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                                                       Abstract     

The Summation test consists of adding all numbers that begin with a 

particular first digit or first two digits and determining its distribution 

with respect to these first or first two digits numbers. Most people 

familiar with this test believe that the distribution is a uniform 

distribution for any distribution that conforms to Benford’s law i.e. the 

distribution of the mantissas of the logarithm of the data set is uniform 

U[0,1). The summation test that results in a uniform distribution  is true  

for an exponential function (geometric progression) i.e. y = aᵏᵗ but not 

true for a data set that conforms to a Log Normal distribution even 

when the Log Normal distribution itself  closely approximates Benford’s 

Law.  

  

                                              Introduction 

When the summation test is applied to real data such as population of 

cities, time intervals between earthquakes, and financial data, which all 

closely conforms to Benford’s law, the summation test results in a 

Benford like distribution and not a uniform distribution. Citing  



Benford’s Law, page 273, author Dr. Mark Nigrini, “ The analysis 

included the summation test. For this test the sums are expected to be 

equal, but we have seen results where the summation test shows a 

Benford- like pattern for the sums.” Citing Benford’s Law, page 141, 

author Alex Kossovski, “ Worse than the misapplication and confusion 

regarding the chi-sqr test, Summation Test stands out as one of the 

most misguided application in the whole field of Benford’s Law, 

attaining recently the infamous status of a fictitious dogma and leading 

many accounting departments and tax authorities astray.” He also 

states on page 145, “Indeed all summation tests on actual statistical 

and random data relating to accounting data and financial data, census 

data, single-issue physical data, and so forth, show a strong and 

consistent bias towards higher sums for low digits, typically by a factor 

of 5 to 12 approximately in the competition between digit 1 and digit 9, 

there is not a single exception!” 

The histograms of the logarithm of the aforementioned data tend to 

resemble a Normal distribution, which is the definition of a Log Normal 

distribution (the Central Limit theorem applied to random 

multiplications). Therefore, if it can be shown that the Summation test 

performed on data that conforms to a Log Normal distribution results in 

a Benford like distribution then the Summation test applied to most 

real world data that conforms to Benford’s law will also conform to a 

Benford like distribution and not a Uniform distribution.  



 



The exponential case: 

The probability density function of a purely exponential function is 

1/xLn(10). The expected value of a data set within an interval a, b  

is = 
∫ 𝑥∗𝑝𝑑𝑓 𝑑𝑥

𝑏
𝑎

∫ 𝑝𝑑𝑓 𝑑𝑥
𝑏

𝑎

 = 

1

ln (10)
∫  𝑑𝑥

𝑏
𝑎

1

ln (10)
∫  

𝑑𝑥

𝑥

𝑏
𝑎

 = 
𝑏−𝑎

𝑙𝑛
𝑏

𝑎

 

The sum of numbers within an interval a, b = the expected value within 

an Interval a, b * the number of data points within the same interval. 

The number of data points within an interval a, b = N (total number of 

data points) * ∫ 𝑝𝑑𝑓 𝑑𝑥
𝑏

𝑎
 = 

N∗
1

ln (10)
∫  

𝑑𝑥

𝑥

𝑏
𝑎

 

1

ln (10)
∫  

𝑑𝑥

𝑥

10
1

 = 
ln (

𝑏

𝑎
)

ln (10)
  contained within an 

integral power of ten, (10𝑘,10𝑘+1) 

Therefore the sum is: 
𝑏−𝑎

ln (
𝑏

𝑎
)
 * 

𝑁𝑙𝑛(
𝑏

𝑎
)

ln (10)
 = 

𝑁(𝑏−𝑎)

ln (10)
  

Example: a=1, b=2; a=2, b=3 ….. a=9, b=10 Sum = 
𝑁

ln (10)
 

                 a=10, b=20 ……. a=90, b=100        Sum = 
10𝑁

ln (10)
 

Over several orders of magnitude =  

Sum =  
𝑁[𝑏−𝑎+10(𝑏−𝑎)+ 102 (𝑏−𝑎)+ 103 (𝑏−𝑎)+⋯+10𝑘 (𝑏−𝑎)] 

ln(10)+ln(10)+ln(10)+ln(10)+⋯+ln (10)
 

Generally*: Sum = 
𝑁

𝑙𝑜𝑔₁₀(
𝑚𝑎𝑥 𝑣𝑎𝑙𝑢𝑒

min 𝑣𝑎𝑙𝑢𝑒
)
 * 

1

ln (10)
 * ∑ 10ᵏ

𝑙𝑜𝑔₁₀(max 𝑣𝑎𝑙𝑢𝑒)−1
𝑙𝑜𝑔₁₀(min 𝑣𝑎𝑙𝑢𝑒) , b-a=1 

*The assumption is made that the minimum and maximum are integral 

powers of 10 i.e. 1, 10, 100, etc. 



