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Abstract:  We require all components of the Kaluza-Klein metric tensor to be generally-covariant 
across all five dimensions by deconstructing the metric tensor into Dirac-type square root 
operators.  This decouples the fifth dimension from the Kaluza-Klein scalar, makes this dimension 
timelike not spacelike, makes the metric tensor inverse non-singular, covariantly reveals the 
quantum fields of the photon, makes Kaluza-Klein fully compatible with Dirac theory, and roots 
this fifth dimension in the physical reality of the chiral, pseudo-scalar and pseudo-vector particles 
abundantly observed in particle physics based on Dirac’s gamma-5 operator, thereby “repairing” 
all of the most perplexing problem in Kaluza-Klein theory.  Albeit with additional new dynamics 
expected, all the benefits of Kaluza-Klein theory are retained, insofar as providing a 
geometrodynamic foundation for Maxwell’s equations, the Lorentz Force motion and the Maxwell-
Stress energy tensor, and insofar as supporting the viewpoint that the fifth dimension is, at bottom, 
the matter dimension.  We find that the Kaluza-Klein scalar must be a massless, luminous field 
quantum to solve long-standing problems arising from a non-zero scalar field gradient.  This 
luminous scalar is connected to the standard model Higgs field, then used to generate rest masses 
for fermions through spontaneous symmetry breaking, whereby all quark and lepton masses are 
directly reparameterized in terms of the CKM and PMNS mixing angles.  A second leptonic Higgs 
boson is predicted along with its mass, and the masses of the three neutrinos are also predicted.   
Finally, we suggest multiple pathways for continued development. 
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1.  Introduction – The Incompatibility of Kaluza-Klein and Dirac Theories 
 

About a century ago with the 1920s approaching, much of the physics community was 
trying to understand the quantum reality that Planck had first uncovered almost two decades prior 
[1].  But with the General Theory of Relativity [2] having recently placed gravitation and the 
dynamical behavior of gravitating objects onto an entirely geometric and geodesic foundation 
(which several decades later Wheeler would dub “geometrodynamics” [3]), a few scientists were 
trying to scale the next logical hill, which – with weak and strong interactions not yet known – 
was to obtain a geometrodynamic theory of electromagnetism.  Besides Einstein’s own work on 
this which continued for the rest of his life [4], the two most notable efforts were those of Hermann 
Weyl [5], [6]  who was just starting to develop his U(1) gauge theory in four dimensions (which 
turned out to be a theory of “phase” invariance [7] that still retains the original moniker “gauge”), 
and Kaluza [8] then Klein [9], [10] who quite successfully used a fifth dimension to geometrize 
the Lorentz Force motion and the Maxwell Stress-Energy tensor (see, e.g., [11] and [12]).  This is 
a very attractive aspect of Kaluza-Klein theory, and it remains so because even today, despite 
almost a century of efforts to do so, U(1) gauge theory has not yet successfully been able to place 
the Lorentz Force dynamics and the Maxwell Stress Energy on an entirely-geometrodynamic 
foundation.  And as will be appreciated by anyone who has studied this problem seriously, it is the 
inequivalence of electrical mass (a.k.a. charge) and inertial mass which has been the prime 
hindrance to being able to do so. 

 
Notwithstanding these Kaluza “miracles” of geometrizing the Lorentz Force motion and 

the Maxwell Stress-Energy, this fifth dimension and an associated scalar field known as the 
graviscalar or radion or dilaton raised its own new challenges, many of which will be reviewed 
here.  These have been a legitimate hurdle to the widespread acceptance of Kaluza-Klein theory 
as a theory of what is observed in the natural world.  It is important to keep this historical 
sequencing in mind, because Kaluza’s work in particular predated what we now know to be 
modern gauge theory and so was the “first” geometrodynamic theory of electrodynamics.  And it 
of course predated any substantial knowledge about the weak and strong interactions.  Of special 
interest in this paper, Kaluza-Klein also preceded Dirac’s seminal Quantum Theory of the Electron 
[13] which today is the foundation of how we understand fermion behavior. 
 

Now in Kaluza-Klein theory, the metric tensor which we denote by GΜΝ  and its inverse 

GΜΝ  obtained by G G δΜΑ
ΑΝ

Μ
Ν=  are specified in five dimensions with an index 0,1,2,3,5Μ = , 

and may be represented in the 2x2 matrix format: 
 

2 2

22 2

2

;
1/

g Ag A A A
G G

A g A AA

k k

k

µν µ
µν µ ν µ

ν α β
αβν

φ φ
φφ φ

ΜΝ
ΜΝ

 − +
= =     − +   

. (1.1) 

 

In the above 2 2kg A Aµν µ νφ+  transforms as a 4x4 tensor symmetric in spacetime.  This is because 

g gµν νµ=  is a symmetric tensor, and because electrodynamics is an abelian gauge theory with a 

commutator , 0A Aµ ν  =  .  The components 2
5 AkGµ µφ=  and 2

5 AkG ν νφ=  transform as covariant 

(lower-indexed) vectors in spacetime.  And the component 2
55G φ=  transforms as a scalar in 
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spacetime.  If we regard φ  to be a dimensionless scalar, then the constant k must have dimensions 

of charge/energy because the metric tensor is dimensionless and because the gauge field Aµ  has 

dimensions of energy/charge. 
 

It is very important to understand that when we turn off all electromagnetism by setting 

0Aµ =  and 0φ = , GΜΝ  in (1.1) becomes singular.  This is indicated from the fact that in this 

situation ( ) ( )00 11 22 33diag , , , ,0G g g g gΜΝ =  with a determinant 0GΜΝ = , and is seen directly from 

the fact that 55 2 01/G g A Aα β
αβ φ+ == + ∞ .  Therefore, (1.1) relies upon φ  being non-zero to 

avoid the degeneracy of a metric inverse singularity when 0φ = . 

  
We also note that following identifying the Maxwell tensor in the Kaluza-Klein fields via 

a five-dimensional the Einstein field equation, again with φ  taken to be dimensionless, the 

constant k is found to be: 
 

2

04 4 2

2 2 2
4   i.e.,  

2 e e

k G G G
k

c c k c k
π≡ = =ε , (1.2) 

 

where 0
2

01/ 4 / 4ek cµπε π= = is Coulomb’s constant and G is Newton’s gravitational constant. 

 
 Now, as noted above, Kaluza-Klein theory predated Dirac’s Quantum Theory of the 
Electron [13].  Dirac’s later theory begins with taking an operator square root of the Minkowski 

metric tensor ( ) ( )diag 1, 1, 1, 1µνη = + − − −  by defining (“ ≡ ”) a set of four operator matrices µγ  

according to the anticommutator relation { } { }1 1
2 2,µ ν µ ν ν µ µνγ γ γ γ γ γ η= + ≡ .  The lower-indexed 

gamma operators are likewise defined such that { }1
2 ,µ ν µνγ γ η≡ .  To generalize to curved 

spacetime thus to gravitation which employs the metric tensor gµν  and its inverse g µν  defined 

such that g gµα µ
αν νδ≡  and we define a set of µΓ  with a parallel definition { }1

2 , gµ ν µνΓ Γ ≡ .  We 

simultaneously define a vierbein a.k.a. tetrad aeµ  with both a superscripted Greek “spacetime / 

world” index and a subscripted Latin “local / Lorentz / Minkowski” index using the relation 
a

aeµ µγ ≡ Γ .  Thus, we deduce that { } { }1 1
2 2, a b b a ab

a b a bg e e e eµν µ ν µ ν µ νγ γ γ γ η= Γ Γ = + = .  So just as the 

metric tensor g µν  transforms in four-dimensional spacetime as a contravariant (upper-indexed) 

tensor, these µΓ  operators likewise transform in spacetime as a contravariant four-vector. 
 

