury’s data including its sidereal orbit period: 86.64
days (NASA’s value is 87.969). The polar plot of the trajectory and the plot
of the linear velocity vl = r/vt around it are:

blue 1.PDF blue 2.PDF

The maximum discrepancy with the third law of Kepler, is:
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DA(0)−DA(π)

DA(0) +DA(π)
≈ 10−8, with DA =

dA

dϕ
(22)

The relativistic advance of the peri-helium per century comes out as 43.46
arcseconds per century derived from the first value of φ = 2π+ δφ such that
vr = 0. A very simple interpolation program is useful.

Let us consider a planet that differs from Mercury in the sense that its
distance to the Sun r0 is 0.7 times the perihelion of Mercury, and has equal
linear velocity at this distance. This would suffice to lead to an orbit whose
polar plot trajectory and linear velocity around it would be:

red 1.PDF red 2.PDF

showing that the initial value of r0 is the apo-helium of this fictitious
planet.

3 The deflection of light by the Sun

In this case ds2 = 0 along the path of light and the system of differential
equations has to be integrated with the inial conditions:

r(0) = 6.95 108, vr(0) = 0, vt(0) =
1

4

(2r0 +m)3

r0(2r0−m)c
(23)

(vt(0) follows from vr(0) = 0 and ds2 = 0) and the integration has to proceed
until the tangent to the trajectory:

δϕ∞ ≡
dy

dx
=
r sinϕ− vr cosϕ

r cosϕ+ vr sinϕ
(24)

reaches a stationary value. Twice this value:
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δϕ∞ = 1.76 arcseconds (25)

is the value of of the angular deviation of a light ray skimming the surface
of the Sun. and:

δϕ∞ = 705 arcseconds (26)

is the corresponding deviation for a light-ray approaching Sagittarius A∗ to
a distance of 50 au.

4 The Star S2

S2 is a star circling Sagittarius A∗ with a mass estimated to 4.3 106, solar
masses, along an ellipse with eccentricity 0.87 and a period of 15.2 years.
Also known is its peri-center length of 120 au.

Mass and peri-center length are not sufficient initial conditions to derive a
unique model integrating the system of differential equations (15)-(16). The
value of vt0 or equivalently the value of the linear velocity rp/vt0 must be
also known.

A trial and error method leads easily to the value vt0 = rp(38.6/c) and to
the observed value of the period: 15.2 years. This result has been celebrated
([3]) as a confirmation of General relativity. This is incorrect because the
same result holds if instead of integrating the system of equations (15)-(16),
we integrate its first quasi Newtonian approximation.

The precession of the peri-center of S2 can now be calculated easily by
solving the equation r(π + δ) = rp or vr(π + δ) = 0. The result is δϕ =
0.3393 arcdegrees per revolution

The polar plot of the trajectory and the plot of the linear velocity around
it are:
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green 1.PDF green 2.PDF

5 Appendix: Radial motion

Of course, in this case the coordinate ϕ can not be used to describe the
dynamics of a particle moving in a radial direction ϕ = const., and the
variable t has to be used as parameter. The single equation derived from the
geodesic equations 2 is

dvr

dt
=

2mvr2

r(2r +m)
+

64r4(−2r +m)c2m

(2r +m)7
+

8mvr2

(2r +m)(−2r +m)
(27)

where the following value of a has been used.

a =
2mvr

r(r + 2m)
,with vr =

dr

dt
(28)

And solving the partial differential equation:

∂f(r, vr)

∂r
vr +

∂f(r, vr)

∂vr

dvr

dt
= 0 (29)

we get the Energy function per unit mass function:

E =
1

32

(2r +m)8m2vr2

(−2r +m)4r4
− 4mr

(−2r +m)2
(30)

where an appropriate arbitrary multiplicative constant 1/32 has been chosen
to obtain the correct non relativistic limit.

E =
1

2
vr2 − GM

r
(31)
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