 

 

 

Fig#1 - Summation with Respect to the 1st Digits i.e. 1,2,3,4,5,6,7,8,9 of an 

Exponential Function                              

Summation Test 
 

   
 

    Digit          Sample            Benford        Sample 

1 28931 0.301029996 0.111048 

2 17082 0.176091259 0.1112 

3 11764 0.124938737 0.110844 

4 9424 0.096910013 0.110959 

5 7520 0.079181246 0.111414 

6 6507 0.06694679 0.110971 

7 5588 0.057991947 0.11068 

8 4977 0.051152522 0.111238 

9 4428 0.045757491 0.111646 

    Total 96221 
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The Log Normal case: 

For the Log Normal distribution things are not quite the same. The data 

points themselves with respect to the numbers that begin with a 

particular digit will tend to conform to Benford’s law as the standard 

deviation approaches infinity. The sum of all of the data points with 

respect to the first digits will also tend to conform to Benford’s law (the 

distribution of the combined mantissas is uniform (U(0,1]). 

The following argument constitutes a proof of this assertion. 

Proof that the sum of numbers that conform to a Log Normal 

distribution and begin with a particular digit will approach a  

distribution conforming to Benford’s Law and not a uniform 

distribution  as the standard deviation of the Log Normal distribution  

approaches infinity.  

 

1.   Pdfᵪ (Log_Normal) = 
𝑒−(ln(𝑥)−𝑚)2/2𝜎²

𝑥√2𝜋𝜎²
  

2. Expected value = ∫ 𝑥 ∗ 
∞

−∞
 
𝑒−(ln(𝑥)−𝑚)2/2𝜎²

𝑥√2𝜋𝜎²
 dx  = ∫  

∞

−∞
 
𝑒−(ln(𝑥)−𝑚)2/2𝜎²

√2𝜋𝜎²
 dx  = 𝑒𝑚+

𝜎²

2  

3. Expected value in interval a-b = 
∫  

𝑏

𝑎
 
𝑒−(ln(𝑥)−𝑚)2/2𝜎²

√2𝜋𝜎²
 dx 

∫  
𝑏

𝑎
 
𝑒−(ln(𝑥)−𝑚)2/2𝜎²

𝑥√2𝜋𝜎²
 dx

 

4. Sum = Expected value * number of values within interval a-b 

5. Number of values within interval a-b = N ( total number of values) * ∫  
𝑏

𝑎
 
𝑒−(ln(𝑥)−𝑚)2/2𝜎²

𝑥√2𝜋𝜎²
 dx 



6. Sum = 
∫  

𝑏

𝑎
 
𝑒−(ln(𝑥)−𝑚)2/2𝜎²

√2𝜋𝜎²
 dx 

∫  
𝑏

𝑎
 
𝑒−(ln(𝑥)−𝑚)2/2𝜎²

𝑥√2𝜋𝜎²
 dx

 * N* ∫  
𝑏

𝑎
 
𝑒−(ln(𝑥)−𝑚)2/2𝜎²

𝑥√2𝜋𝜎²
 dx = N∫  

𝑏

𝑎
 
𝑒−(ln(𝑥)−𝑚)2/2𝜎²

√2𝜋𝜎²
 dx 

7. Let u = ln(x) – m; ln(x) = u + m; x = 𝑒𝑢+𝑚   = 𝑒𝑢 ∗  𝑒𝑚 ;  du = 
𝑑𝑥

𝑥
 ; dx = xdu  

8. Sum  = N∫  
ln(𝑏)−𝑚

ln(𝑎)−𝑚
 
𝑒

−𝑢2

2𝜎2⁄

√2𝜋𝜎2
∗ 𝑒𝑢  ∗ 𝑒𝑚 du = N

𝑒𝑚

√2𝜋𝜎2
 ∫  

ln(𝑏)−𝑚

ln(𝑎)−𝑚
𝑒

−(𝑢2−2𝜎2𝑢)