One might presume in view of Dirac theory that the five-dimensional GΜΝ  and GΜΝ  in the 

Kaluza-Klein metric tensor (1.1) can be likewise deconstructed into square root operators defined 
using the anticommutator relations: 
 

{ } { } { } { }1 1 1 1
2 2 2 2, ; ,G GΜ Ν Μ Ν Ν Μ ΜΝ

Μ Ν Μ Ν Ν Μ ΜΝΓ Γ = Γ Γ + Γ Γ ≡ Γ Γ = Γ Γ + Γ Γ ≡ , (1.3) 
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where ΜΓ  and ΜΓ  transform as five-dimensional vectors in five-dimensional spacetime.  This 

would presumably include a five-dimensional definition A
Aε γΜ Μ≡ Γ  for a tetrad Aε Μ , where 

0,1,2,3,5Μ =  is a world index and 0,1,2,3,5A =  is a local index, and where 5γ  is a fifth operator 

matrix which may or may not be associated with Dirac’s 5 0 1 2 3iγ γ γ γ γ≡ , depending upon the 

detailed mathematical calculations which determine this 5γ . 

 
However, as we shall now demonstrate, the Kaluza-Klein metric tensors in (1.1) cannot be 

deconstructed into ΜΓ  and ΜΓ  in the manner of (1.3) without modification to their 505 0G G=  and 

55G  components, and without imposing certain constraints on the gauge fields Aµ  which remove 

two degrees of freedom and fix the gauge of these fields to that of a photon.  We represent these 

latter constraints by A Aµ µ
γ= , with a subscripted γ  which denotes a photon and which is not a 

spacetime index.  This means that in fact, in view of Dirac theory which was developed afterwards, 
the Kaluza-Klein metric tensors (1.3) are really not generally-covariant in five dimensions.  Rather, 
they only have a four-dimensional spacetime covariance represented in the components of 

2 2G g Ak Aµν µν µ νφ= +  and G gµν µν= , and of 
2

5 AkGµ µφ=  and 5G Aµ µ= − , which are all patched 

together with fifth-dimensional components with which they are not generally-covariant.  
Moreover, even the spacetime components of (1.1) alone are not generally covariant even in the 

four spacetime dimensions alone, unless the gauge symmetry of the gauge field Aµ  is broken to 

remove two degrees of freedom and fixed to that of a photon, A Aµ µ
γ= . 

 
In today’s era when the General Theory of Relativity [2] is now a few years past its 

centenary, and when at least in classical field theory general covariance is firmly-established as a 
required principle for the laws of nature, it would seem essential that any theory of nature which 
purports to operate in five dimensions that include the four dimensions of spacetime, ought to 
manifest general covariance across all five dimensions, and ought to be wholly consistent at the 
“operator square root” level with Dirac theory.  Accordingly, it is necessary to “repair” Kaluza-
Klein theory to make certain that it adheres to such five-dimensional covariance.  In so doing, 
many of the most-nagging, century-old difficulties of Kaluza-Klein theory are immediately 

resolved, including those related to the scalar field in 
2

55G φ=  and the degeneracy of the metric 

tensor when this field is zeroed out, as well as the large-magnitude terms which arise when the 
scalar field has a non-zero gradient.  Moreover, the fourth spacelike dimension of Kaluza-Klein is 
instead revealed to be a second timelike dimension.  And of extreme importance, this Kaluza-Klein 
fifth dimension which has spent a century looking for direct observational grounding, may be tied 

directly to the clear observational physics built around the Dirac 
5γ , and the multitude of observed 

chiral and pseudoscalar and axial vector particle states that are centered about this 
5γ .  Finally, 

importantly, all of this happens without sacrificing the Kaluza “miracle” of placing 
electrodynamics onto a geometrodynamic footing.  This is what will now be demonstrated.  
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PART I:  THE MARRIAGE BETWEEN FIVE DIMENSIONAL KALUZA-

KLEIN THEORY AND DIRAC’S QUANTUM THEORY OF THE 

ELECTRON 
 

2.  The Kaluza-Klein Tetrad and Dirac Operators in Four Dimensional 

Spacetime, and the Covariant Fixing of Gauge Fields to the Photon 
 
 The first step to ensure that Kaluza-Klein theory is covariant in five dimensions using the 
operator deconstruction (1.3), is to obtain the four-dimensional spacetime deconstruction: 
 

{ } { } { }1
2

2 21 1
2 2, a b b a ab

a b a b G kg A Aµν µµ ν µ ν ν µ µ ν µ ν µν νε ε γ γ γ γ η ε ε φΓ Γ = Γ Γ + Γ Γ = + += ≡ =  (2.1) 

 

using a four-dimensional tetrad aµε  defined by 
a

aµ µε γ ≡ Γ , where 0,1, 2, 3µ =  is a spacetime 

world index raised and lowered with G µν  and Gµν , and 0,1, 2, 3a =  is a local Lorentz / Minkowski  

tangent spacetime index raised and lowered with 
abη  and abη .  To simplify calculation, we set 

gµν µνη=  thus 
2 2 A AG kµν µµ νν η φ+= .  Later on, we will use the minimal-coupling principle to 

generalize back from gµν µνη ֏ .  In this circumstance, the spacetime is “flat” except for the 

curvature in Gµν  brought about by the electrodynamic terms 
22 Ak Aµ νφ .  We can further simplify 

calculation by defining an aµε ′  such that a a aµ µ µδ ε ε′+ ≡ , which represents the degree to which 

aµε  differs from the unit matrix aµδ .  We may then write the salient portion of (2.1) as: 

 

( )( )
2 2

ab ab ab ab ab ab
a b a a b b a b b a a b a b

a b a b
a b ab k A A

µ ν µ µ ν ν µ ν ν µ µ ν µ ν

µν ν µ µ ν µ ν µν µ ν

η ε ε η δ ε δ ε η δ δ δ η ε δ η ε η ε ε

η η ε ε ηη ε ε φη

′ ′ ′ ′ ′ ′= + + = + + +

′ ′ ′ +′= + + + =
. (2.2) 

 

Note that when electrodynamics is “turned off” by setting Aµ  and / or by setting 0φ =  this reduces 

to 
ab

a b νµ µνη ε ε η=  which is solved by the tetrad being a unit matrix, a aµ µε δ= .  Subtracting µνη  

from each side of (2.2) we now need to solve: 
 

22a b a b
a b ab A Akν µ µ ν µ ν µ νη ε η ε η ε ε φ′ ′ ′ ′+ + = . (2.3) 

 
  The above contains sixteen (16) equations for each of 0,1, 2, 3µ =  and 0,1, 2, 3ν = .  But, 

this is symmetric in µ  and ν so in fact there are only ten (10) independent equations.  Given that 

( ) ( )diag 1, 1, 1, 1abη = − − − , the four µ ν=  “diagonal” equations in (2.3) produce the relations: 
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0 0 0 1 1 2 2 3 3 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 1 2 2 3 3 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 0 0
2 2 2 2 2 2 2 2

2
0

1

2

0

2
1

2

2

2

a b a b
a b ab

a b a b
a b ab

a b a b
a b ab

k

k

A A

A A

η ε η ε η ε ε ε ε ε ε ε ε ε ε ε
η ε η ε η ε ε ε ε ε ε ε ε ε ε ε
η ε η ε η ε ε ε

φ
φ

ε ε

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + = + − − − =
′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + = − + − − − =
′ ′ ′ ′ ′ ′ ′+ + = − + 1 1 2 2 3 3 2

2 2 2 2 2 2

3 0 0 1 1 2 2 3 3 2
3 3 3 3 3

2
2 2

2
33 3 3 3 3 3 3 3 3 3 32a b a b

a b ab

k

k

A A

A A

φε ε ε ε ε ε
η ε η ε η ε ε ε ε ε ε ε ε ε ε ε φ

′ ′ ′ ′ ′ ′− − − =
′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + = − + − − − =

. (2.4a) 

 
Likewise, the three 0µ = , 1, 2, 3v =  mixed time and space relations in (2.3) are: 

 
1 0 0 0 1 1 2 2 3 3 2

1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1

2 0 0 0 1 1 2 2 3 3 2
2 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2

3
3 0 0 3

2
0 1

0 2

0

2

0 3

a b a b
a b ab

a b a b
a b ab

a b a b
a b ab

A A

A A

k

k

η ε η ε η ε ε ε ε ε ε ε ε ε ε ε ε
η ε η ε η ε ε ε ε ε ε ε ε ε ε ε ε
η ε η ε η ε ε ε

φ
φ

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + = − + + − − − =
′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + = − + + − − − =
′ ′ ′ ′ ′+ + = − + 0 0 0 1 1 2 2 3 3 2

3 0 3 0 3 0 3
2

0 30 3 A Akε ε ε ε ε ε ε φε ε′ ′ ′ ′ ′ ′ ′ ′ ′+ − − − =

. (2.4b) 

 
Finally, the pure-space relations in (2.3) are: 
 

2 1 0 0 1 1 2 2 3 3 2
2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2

3 2 0 0 1 1 2 2 3 3 2
3 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3

1
1 3 3 1

2
1 2

2 3

3

2

3 1

a b a b
a b ab

a b a b
a b ab

a b a b
a b ab

A A

A

k

k A

η ε η ε η ε ε ε ε ε ε ε ε ε ε ε ε
η ε η ε η ε ε ε ε ε ε ε ε ε ε ε ε
η ε η ε ε ε

φ
η ε

φ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + = − − + − − − =
′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + = − − + − − − =
′ ′ ′ ′ ′ ′+ + = − − 3 0 0 1 1 2 2 3 3 2

1 3 1 3 1 3
2

33 1 11 A Akε ε ε ε ε ε ε ε φε′ ′ ′ ′ ′ ′ ′ ′+ − − − =

. (2.4c) 

 
Now, we notice that the right-hand side of all ten of (2.4) have nonlinear second-order products 

22 Ak Aµ νφ  of field terms, while on the left of each there is a mix of linear first-order and nonlinear 

second-order expressions containing the 
a

µε ′ .  Our goal at the moment, therefore, is to eliminate 

all of the first order expressions from the left-hand sides of (2.4) to create a structural match 
whereby a sum of second order terms on the left is equal to a second order term on the right. 
 

In (20.3a) the linear appearances are of 
0

0ε′ , 
1

1ε′ , 
2

2ε′  and 
3

3ε′  respectively.  Noting that the 

complete tetrad 
a a a

µ µ µε δ ε′= +  and that 
a a

µ µε δ=  when electrodynamics is turned off, we first 

require that 
a a

µ µε δ=  for the four aµ =  diagonal components, and therefore, that 

0 1 2 3
0 1 2 3 0ε ε ε ε′ ′ ′ ′= = = = .  As a result, the fields in 

22 Ak Aµ νφ  will all appear in off-diagonal 

components of the tetrad.  With this, (2.4a) reduce to: 
 

2
0 0

2
1 1

1 1 2 2 3 3 2
0 0 0 0 0 0

0 0 2 2 3 3 2
1 1 1 1 1 1

0 0 1 1 3 3 2
2

2
22 2 2 2 2

0 0 1 1 2 2 2
3 3 3 3 3 3

2

2
3 3

A A

A A

k

k

k

A A

A A

k

ε ε ε ε ε ε
ε ε ε ε ε ε
ε ε ε ε ε ε
ε ε ε ε

φ

φ
ε

φ

φε

′ ′ ′ ′ ′ ′− − − =
′ ′ ′ ′ ′ ′− − =
′ ′ ′ ′ ′ ′− − =
′ ′ ′ ′ ′ ′− − =

. (2.5a) 

 

In (2.4b) we achieve structural match using 
1 2 3

1 2 3 0ε ε ε′ ′ ′= = =  from above, and also by setting 
1 0

0 1ε ε′ ′= , 
2 0

0 2ε ε′ ′= , 
3 0

0 3ε ε′ ′= , which is symmetric under 0 1, 2, 3a↔ =  interchange.  Therefore: 
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2 2 3 3 2

0 1 0 1

1 1 3 3 2
0 2 0 2

1 1 2 2 2
0 3

2

0

0 1

2

2
3

0 2

0 3

A A

A

Ak

A

k

A

k

φ
φ

ε ε ε ε
ε ε ε ε
ε ε φε ε

′ ′ ′ ′− − =
′ ′ ′ ′− − =
′ ′ ′ ′− − =

. (2.5b) 

 

In (2.4c) we use 
1 2 3

1 2 3 0ε ε ε′ ′ ′= = =  from above and also set 
2 1

1 2ε ε′ ′= − , 
3 2

2 3ε ε′ ′= − , 
1 3

3 1ε ε′ ′= −  

which are antisymmetric under interchange of different space indexes.  Therefore, we now have: 
  

2
1 2

2
2 3

2
3 1

0 0 3 3 2
1 2 1 2

0 0 1 1 2
2 3 2 3

0 0 2 2 2
3 1 3 1

k A

A A

k

A

A A

k

φ
φ
φ

ε ε ε ε
ε ε ε ε
ε ε ε ε

′ ′ ′ ′− =
′ ′ ′ ′− =
′ ′ ′ ′− =

. (2.5c) 

 
In all of (2.5), we now only have matching-structure second-order terms on both sides. 
 
 For the next step, closely studying the space indexes in all of (2.5) above, we now make an 

educated guess at an assignment for the fields in 
22

i jk AAφ .  Specifically, also using the symmetric-

interchange 
1 0

0 1ε ε′ ′= , 
2 0

0 2ε ε′ ′= , 
3 0

0 3ε ε′ ′=  from earlier, we now guess an assignment: 

 
1 0 2 0 3 0

0 1 0 2 2 301 3; ;A Ak k kAε ε ε ε ε εφ φ φ′ ′ ′ ′ ′ ′= = = = = = . (2.6) 

 
Because all space-indexed expressions in (2.5) contain second-order products of the above, it is 

possible to have also tried using a minus sign in all of (2.5) whereby 
1 0

0 1 1Akε ε φ′ ′= = − , 
2 0

0 2 2Akε ε φ′ ′= = −  and 
3 0

0 3 3Akε ε φ′ ′= = − .  But absent motivation to the contrary, we employ a plus 

sign which is implicit in the above.  Substituting (2.6) into all of (2.5) and reducing now yields: 
 

2 2 3 3
1 1 1 1

1 1 3 3
2 2 2 2

1 1 2 2
3

1

3

1 2 2 3 3 0 0

3 3

0

0

0

A A A A A A A A

ε ε ε ε
ε ε ε ε
ε ε ε ε

− − − =
′ ′ ′ ′− − =
′ ′ ′ ′− − =
′ ′ ′ ′− − =

, (2.7a) 

 
2

2 3 0 1

2
1 3

2 3 2
1 1

1 3 2
2 2

1

0 2

2
1

2
2 3

2
3 03

k k k

k k k

A A A A

A A A A

A A A Ak k k

ε ε
ε ε
ε

φ φ φ
φ φ φ
φ φ ε φ

′ ′− − =
′ ′− − =
′ ′− − =

, (2.7b) 

 
3 3 1 1 2 2

1 2 2 3 3 1 0ε ε ε ε ε ε′ ′ ′ ′ ′ ′− = − = − = . (2.7c) 
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 Now, one way to satisfy the earlier relations 2 1
1 2ε ε′ ′= − , 3 2

2 3ε ε′ ′= − , 1 3
3 1ε ε′ ′= −  used in (2.5c) 

as well as to satisfy (2.7c), is to set all of the pure-space components: 
 

2 1 3 2 1 3
1 2 2 3 3 1 0ε ε ε ε ε ε′ ′ ′ ′ ′ ′= = = = = = . (2.8) 

 
This disposes of (2.7c) and last three relations in (2.7a), leaving only the two constraints: 
 

1 1 2 2 3 3 0 0A A A A A A A A− − − = , (2.9a) 