2𝜎²  du =  

9.  N 
𝑒𝑚

√2𝜋𝜎2
 ∫  

ln(𝑏)−𝑚

ln(𝑎)−𝑚
𝑒

−(𝑢2−2𝜎2𝑢+𝜎4− 𝜎4  )

2𝜎²  du =  

10. N 
𝑒𝑚

√2𝜋𝜎2
 ∫  

ln(𝑏)−𝑚

ln(𝑎)−𝑚
𝑒

−(𝑢−𝜎2)² +𝜎4 

2𝜎²  du = N
𝑒𝑚

√2𝜋𝜎2
 ∫  

ln(𝑏)−𝑚

ln(𝑎)−𝑚
𝑒

−(𝑢−𝜎2)² 

2𝜎² ∗  𝑒
𝜎²

2  du =  

11. N 
𝑒

𝑚+ 
𝜎²
2

√2𝜋𝜎2
 ∫  

ln(𝑏)−𝑚

ln(𝑎)−𝑚
𝑒

−(𝑢−𝜎2)² 

2𝜎² 𝑑𝑢 =  

12. N 
 𝑒𝑚 ∗ 𝑒

𝜎2
2⁄

√2𝜋𝜎2
 ∫  

ln(𝑏)−𝑚

ln(𝑎)−𝑚
𝑒

−(𝑢−𝜎2)² 

2𝜎² 𝑑𝑢  as ln(a) → - ∞ and ln(b) → ∞ , Sum = N *  𝑒𝑚+
𝜎²

2  

13. As 𝜎 → ∞  Sum = N 
 𝑒𝑚 ∗ 𝑒

𝜎2
2⁄

√2𝜋𝜎2
 ∫  𝑒

−𝜎²

2
ln(𝑏)−𝑚

ln(𝑎)−𝑚
𝑑𝑢 =  N 

 𝑒𝑚  

√2𝜋𝜎2
 ∫ 𝑑𝑢

ln(𝑏)−𝑚

ln(𝑎)−𝑚
  = N 

 𝑒𝑚  

√2𝜋𝜎2
*[ ln(b) –m –

(ln(a)-m)] =   = N 
 𝑒𝑚  

√2𝜋𝜎2
*[ ln(b) – ln(a) ]  

14. Let a=1; b=2  N 
 𝑒𝑚  

√2𝜋𝜎2
* ln(2)  

15. Let a=1; b=10  N 
 𝑒𝑚  

√2𝜋𝜎2
* ln(10)  

16. 
 N 

 𝑒𝑚  

√2𝜋𝜎2
∗ ln(2) 

 N 
 𝑒𝑚  

√2𝜋𝜎2
∗ ln(10) 

 = LOG₁₀(2) 

17. 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑 𝑜𝑣𝑒𝑟 𝑎𝑙𝑙 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑝𝑜𝑤𝑒𝑟𝑠 𝑜𝑓 𝑡𝑒𝑛  = 

18.    
∫ 𝑑𝑢 +∫ 𝑑𝑢

ln(20)

ln(10) + ∫ 𝑑𝑢+⋯+ ∫ 𝑑𝑢
ln(2∗10ᵏ)

ln(1∗10ᵏ)
ln(200)

ln(100)  
ln (2)

𝐿𝑛(1)

∫ 𝑑𝑢 +∫ 𝑑𝑢
ln(100)

ln(10) + ∫ 𝑑𝑢+⋯+ ∫ 𝑑𝑢
ln(2∗10𝑘+1)

ln(1∗10𝑘)

ln(1000)

ln(100)  
ln (10)

𝐿𝑛(1)

 = 
𝑘∗ln (2)

𝑘∗ln (10)
 =  LOG₁₀(2) 

19. More Generally: 

20. =  
∫ 𝑑𝑢 +∫ 𝑑𝑢

ln(𝑑₂0)

ln(𝑑₁0) + ∫ 𝑑𝑢+⋯+ ∫ 𝑑𝑢
ln(𝑑₂∗10ᵏ)

ln(𝑑₁∗10ᵏ)
ln(𝑑₂00)

ln(𝑑₁00)  
ln (𝑑₂)

𝐿𝑛(𝑑₁)