 
2 22 2 2

0 1 0 2 3
2

00 A A Ak k kA A Aφ φ φ= = = . (2.9b) 

 
These above relations (2.9) are extremely important.  In (2.9b), if any one of 1A , 2A  or 3A  

is not equal to zero, then we must have 0 0A = .  So, we take as a given that at least one of 1A , 2A  

or 3A  is non-zero, whereby (2.9a) and (2.9b) together become: 

 

0 1 1 2 2 3 30; 0A A A A A A A= + + = , (2.10) 

 
These two constraints have removed two redundant degrees of freedom from the gauge field Aµ , 

in a generally-covariant manner.  Moreover, for the latter constraint in 1 1 2 2 3 3 0A A A A A A+ + =  to 

be satisfied, it is necessary that at least one of the space components of jA  be imaginary.  For 

example, if 3 0A = , then one way to solve the entirety of (2.10) is to have: 

 

( )exp /A A iq xσ
µ µ σε= − ℏ , (2.11a) 

  
with a polarization vector  
 

( ) ( ), ˆ 0 1 0 / 2R L z iµε ≡ ± + , (2.11b) 

 
where A has dimensions of charge / energy to provide dimensional balance given the dimensionless 

,R Lµε .  But the foregoing is instantly-recognizable as the gauge potential A Aµ γ µ=  for an 

individual photon (denoted with γ ) with two helicity states propagating along the z axis, having 

an energy-momentum vector 
 

( ) ( ) ( )ˆ 0 0 0 0zcq z E cq h hµ ν ν= = . (2.11c) 

  

This satisfies 2 2 0q q m cµ
µ γ= = , which makes this a massless, luminous field quantum.  

Additionally, we see from all of (2.11) that 0A qµ
µ = , and 0j

jA q =  as is also true for a photon.  

The latter 0j
jA q =  is the so-called Coulomb gauge which is ordinarily imposed as a non-covariant 

gauge condition.  But here, it has emerged in an entirely covariant fashion. 
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 In short, what we have ascertained in (2.10) and (2.11) is that if the spacetime components 

22G Akg Aµν µ νµν φ+=  of the Kaluza-Klein metric tensor with gµν µνη=  are to produce a set of 

µΓ  satisfying the Dirac anticommutator relation { }1
2 , Gµ ν µνΓ Γ ≡ , the gauge symmetry of Aµ  must 

be broken to correspond with that of the photon, A Aµ γ µ= .  The very act of deconstructing Gµν  

into square root Dirac operators covariantly removes two degrees of freedom from the gauge field 
and forces it to become a photon field quantum.  Moreover, (2.11a) implies that i A q Aα µ α µ∂ =ℏ  

while (2.11c) contains the energy E hν=  of a single photon.   So, starting with an entirely-

classical 2 2 A AG kµν µµ νν η φ+=  and merely requiring the formation of a set of µΓ  transforming 

covariantly in spacetime with the anticommutator { }1
2 , Gµ ν µνΓ Γ ≡ , we covariantly end up with 

some of the core relations of quantum mechanics. 
 
 Even outside of the context of Kaluza-Klein theory, entirely in four-dimensional spacetime, 
the foregoing calculation solves the long-perplexing problem of how to covariantly eliminate the 
redundancy inherent in using a four-component Lorentz vector Aµ  to describe a classical 

electromagnetic wave or a quantum photon field with only two transverse degrees of physical 

freedom:  If we posit a metric tensor given by 22G Akg Aµν µ νµν φ+= , and if we require the 

existence of a set of Dirac operators µΓ  transforming as a covariant vector in spacetime and 

connected to the metric tensor such that { }1
2 , Gµ ν µνΓ Γ ≡ , then we are given no choice but to have 

A Aµ γ µ=  be the quantum field of a photon with two degrees of freedom covariantly-removed and 

only two degrees of freedom remaining.  
 

 Moreover, we have also deduced all of the components of the tetrad a a a
µ µ µε δ ε ′= + .  

Pulling together all of 0 1 2 3
0 1 2 3 0ε ε ε ε′ ′ ′ ′= = = =  together with (2.6) and (2.8), and setting A Aµ γ µ=  

to incorporate the pivotal finding in (2.10), (2.11) that the gauge-field must be covariantly fixed to 
the gauge field of a photon (again, γ  is a subscript, not a spacetime index), this tetrad is: 

 

1 2 3

1

2

3

1

1 0 0

0 1 0

0 0 1

a a a

k k k

k

k

A A

Ak

A

A

Aµ µ

γ γ γ

γ

γ

γ

µ

φ φ φ
φ
φ
φ

ε δ ε

 
 
 ′= + =
 
  
 

. (2.12) 

  

 Finally, because a
a

α
µ µ α µε γ ε γ= ≡ Γ , we may use (2.12) to deduce that the Dirac operators: 
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0 1 2 3
0 0 0 0 0 1 0 2 0 3 0

0 1
1 1 1 0 1 1 1 0

0 2
2 2 2 0

1

2 2 2 0

0

2

3
3 3 3 0 3 33 3 0

jjk

k

A

A

A

A

k

k

α
α

α
α

α
α

α
α

γ

γ

γ

γ

ε γ ε γ ε γ ε γ ε γ γ γ

ε γ ε γ ε γ γ γ

ε γ ε γ ε γ γ γ

ε γ ε γ ε γ

φ

γ

φ

γ

φ

φ

Γ = = + + + = +

Γ = = + = +

Γ = = + = +

Γ = = + = +

, (2.13) 

 
which consolidate into a set of µΓ  transforming as a four-vector in spacetime, namely: 

 

( )0 0j jj jkA Akγ γµ γ γ γφγφΓ = + + . (2.14) 

 
It is a useful exercise to confirm that (2.14) above, inserted into (2.1), will produce 

2 2G k A Aµν µν γ µ γνη φ= + , which may then be generalized from gµν µνη ֏  in the usual way by 

applying the minimal coupling principle.  As a result, we return to the Kaluza-Klein metric tensors 
in (1.1), but apply the foregoing to now rewrite these as: 
 

2 2

2 2 2

2

;
1/

k kg A A A g A
G G

A A g A Ak

µν µ
µν γ µ γν γ µ γ

ν α β
γν γ αβ γ γ

φ φ
φ φ φ

ΜΝ
ΜΝ

   + −
= =      − +   

. (2.15) 

 
The only change we have made is to replace A Aµ γ µ֏ , which is to represent the remarkable result 

that even in four spacetime dimensions alone, it is not possible to deconstruct 
2 2G k A Aµν µν γ µ γνη φ= +  into a set of Dirac µΓ  defined using (2.1) without fixing the gauge field 

Aµ  to that of a photon Aγ µ .  Now, we extend this general covariance to the fifth dimension. 

 

3.  Derivation of the “Dirac-Kaluza-Klein” (DKK) Five-Dimensional Metric 

Tensor 
 
 To ensure general covariance at the Dirac level in five-dimensions, it is necessary to first 
extend (2.1) into all five dimensions.  For this we use the lower-indexed (1.3), namely: 
 

{ } { }1 1
2 2, GΜ Ν Μ Ν Ν Μ ΜΝΓ Γ = Γ Γ + Γ Γ ≡ . (3.1) 

 
As just shown, the spacetime components of (3.1) with gµν µνη=  and using (2.14) will already 

reproduce 2 2G k A Aµν µν γ µ γνη φ= +  in (2.15).  Now we turn to the fifth-dimensional components. 

 
 We first find it helpful to separate the time and space components of GΜΝ  in (2.15) and so 

rewrite this as: 
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2 2 2
00 0 05 00 0 0 0 0 0

2 2 2
0 5 0 0

2 2 2
50 5 5

2 2

2 2

5 0

k k k

j jk j j j jk j k j

k k

G G G g A A g A A A

G G G G g A A

k k k

k k k

k k

g A A A

G G G A A

γ γ γ γ γ

γ γ γ γ γ

γ γ

φ φ φ
φ φ φ
φ φ φ

ΜΝ

  + +
 = + + 
 



 =  
 
 

. (3.2) 

 
We know of course that 0 0Aγ = , which is the constraint that first arose from (2.10).  So, if we 

again work with gµν µνη=  and set 0 0Aγ = , the above simplifies to: 

 

00 0 05

2 2
0 5

2 2
50 5 55

2

1 0 0

0

0

k

j jk j jk j k j

k k

G G G

G G G G A A Ak

G A

k

G G k
γ γ γ

γ

η φ φ
φ φ

ΜΝ

 
 

 
 = + 
 


=

  

 


. (3.3) 

 
 Next, let us define a 5Γ  to go along with the remaining µΓ  in (2.14) in such a way as to 

require that the symmetric components 2
5 5j j jG G Ak γφ= =  in (3.3) remain fully intact without any 

change.  This is important, because these components in particular are largely responsible for the 
Kaluza “miracles” which reproduce Maxwell’s equations together with the Lorentz Force motion 
and the Maxwell Stress-Energy Tensor.  At the same time, because 0 0Aγ =  as uncovered at (2.10), 

we can always maintain covariance between the space components 2
5 5j j jG G Ak γφ= =  and the 

time components 05 50G G=  in the manner of (1.1) by adding 2
0 0kAγφ =  to anything else we 

deduce for 05 50G G= , so we lay the foundation for the Kaluza miracles to remain intact.  We 

impose this requirement though (3.1) by writing the 5Γ  definition as: 

 

{ } { } 21 1
52 55 5 52,j j j jj jG AG k γφΓ Γ = Γ Γ + Γ Γ ≡ = = . (3.4) 

 

Using 0j j jkAγφγ γΓ = +  from (2.14) and adding in a zero, the above now becomes: 

 

{ } { } { }1 1 1
5 5

2
5 0 52 2 20 , ,j j jj jA Ak kγ γ γφ φγ≡ Γ Γ + Γ Γ = Γ + Γ+ , (3.5) 

 
which reduces down to a pair of anticommutation constraints on 5Γ , namely: 

 

{ }
{ }

1
52

1
0 52

,

,

0 j

φ

γ

γ

= Γ

= Γ
. (3.6) 

 
Now let’s examine possible options for 5Γ . 

   

Given that 0 0 jjkAγφγ γΓ = +  and 0j j jkAγφγ γΓ = +  in (2.14), we anticipate the general 

form for 5Γ  to be 5 X YγΓ ≡ +  in which we define two unknowns to be determined using (3.6).  

First, X is one of the indexes 0, 1, 2, 3 or 5 of a Dirac matrix.  Second, Y is a complete unknown 
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which we anticipate will also contain a Dirac matrix as do the operators in (2.14).  Using 

5 X YγΓ ≡ +  in (3.6) we first deduce: 

 

{ } { } { } { }
{ } { } { } { }

1 1 1 1
5 52 2 2 2

1 1 1 1
0 5 5 0 0 0 0 0 0 02 2 2 2

, ,

, ,

0

0

j j j X j X j j j X j

X X X

Y Y Y

Y Y Y

γ γ γ γ γ γ γ γ γ γ γ

γ γ γ γ γ γ γ γ γ γφ γ+

= Γ + Γ = + + + = +

= Γ + Γ = + + + = +
. (3.7) 

 
From the top line, so long as X Yγ ≠ −  which means so long as 5 0Γ ≠ , we must have both the 

anticommutators { }, 0j Xγ γ =  and { }, 0j Yγ = .  The former { }, 0j Xγ γ =  excludes X being a space 

index 1, 2 or 3 leaving only 0Xγ γ=  or 5Xγ γ= .  The latter { }, 0j Yγ =  makes clear that whatever 

Dirac operator is part of Y must likewise be either 0γ  or 5γ .  From the bottom line, however, we 

must also have the anticommutators { }0 , 0Xγ γ =  and { }1
02 ,Yγ φ= .  The former means that the 

only remaining choice is 5Xγ γ= , while given 0 0 1γ γ =  and { }0 5, 0γ γ =  the latter means that 

0Y φγ= .  Therefore, we conclude that 5 5 0γ γφΓ = + .  Thus, including this in (2.14) now gives: 

 

( )0 0 5 0k jk jk kA Aγ γγ γ γ γ γφ φγφΜΓ = + + + . (3.8) 

 
With this final operator 5 5 0γ γφΓ ≡ + , we can use all of (3.8) above in (3.1) to precisely reproduce 

2
5j jG Ak γφ=  and 2

5k kG Ak γφ=  in (3.3), as well as 2 2G k A Aµν µν γ µ γνη φ= +  given 0 0Aγ = .  This 

leaves the remaining components 05 50G G=  and 55G to which we now turn. 

 
 If we use 0 0 jjkAγφγ γΓ = +  and 5 5 0γ γφΓ = +  in (3.1) to ensure that these remaining 

components are also fully covariant over all five dimensions, then we determine that: 
 

{ } ( )( ) ( ) ( ){ }
{ } { } { }

1 1
05 50 0 5 5 0 0 5 0 5 0 02 2

1 1 1
0 0 0 5 5 02 2

2

2, , ,

j j

j j

j j

j j

G G k k

k k

A A

A A

γ γ

γ γ

φ φ φ φ

φ φ

γ γ γ γ γ γ γ γ

γ γ γ γ γ γ φ φγ γ

= = Γ Γ + Γ Γ = + + + + +

= + + + =
, (3.9) 

 

( ) ( ) { }2 2
55 5 5 5 0 5 0 5 5 0 0 5 0 0 5 1G γ γ γ γ γ γ φ γ γ φ γ γ γ γφ φφ= Γ Γ = + + = + + + = + . (3.10) 

 
These two components are now different from those in (3.3).  However, in view of this Dirac 
operator deconstruction these are required to be different to ensure that the metric tensor is 
completely generally-covariant across all five dimensions, just as we were required at (2.15) to set 

j jA Aγ=  at (2.12) to ensure even basic covariance in four spacetime dimensions.   

 
Consequently, changing (3.3) to incorporate (3.9) and (3.10), we now have: 
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00 0 05

2 2
0 5

2 2
50 5 55

2

1 0

0

1

k

j jk j jk j k j

k k

G

k k

G G

G G G G A A

k

A

G G G A
γ γ γ

γ

φ
η φ φ

φ φ φ
ΜΝ

 
 = 

 
 = + 
 +






 

. (3.11) 

 
This metric tensor is fully covariant across all five dimensions, and because it is rooted in the Dirac 
operators (3.8), we expect that this can be made fully compatible with Dirac’s theory of the 
multitude of fermions observed in the natural world, as we shall examine further in section 5.  
Moreover, in the context of Kaluza-Klein theory, Dirac’s Quantum Theory of the Electron [13] 
has also forced us to set j jA Aγ=  in the metric tensor, and thereby also served up a quantum theory 

of the photon.  Because of its origins in requiring Kaluza-Klein theory to be compatible with Dirac 
theory, we shall refer to the above as the “Dirac-Kaluza-Klein” (DKK) metric tensor, and shall 
give the same name to the overall theory based on this. 
 

Importantly, when electrodynamics is turned off by setting 0jAγ =  and 0φ =  the signature 

of (3.11) becomes ( ) ( )diag 1, 1, 1, 1, 1GΜΝ = + − − − +  with a determinant 1GΜΝ = − , versus 

0GΜΝ =  in (1.1) as reviewed earlier.  This means that the inverse obtained via G G δΜΑ
ΑΝ

Μ
Ν=  

will be non-singular as opposed to that in (1.1), and that there is no reliance whatsoever on having 
0φ ≠  in order to avoid singularity.  This in turn frees 55G  from the energy requirements of φ  

which cause the fifth dimension in (1.1) to have a spacelike signature.  And in fact, we see that as 
a result of this signature, the fifth dimension in (3.11) is a second timelike, not fourth spacelike, 

dimension.  In turn, because (3.10) shows that 2
55

2
5 51G φ γ γ φ= + = +  obtains its signature from 

5 5 1γ γ = , it now becomes possible to fully associate the Kaluza-Klein fifth dimension with the 5γ  

of Dirac theory.  This is not possible when a theory based on (1.1) causes 55G  to be spacelike even 

though 5 5 1γ γ =  is timelike, because of this conflict between timelike and spacelike signatures.  