∫ 𝑑𝑢 +∫ 𝑑𝑢
ln(100)

ln(10) + ∫ 𝑑𝑢+⋯+ ∫ 𝑑𝑢
ln(2∗10𝑘+1)

ln(1∗10𝑘)

ln(1000)

ln(100)  
ln (10)

𝐿𝑛(1)

 = 
𝑘∗ln (

𝑑₂

𝑑₁
)

𝑘∗ln (10)
 = = LOG₁₀(

𝑑₂

𝑑₁
) 

 

 

  See enclosure for an excel program that computes the distribution for 

the sums with respect to the first digits. The program essentially 

computes the equation listed in line 20 and does indicate a Benford 

distribution for most Log Normal distributions parameters that occur in  

the real world such as populations, financial data, time interval 

between earthquakes, etc.  



 

 

Probability density function (pdf) for the logarithm of a data set 

Given: pdf(x); x – data set 

Y = log₁₀ (x) 

1. Pdfᵧ dy = Pdfᵪ dx 

2. Pdfᵧ  = Pdfᵪ 
𝑑𝑥

𝑑𝑦
 

3. dy  = 
𝑑𝑥

ln(10)𝑥
 

4. 
𝑑𝑥

𝑑𝑦
 = xln(10) = 10ᵞ ln(10) 

5. 𝑝𝑑𝑓ᵧ =  10𝑦  ln(10) Pdfᵪ 

6. 𝑝𝑑𝑓ᵧ =  10log (𝑥)  ln(10) Pdfᵪ = xln(10) Pdfᵪ 

For a Log Normal distribution: ) Pdfᵪ = 𝑒−(ln(𝑥)−𝑢)2/2𝜎²

𝑥√2𝜋𝜎²
 

Pdfᵧ = x * ln(10)*  𝑒−(ln(𝑥)−𝑢)2/2𝜎²

𝑥√2𝜋𝜎²
  = ln(10)*  𝑒−(ln(𝑥)−𝑢)2/2𝜎²

√2𝜋𝜎²
 , which is a Gaussian or 

Normal distribution with respect to log x. 

It can be shown that if the curvilinear distance between the integral powers of ten 

On the log plot can be approximated with a straight line then the distribution of 

the resultant mantissas will be a uniform distribution and, therefore, conform to a 

Benford distribution. See appendix A  

I am aware of the apparent fallacy expressed in the paper “ Fundamental Flaws in 

Feller’s Classical Derivation of Benford’s Law ”, authors, Arno Berger and 

Theodore P. Hill that states “ If the spread of a random variable X is very large, 

then X (mod 1) will be approximately uniformly distributed on [0,1].”.  I further 

stipulate that the function be continuous; start and end on the X-axis, and that 

the curvilinear distance between integral powers of ten can be approximated by a 

straight line.  Also, the function does not have to start and end on an integral 

power of ten as long as the end value minus the start value is an integer and 

greater than two. This is tantamount to multiplying by a constant, which does not 



affect the outcome due to the scale invariance theorem as applied to Benford’s 

law. 

 

 

 

 

 

 

 

Fig#2 – Probability Density Function of the Logarithm of a Data Set that 

Conforms to a Log_Normal Distribution 
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Fig#3 – Probability Density Function of a Data Set that Conforms to a 

Log_Normal Distribution as the Standard Deviation Increases 
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Fig#4 - Probability Density Function of a Data Set that Conforms to a 

Log_Normal Distribution as the Standard Deviation Increases 

 

 

One can observe that as the standard deviation increases the 

curvilinear distance between each interval power of ten approaches a 

straight line.  

The sum of the data with respect to a given interval a, b is 

N∫  
𝑏

𝑎
 
𝑒−(ln(𝑥)−𝑚)2/2𝜎²

√2𝜋𝜎²
 dx 

The probability density function (the integrand) is 𝑒−(ln(𝑥)−𝑚)2/2𝜎²

√2𝜋𝜎²
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normalized by the mean.  

.  

 

The probability density function of logarithm of the data set is 𝑥 ∗

𝐿𝑛(10) 
𝑒−(ln(𝑥)−𝑚)2/2𝜎²

√2𝜋𝜎²
  normalized by the mean. 

Again, if the curvilinear distance between the integral powers of ten 

can be approximated by a straight line then the distribution will 

approach a Benford distribution. 