Moreover, having only 2
55G φ=  causes 55G  to shrink or expand or even zero out entirely, based 

on the magnitude of φ .  In (3.11), there is no such problem.  We shall review the physics 

consequences of all these matters more deeply in section 9 following other development.  At the 
moment, we wish to consolidate (3.11) into the 2x2 matrix format akin to (1.1), which consolidates 
all spacetime components into a single expression with manifest four-dimensional covariance. 
 

In general, as already hinted, it will sometimes simplify calculation to set 0 0Aγ =  simply 

because this puts some zeros in the equations we are working with; while at other times it will be 
better to explicitly include 0Aγ  knowing this is zero in order to take advantage of the consolidations 

enabled by general covariance.   To consolidate (3.11) to 2x2 format, we do the latter, by restoring 
the zeroed 0 0Aγ =  to the spacetime components of (3.11) and consolidating them to 

2 2G k A Aµν µν γ µ γνη φ= + .  This is exactly what is in the Kaluza-Klein metric tensor (1.1) when 

gµν µνη= , but for the fact that the gauge symmetry has been broken to force A Aµ γ µ= .  But we 

also know that 505 0G G=  and 5 5j jG G=  have been constructed at (3.9) and (3.4) to form a four-
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vector in spacetime.  Therefore, referring to these components in (3.11), we now define a new 
covariant (lower-indexed) four-vector: 
 

( )2
jAkµ γφ φΦ ≡ . (3.12) 

 

Moreover, 2
55 5 5 0 0G γ γ φ γ γ= +  in (3.10) teaches that the underlying timelike signature (and the 

metric non-singularity) is rooted in 5 5 1γ γ = , and via 2 2
0 0φ γ γ φ=  that the square of the scalar field 

is rooted in 0 0 1γ γ =  which has two time indexes.  So, we may now formally assign 55 1η =  to the 

fifth component of the Minkowski metric signature, and we may assign 2
0 0φ = Φ Φ  to the fields in 

Gµν  and 55G .  With all of this, and using minimal coupling to generalize gηΜΝ ΜΝ֏  which also 

means accounting for non-zero 5gµ , 5g ν , (3.11) may now be compacted via (3.12) to the 2x2 form: 

 
2

5 0 0 5

5 55 5 0 055

G G g A A g
G

G G g g

kµν µ µν γ µ γν µ

ν ν

µ

ν
ΜΝ

 + Φ 
= =    + Φ Φ Φ  

Φ Φ
+ 

+
. (3.13) 

 
This is the Dirac-Kaluza-Klein metric tensor which will form the basis for all continued 

development from here, and it should be closely contrasted with (1.1).  The next step is to calculate 

the inverse GΜΝ  of (3.13) above.  
 

4.  Calculation of the Inverse Dirac-Kaluza-Klein Metric Tensor 
 

As already mentioned, the modified Kaluza-Klein metric tensor (3.13) has a non-singular 

inverse GΜΝ  specified in the usual way by G G δΜΑ
ΑΝ

Μ
Ν= .  We already know this because when 

all electromagnetic fields are turned off and g ηΜΝ ΜΝ= , we have a determinant 1GΜΝ = −  which 

is one of the litmus tests that can be used to demonstrate non-singularity.  But because this inverse 
is essential to being able to calculate connections, equations of motion, and the Einstein field 
equation and related energy tensors, the next important step – which is entirely mathematical – is 
to explicitly calculate the inverse of (3.13).  We shall now do so. 
 

Calculating the inverse of a 5x5 matrix is a very cumbersome task if one employs a brute 
force approach.  But we can take great advantage of the fact that the tangent space Minkowski 

tensor ( ) ( )diag 1, 1, 1, 1, 1ηΜΝ = + − − − +  has two timelike and three spacelike dimensions when we 

set 0jAγ =  and 0φ =  to turn off the electrodynamic fields, by using the analytic blockwise 

inversion method detailed, e.g., in [14].  Specifically, we split the 5x5 matrix into 2x2 and 3x3 
matrices along the “diagonal”, and into 2x3 and 3x2 matrices off the “diagonal.”  It is best to work 
from (3.11) which does not show the time component 0 0Aγ =  because this is equal to zero for a 

photon, and which employs gµν µνη= .  We expand this to show the entire 5x5 matrix, and we 

move the rows and columns so the ordering of the indexes is not 0,1, 2,3,5Μ = , but rather is 

0,5,1, 2,3Μ = .  With all of this, (3.11) may be rewritten as: 
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1 2 3

2 2 2
1 1 1 1 2

00 05 01 02 03

2 2 2 2

50 55 51 52 53

2 2 2 2

10 15 11 12 13 1 3

2 2 2
2 2 1 2

2 2 2 2

20 25 21 22 23

30 35 31 32 33

2

1 0 0 0

1

0 1

0 1

G G G G G

A A AG G G G G

A A A A A A AG G G G G G

A A A A A AG G G G G

G G G G G

k k k

k k k k

k k k k

γ γ γ

γ γ γ γ γ γ γ

γ γ γ γ γ γ

φ φ φ φ
φ φ φ φ
φ φ φ φ

φ
φ

ΜΝ

 
  + 
  − +
  − + 


=



=




2 3

2 2 2
3 3 1 3 2

2 2 2 2
3 30 1

A

A A A A A A Ak k k k
γ

γ γ γ γ γ γ γφ φ φ φ

 
 
 
 
 
 
 − + 

. (4.1) 

 
Then, we find the inverse using the blockwise inversion relation: 
 

( ) ( )
( ) ( )

1 11 1 1 1 1 11

1 11 1 1

− −− − − − − −−

− −− − −

 + − − −   =      − − − 

A A B D CA B CA A B D CA BA B

C D D CA B CA D CA B

 (4.2) 

 
with the matrix block assignments: 
 

1 2 3

2 2 2
1 1 1 1 2 1 3

2 2 2
2 2 1 2 2 2 3

2 2 2
3 3 1 3

2 2 22

2 2

2

2 2

2 2 2 2

2 2
3

2
3

2

0 0 01
; ;

1

0 1

0 ; 1

0 1

A A A

A A A A A A A

A A A A A A A

A A A A A

k k k

k k k k

k k

A

k k

k k k Ak

γ γ γ

γ γ γ γ γ γ γ

γ γ γ γ γ γ γ

γ γ γ γ γ γ γ

φ φ φφ

φ φ φ φ
φ φ φ φ
φ φ φ φ

φ
φ

  
= =   +   

   − +
   = = − +   
   − +   

A B

C D

. (4.3) 

 

 The two inverses we must calculate are 1−A  and ( ) 11 −−−D CA B .  The former is a 2x2 

matrix easily inverted, see, e.g. [15].  Its determinant 2 21 1φ φ−= + =A , so its inverse is: 

 
2

1 1

1

φ
φ
φ−  +

=  


−
− 

A . (4.4) 

 

Next, we need to calculate 1−−D CA B , then invert this.  We first calculate: 
 

2

2
1 2

2 2 2

2

2 4 4 4

3 3 3

2 4

2 2

1

2
1 2 3

3

2 2 2
1 1 1 1 2 1 3

1 2 3 2
2 2

1 2
2

2 3

3

0
0 0 01

0
1

0

0

0

0

k

k
k k k

k

k k k k
k k k

k k
k k k

k

A

A
A A A

A

A A A A A A A
A A A

A A
A A A

A

γ

γ
γ γ γ

γ

γ γ γ γ γ γ γ
γ γ γ

γ γ
γ γ γ

γ

φ
φφ

φ φ φ
φ

φ φ φ φ
φ

φ
φ

φ φ
φ φ

φ φ φ
φ

−

 
  + − = −    

   
 

 
 − − − = − = −   
  

 

−
−

CA B

2 2
1 2 2 2 3

2 2 2
3 1 3

4

4
3

4
3

4

4
2

A A A A A

A A A A A

k

A

k

k k k
γ γ γ γ γ

γ γ γ γ γ γ

φ φ
φ φ φ

 
 
 
 
 

. (4.5) 

  
Therefore: 
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( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( )

2 2 2
1 1 1 2 1

2 4 2 4 2 4

1 2 4 2 4 2 4

2 4 2

3

2 2 2
2 1 2 2 2 3

2 2 2
3 1 3 2 3 3

2

4 2 4

2 4

1

1

1

jk j k

A A A A A A

A A A A

k k k

k k k

k

A A

A A A A A Ak k

k A A

γ γ γ γ γ γ

γ γ γ γ γ γ

γ γ γ γ γ γ

γ γ

φ φ φ φ φ φ

φ φ φ φ φ φ

φ φ φ φ φ φ

η φ φ

−

 − +
 
 − = − +
 
 − + 

− − −

− − −

−

= +

− −

−

D CA B
. (4.6) 

 

 We can easily invert this using the skeletal mathematical relation ( )( ) 21 1 1x x x+ − = − .  