 

 

 

 

 

The following figures illustrate this phenomenon  



 

Fig#5   First Digit Test  

Results displayed here were derived from a Visual Basic computer 

program written by myself. This program was applied to the same data 

sources that Dr. Mark Nigrini utilized in his book, Benford’s Law, and 

achieved identical results.  

 

Fig#6 Summation Test 
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Fig#7 Plot of the probability density function of the logarithm of a data 

set that conforms to a Log Normal distribution  

 

  

 

Fig#8 – Plot of the logarithm of the probability density function of the 

expected value ( or sum) of a data set that conforms to a Log Normal 

distribution  

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2 4 6 8 10

LOG_NORM

LOG_NORM

mean = 10.43
std_dev = 1.39

LOG

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 2 4 6 8 10

Sum_Log_norm

Sum_Log_norm

mean = 10.43
std_dev = 1.39

LOG



 

 

 

mean = 
10.43 

std_dev = 
1.39 

Ist Digits 1 0.306111816 

Summation  2 0.176507538 

 
3 0.12438689 

 
4 0.096069839 

 
5 0.078274469 

 
6 0.066059837 

 
7 0.057157969 

 
8 0.05038172 

 
9 0.045049922 

    

Fig#9 -  Actual value derived from actual integration of the probability 

density function of the expected value of a log Normal distribution 

 

 

 

Fig#10 First Digit Test -  data limit = 1,000,000 
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Fig#11 – Summation Test – data limit = 1,000,000 

 

 

Fig#12 - Plot of the probability density function of the logarithm of a 

data set that conforms to a Log Normal distribution and data limited to 

1,000,000 
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Fig#13 - – Plot of the logarithm of the probability density function of 

the expected value ( or sum) of a data set that conforms to a Log 

Normal distribution and data limited to 1,000,000 

Ist Digits 1 0.250422193 

Summation  2 0.173952267 

 
3 0.131642613 

 
4 0.105413894 

 
5 0.087716646 

 
6 0.075027644 

 
7 0.065507763 

 
8 0.058111845 

 
9 0.052205135 

    

Fig#14 – Actual value derived from the actual integration of the 

probability density function of the expected value of the Log Normal 

distribution of the expected value of the Log Normal distribution  
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Fig#15 – First Digit Test – data limit  = 100,000             

  

Fig# 16 -    Plot of the probability density function of the logarithm of a 

data set that conforms to a Log Normal distribution and data limited to 

100,000 
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Fig# 18 – Plot of the logarithm of the expected value of the data set 

that conforms to a Log Normal distribution and data limited to 100,000 

 

Ist Digits 1 0.098446589 

Summation  2 0.117578991 

 
3 0.122161729 

 
4 0.12103901 

 
5 0.011751021 

 
6 0.113004286 

 
7 0.108183035 

 
8 0.103366471 

 
9 0.098709675 

 

Fig#19 Actual value derived the actual integration of the probability 

density function of the expected value of a Log Normal Distribution  

 

By observing the data derived from these plots it is apparent that the 

summation test results in a Benford distribution and not a uniform 

distribution. However, as the data is truncated the distribution tends to 
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become more uniform as more data in truncated. This is because the 

probability density function of the logarithm of the data consists of 

mainly the back side (or ascending side ) of the normally ascending and 

descending portion of the pdf curve. This is the characteristic of the 

logarithm of a data set that conforms to a uniform distribution (x*ln(10) 

* constant), which is a rising and not falling straight line.  

 

                                              Conclusion 

It is clear that the Summation test performed on a purely exponential 

function (Y = 𝑎𝑘𝑡) results in a Uniform distribution. However, for data 

that conforms to a Log Normal distribution the Summation test in a 

Benford like distribution if the standard deviation is sufficiently large. 