Specifically, using the result in (4.6) we may write: 
 

( )( ) ( )( )
( ) ( ) ( )

2 4 2 4

22 4

2 2

2 42 4

jk kl

jk kl k

j k k l

j kl jk k l j k k l jl

A A A A

A A A A A A A A

k k

k k

γ γ γ γ

γ γ γ γ γ γ γ γ

η φ φ η φ φ

η η φ φ η η φ δφ

+ −

+ −

− −

= − − − =
. (4.7) 

 
The j k k lA A A Aγ γ γ γ  term zeros out because 0k kA Aγ γ =  for the photon field.   Sampling the diagonal 

1j l= =  term,  1 1 1 1 11 1 1 0k kk kA A A A A A A Aγ γ γ γ γ γ γ γη η− = + =− .  Sampling the off-diagonal 1j = , 

2l =  term, 2 1 2 2 11 2 1 0k kk kA A A A A A A Aγ γ γ γ γ γ γ γη η− = + =− .  By rotational symmetry, all other terms 

zero as well.  And of course, jk kl jlη η δ= .  So (4.7) taken with (4.6) informs us that: 

 

( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

1 2

2 2 2
1 1 1 2 1 3

2 2

1 2 4

2

2
2

4

1 2 2 2 3

2 2 2
3

2 4 2 4

2 4 2 4 2 4

2 4 2
1 3 2 3 3

4 2 4

1

1

1

jk j kA A

A A A A A A

A A A A A

k

k

A

A A A A A

k k

k k k

k k k A

γ γ

γ γ γ γ γ γ

γ γ γ γ γ γ

γ γ γ γ γ γ

η φ φ

φ φ φ φ φ φ

φ φ φ φ φ φ

φ φ φ φ φ φ

− −
− = −

 − − − −
 
 = − −

−

− − −

− −
 
 − − − −

− − −

− − − 

D CA B

. (4.8) 

 
We now have all the inverses we need; the balance of the calculation is matrix multiplication. 
 
 From the lower-left block in (4.2) we use C in (4.3), with (4.4) and (4.8), to calculate: 
 

( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

2 2 2
1 1 1 2 1

11 1

2 4 2 4
3

1

2 2 2
2 1 2 2 2 3

2 4
2

2
2 4 2 4 2 4 2

2
2 4 2 4 2 4

3

2

2 2 2 3
3 1 3 2 3 3

1 0
1

1 0
1

01

A A A A A A A

A A A A A A A

AA A A A

k k k k

k k k k

kk k A Ak

γ γ γ γ γ γ
γ

γ γ γ γ γ γ γ

γ
γ γ γ γ γ γ

φ φ φ φ φ φ φ
φφ φ φ φ φ φ φ

φφ φ φ φ φ φ

φ

φ
φ

−− −

− − −
−

=

− −

 +     +  +        

− − −
−

+ 

−

=

− − −

D CA B CA

( ) ( )
( ) ( )
( ) ( )

2 4 3 2 2 43 3
1 1 1 1

1 1

3 3
2 2 2 2 2 2

3 3 3
3 3

2
3 2

3 2 4 3 2 2 4 2 3

3 3

2

3 2
3 2 4 3 2 2 4 2

k k k k

k k k k

k k k k

A A A A A A A A A A

A A A A A

k

A A A A A

A AA A A A A A A A

k k k k k

k k k k k k

k kk k k k

γ γ γ γ γ γ γ γ
γ γ

γ γ γ γ γ γ γ γ γ γ

γ
γ γ γ γ γ γ γ γ

φ φ φ φ φ φ φ φ φ
φ φ φ φ φ φ φ φ φ φ

φ φφ φ φ φ φ φ φ φ

 − + − 
 − − + = −
 

− −

− −

− − − − − + 
3γ

 
 
 
 
 

, (4.9) 
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again using 0k kA Aγ γ = .  We can likewise calculate ( ) 11 1 −− −− −A B D CA B  in the upper-right block 

in (4.2), but it is easier and entirely equivalent to simply use the transposition symmetry 
G GΜΝ ΝΜ=  of the metric tensor and the result in (4.9) to deduce: 

 

( )
3 3 3

11 1 1 2 3

2 2
2

2
1 3

k k k

k k

A A A

A A Ak
γ γ γ

γ γ γ

φ φ φ
φ φ φ

−− − − − −
− −

 
=   
 

A B D CA B , (4.10) 

 
 For the upper left block in (4.2) we use B in (4.3), with (4.4) and (4.9) to calculate: 
 

( )
1 1

2 2
1

11 1 1 1

3 2

2 2
3 2

2
2 3

3 3

2

2 2

3 2

2 2 2

5 4 2

0 0 01 1

1 1

0 01 1 1

1 1 1k k k k

A A

A A
A

k k

k k
k k k

k k

k k

A A
A A

A A A A

γ γ

γ γ
γ γ γ

γ γ

γ γ γ γ

φ φ
φ φ φ φφ φ
φ φ

φ φ φ
φ φ φ

φ φ φ
φ φ

φ φ φ
φ φ

−− − − −+ −

 −
    + +  + −      

     − 

    + +

− −
=

− −

− − −+
+ =     −   − −

=
−

A A B D CA B CA

 
 
 

, (4.11) 

 
again using 0k kA Aγ γ = .  And (4.8) already contains the complete lower-right block in (4.2). 

 
 So, we now reassemble (4.8) through (4.11) into (4.2) to obtain the complete inverse: 
 

( ) ( ) ( )
( ) ( ) ( )
( )

1 2 3

1 2 3

2 2 2
1 1 1 1 1

2 3 3 3

2 2 2

1
3 2 2 4 2 4 2 4

3 2 2 4 2 4 2 4

3 2 2 4

2 1 3

2 2 2
2 2 2 1 2 2 2 3

2
3 3 3

1

1

1

1

A A A

A A A

A A A A A A A A

A A A A A A A A

A A A

k k k

k k k

k k k k k

k k k k k

k k k A

γ γ γ

γ γ γ

γ γ γ γ γ γ γ γ

γ γ γ γ γ γ γ γ

γ γ γ

φ φ φ φ
φ φ φ

φ φ φ φ φ φ φ φ

φ φ φ φ φ φ φ φ

φ φ φ φ

φ
φ

−

−
−

− − −

− − −

+ − − −

  − − − − −= 
  − − − − −

− − −

A B

C D

( ) ( )2 22 4 2
1

4
3 2 3 31A A Ak k Aγ γ γ γ γφ φ φ φ

 
 
 
 
 
 
 
 − − − − −

 (4.12) 

 
Then we reorder rows and columns back to the 0,1, 2,3,5Μ =  sequence and connect this to the 

contravariant (inverse) metric tensor GΜΝ
 to write: 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