This explains why the Summation test performed on a lot of real data 

such as population, time interval between earthquakes, financial data 

results in a Benford like distribution, since the histograms closely 

resemble a Log Normal distribution.  
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                                               Appendix A 

Proof that if the probability density function of the logarithm of a data set is 

continuous and begins and ends on the x-axis and the number of integral power 

of ten (IPOT) values approaches infinity then the probability density function of 

the resulting mantissas will be uniform and; therefore, the data set will conform 

to Benford’s law 

 

1) The probability density function of a data set that conforms to Benford’s Law is k/x = 
1

ln(10)𝑥
 

2) The probability density function of the log of the same function is a uniform distribution, 

a. pdf(y)dy = pdf(x)dx 

b. Y = log(x) = 
ln (𝑥)

ln (10)
 

c. pdf(y) = pdf(x) 
𝑑𝑥

𝑑𝑦
 

d. 
𝑑𝑦

𝑑𝑥
 = 

1

𝑥𝑙𝑛(10)
 

e. 
𝑑𝑥

𝑑𝑦 
 = xln(10) 

f. pdf(y) = 
𝑥𝑙𝑛(10)

𝑥𝑙𝑛(10)
 = 1 – Uniform Distribution 

3) Therefore, If it can be shown that the pdf of the log of a function is uniform then the 

data set follows Benford’s Law.  



 
4) Y = F(x) 

5)  Y’ = 
𝑑(𝐹(𝑥))

𝑑𝑥
 

6)  ∫ 𝑌′𝑑𝑥
𝑋𝑓

𝑋𝑜
  =  ∫ 𝐹′(𝑥)𝑑𝑥

𝑋𝑓

𝑋𝑜
 =  F(Xf) – F(Xo) = 0  

      7)  Avg Value of Y’ = 
1

𝑋𝑓−𝑋𝑜
 ∫ 𝑌′𝑑𝑥

𝑋𝑓

𝑋𝑜
 =  

0

𝑋𝑓−𝑋𝑜
  

      8)  F’ᵢ (x) = 
𝐹(𝑖+1)−𝐹(𝑖)

∆𝑥
 ; ∆x → 0 

      9)  ∫ 𝐹′(𝑥)𝑑𝑥
𝑋𝑓

𝑋𝑜
 = 0 ; ∑

𝐹(𝑖+1)−𝐹(𝑖)

∆𝑥

𝑁−1
𝑖=0  = 0  as ∆X → 0 

      10)  let m(i) = = 
𝐹(𝑖+1)−𝐹(𝑖)

∆𝑥
   

       

           



      11)  ∑ 𝑚(𝑖)𝑁−1
𝑖=0  ∆X = 0 ; ∆X → 0  

 

Let’s consider a simpler case. 

 

     

      12) Let ∆X = 1 

      13)  m₁+ m₂+ m₃+ m₄+m₅  =  0 

      14)  ∑ 𝑥ᵢ5
𝑖=1  = m₁x + m₁ + m₂x + m₁ + m₂ + m₃x  + m₁+ m₂ + m₃ + m₄x +  

              m₁ + m₂ + m₃ + m₄ + m₅x  =  K  

      15)  x( m₁+ m₂ + m₃ + m₄ +m₅) + m₁+ m₁ + m₁ + m₁+ m₂ + m₂ + m₂ + m₃ + m₃ 

               + m₄  =  K 



      16)  m₁+ m₂ + m₃ + m₄ +m₅  = 0  

      17)   ∑ 𝑥ᵢ5
𝑖=1  =  4m₁+3m₂ + 2m₃ + m₄ = K ( constant)  

      18)  AREA UNDER PDF = 1 

      18) ∫ 𝑓(𝑥)
6

1
 dx = 1 

      20) 
𝑚₁

2
 + m₁+ 

𝑚₂

2
 + ( m₁+ m₂) + 

𝑚₃

2
 +( m₁ + m₂ + m₃) + 

𝑚₄

2
 + (m₁ + m₂ + m₃ +m₄) + 

𝑚₅

2
  

              = 1  

 

      21)   m₁+ m₂ + m₃ + m₄ +m₅  = 0  

      22) 4m₁ + 3m₂ + 2m₃ + m₄  = 1 

      Therefore K = 1 

 

The sum of all functions at IPOT + x = 1 for any x. 

The sum of all probability density functions of each mantissa value contained within all 

integral powers of ten respectively is equal to 1, which constitutes a uniform distribution  

Which is the definition of a Benford distribution. 

 

 

 

 

                

      23) For the more general case: 

      24) ∑ 𝑚ᵢ𝑟−1
𝑖=1  =     

      25) m₁x + m₂ + m₂x + m₁ + m₂ + m₃x + ….. m₁ + m₂ + m₃ + … mᵣ₋₁x  =     

             K 



      26)  x( m₁+ m₂ + …. + mᵣ₋₁   ) + (r-2)m₁ + (r-3)m₃ +..+ mᵣ₋₂ = K  

      27)  x(m₁ + m₂ + m₃ + mᵣ₋₁ ) = 0 

      28) (n-2)m₁ + (n-1)m₂ + ….+ mᵣ₋₂ = K 

      29) 
𝑚₁ 

2
+ m₁ + 

𝑚₂

2
 + m₁ + m₂ + 

𝑚₃

2
 + m₁ + m₂ + m₃ + .. + mᵣ₋₂ + 

𝑚ᵣ₋₁

2
  

              = K 

      30) 
1

2
 ( m₁+ m₂+ m₃ + mᵣ₋₁ ) =0  

      31) (n-2)m₁ + (n-1)m₂ + ….. + mᵣ₋₂ = 1  

      32) K=1  

      33) The sum of mantissa values at IPOT + x = 1 for any x  

      34) The resultant probability density function of  the mantissas is a uniform distribution   

              whose amplitude is equal to 1 and therefore a Benford distribution.   

             

 

 

 

Proof that if the  probability density function of the Logarithm  a data set is 

continuous and begins and ends on the x-axis and the number of integral  

power of ten values approaches infinity then the sum of probability  

distributions of all fixed intervals from all IPOT (∆X) equals the interval 

Itself (∆X). 

 



 

 

 

1) ∑ ∫ 𝑝𝑑𝑓 𝑑𝑥
𝑖+∆

𝑖
4
1  = 

1

2
 m₁(∆x)² + m₁∆x  + 

1

2
m₂(∆x)² + (m₁ + m₂)∆x +  

1

2
 m₃(∆x)² + ( m₁ + m₂ + m₃)∆x  + 

1

2
 m₄(∆x)² = K 

2) 
1

2
 (∆x) ² (m₁ + m₂ + m₃ +m₄ ) + (3𝑚₁  + 2m₂ + m₃)∆x = K 

3) m₁ + m₂ + m₃ +m₄ = 0 

4) 3m₁ + 2m₂ + m₃ = 1  

5) (3𝑚₁  + 2m₂ + m₃)∆x =∆x 

6) ∑ ∫ 𝑝𝑑𝑓 𝑑𝑥
𝑖+∆𝑥

𝑖
4
1  = ∆x 

In General: 

7) ∑ ∫ 𝑝𝑑𝑓 𝑑𝑥
𝑖+∆𝑥

𝑖
 𝑟−1
𝑖=1  =  

1

2
(∆x)²( m₁+ m₂ + m₃ +… + mᵣ₋₁ )+ 



8) [(𝑛 − 2)𝑚₁ + (𝑛 − 1)𝑚₂ + … + mᵣ₋₂]∆x  = ∆x 

 

It can be easily shown that the fixed intervals don’t have to start and 

end on an interval power of ten such as 10,100,1000 or 1,2,3 on a LOG 

plot as long as the fixed intervals are all offset by a power of ten.  

For instance, the left most interval starting point, where the curve 

intersects the x-axis, could be 2 with each succeeding  interval 10 times 

the previous interval i.e. 20,200,2000 etc. The data would still conform 

to Benford’s Law with digit 1 contained in intervals 10-20, 100-200, 

1000-2000; digit 2: 2-3,20-30,200-300;digit 3: 3-4,30-40,300-400;digit 4: 

4-5,40-50,400-500;digit 5:5-6,50-60,500-600;digit 6:6-7,60-70,600-

700;digit 7:7-8,70-80,700-800;digit 8:8-9,80-90,800-900;digit 9:9-10,90-

100,900-1000. The first digit starts in the tens and ends in the 1000s; all 

of the others start in the single digits and end in the 100s. It’s still the 

same result obtained by having the IPOT at each interval such as 

1,10,100,1,000 etc. 

 

This would explain why data sets that span many orders of magnitude conform 

very closely to Benford’s law and data sets that span fewer orders of magnitude 

do not. This also explains why several other distributions such as gamma, beta, 

Weibull and exponential probability density functions conform fairly closely to 

Benford’s law and why Gaussian or Normal distributions do not ( the pdf of the 

logarithm of a Gaussian data span a very limited number of IPOTs. i.e.  

X* 
1

√2𝜋𝜎²
 𝑒−(𝑥−𝑢)2/2𝜎², the 𝑒−(𝑥−𝑢)2/2𝜎² term falls too rapidly.  

 

 