2 3 3 3

3 2 4 2 4 2 4 2

3 2 4

1 2 3

2 2 2
1 1 1 1 2 1 3 1

2 2 2
2 2 1 2 2 2 3 2

2 2 2
3

2 4 2 4 2

3 2 4 2 4 2 4
3 1 3 2 3 3

2

1

1

1

1

A A A

A A A A A A A A

A A A A A A A AG

A A A

k k k

k k k k k

k k

A A

k k k

Ak k kAk Ak

γ γ γ

γ γ γ γ γ γ γ γ

γ γ γ γ γ γ γ γ

γ γ γ γ γ γ γ

φ φ φ φ
φ φ φ φ φ φ φ φ

φ φ φ

φ

φ φ φ φ φ

φ φ φ φ φ φ φ φ

ΜΝ

+ −

− − − − − − −

− − − − − − −

− − − − − − −

− − −

−

−=

− 3

1 2 3
2 2 2 1A A kAk k

γ

γ γ γφ φ φφ

 

−

 
 
 
 
 
 
  
 

. (4.13) 
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In a vitally-important contrast to the usual Kaluza-Klein GΜΝ  in (1.1), this is manifestly not 

singular.  This reverts to ( ) ( ) ( )diag diag 1, 1, 1, 1, 1G ηΜΝ ΜΝ= = + − − − +  when 0Aγ µ =  and 0φ =  

which is exactly the same signature as GΜΝ  in (3.11).  Then we consolidate to the 3x3 form: 

 

( )
2 300 0 05

0 5 3 2 4 2

50 5 55

2

2

1

1

k

j j k j

k

k

j jk j jk

k

AG G G

G G G G A A A A

G G G A

k

k k k

k

γ

γ γ γ γ

γ

φ

φ

φ φ
φ η φ φ φ

φ

ΜΝ

− 
  = − − 
  −

 + −
 

= −





 

. (4.14) 

 
 Now, the photon gauge vectors jAγ  in (4.14) still have lower indexes, and with good 

reason:  We cannot simply raise these indexes of components inside the metric tensor at will as 
we might for any other tensor.  Rather, we must use the metric tensor (4.14) itself to raise and 

lower indexes, by calculating A G Aγ γ
Μ ΜΝ

Ν= .  Nonetheless, it would be desirable to rewrite the 

components of (4.14) with all upper indexes, which will simplify downstream calculations.  Given 

that 0 0Aγ =  for the photon and taking 5 0Aγ = , and raising indexes for 0Aγ  and 5Aγ  while 

sampling 1Aγ  and once again employing 0kkA Aγ γ = , we may calculate: 

 

( )
0 0 01 02 03 3

1 2 3

1 1 11 12 13 2 4
1 2 3 1 1

5 5 51 52 53 2
1 2

2
1

3

0

0k

k

k

k

k

k

A G A G A G A G A A A

A G A G A G A G A A A A A A

A G A G A G A G A A A

k

k

k

γ γ γ γ γ γ γ

γ γ γ γ γ γ γ γ γ γ

γ γ γ γ γ γ γ

φ

φ φ

φ

Ν
Ν

Ν
Ν

Ν
Ν

= = + + = − =

= = − −+ ++ = =

= = + + = − =

− , (4.15) 

 
The middle result applies by rotational symmetry to other space indexes, so that:  
 

A G A A A g Aµ µν µν µ µν
γ γν γν γ γνη= = =֏ , (4.16) 

 

which is the usual way of raising indexes in flat spacetime, generalized to g µν  with minimal 

coupling.  As a result, with g µν µνη=  we may raise the index in (3.12) to obtain:  

 

( ) ( )2 2j
jAk kAµ

γ γφ φφ φΦ = = − . (4.17) 

 
We then use (4.17) to write (4.14) as: 
 

( )
2 3 000 0 05

0 5 3 2 4

50 5 5

2

5 0

1

1

k

j j

k

j jk j jk j

k

k

k

AG G G

G G G G A A A

G

k

k k

G G

γ

γ γ γ

φ φ
φ η φ φΜΝ

− 
  = − − 
  −

 + − Φ
 

= − −Φ 
  Φ −Φ 

. (4.18) 

 

 Now we focus on the middle term, expanded to 2 42 2
j

j
k

k
k jA A Ak Ak γ γ γ γη φ φ+− .  Working 

from (4.17) we now calculate: 
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0 0 2 0 3 0 4 23; ; ;k j j k

k j j kA A A Ak k kγ γ γ γφ φ φ φΦ Φ = Φ Φ = − Φ Φ = − Φ Φ = . (4.19) 

 

So, we use (4.19) in (4.18), and raise the indexes using k
j

j
kA A A Aγ γ γ γ=  from (20.16), to write: 

 
00 0 05 0 0 0 0

0 5 0 2

50 5 55 0

2

1

1

k k

j jk j j jk j k j k j

k k

G G G

G G G G A

G G

k A

G
γ γη φΜΝ

 + Φ Φ Φ Φ Φ  −
  = + 
  −

 = Φ Φ − Φ Φ −Φ




 Φ −Φ 

. (4.20) 

 

Then, again taking advantage of the fact that 0 0Aγ = , while using 00
001 η η= =  and 55

551 η η= =  

we may consolidate this into the 2x2 format: 
    

0 0 2

5

5

5 55 5

G G A A
G

G G

kµν µ µν µ µ ν µ
γ γ

ν ν

νη
η

ΜΝ    − Φ Φ Φ Φ −Φ
= =   −Φ   

+
. (4.21) 

 
This is the inverse of (3.13) with gµν µνη= , and it is a good exercise to check and confirm that in 

fact, G G δΜΑ Μ
ΑΝ Ν=  . 

 

 The final step is to apply minimal coupling to generalize gη ΜΝ ΜΝ
֏ , with possible non-

zero 5gµ , 5g ν , 5g µ  and 5g ν .  With this last step, (4.21) now becomes: 

 
0 0 2 5

5

5

5 55 55

k g

g g

G G g A A
G

G G

µν µ µν µ µ ν µ
γ

ν
γ

ν ν ν

µ
ΜΝ    − Φ Φ Φ Φ − Φ

= =   − Φ   

+
. (4.22) 

 
The above along with (3.13) are the direct counterparts to the Kaluza-Klein metric tensors (1.1).  
This inverse, in contrast to that of (1.1), is manifestly non-singular. 
 

Finally, we commented after (2.6) that it would have been possible to choose minus rather 
than plus signs in the tetrad / field assignments.  We make a note that had we done so, this would 

have carried through to a sign flip in all the 0
kε  and 0

kε  tetrad components in (2.12), it would have 

changed (2.14) to ( )0 0j jj jkA Akγ γµ γ γ γφγφΓ = − − , and it would have changed (3.8) to include 

5 5 0γ γφΓ = − .  Finally, for the metric tensors (4.22), all would be exactly the same, except that we 

would have had 5 5 5G G gµ µ µµ= = − Φ  and 5 5 5G G gµ µ µµ= = + Φ , with the vectors in (3.12) and 

(4.17) instead given by ( )2
jAkµ γφφΦ = −  and ( )2 jAkµ

γφφΦ = − .  We note this because in a 

related preprint by the author at [16], this latter sign choice was required at [14.5] in a similar 
circumstance to ensure limiting-case solutions identical to those of Dirac’s equation, as reviewed 
following [19.13] therein.  Whether a similar choice may be required here cannot be known for 
certain without calculating detailed correspondences with Dirac theory based on the ΜΓ  in (3.8).  
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In the next section, we will lay out the Dirac theory based on the Kaluza-Klein metric tensors 
having now been made generally-covariant in five dimensions.   
 

5.  The Dirac Equation with Five-Dimensional General Covariance 
 
 Now that we have obtained a Dirac-Kaluza-Klein metric tensor GΜΝ  in (3.13) and its non-

singular inverse GΜΝ
 in (4.22) which are fully covariant across all five dimensions and which are 

connected to a set of Dirac operators ΜΓ  deduced in (3.8) through the anticommutators (3.1), there 

are several additional calculations we shall perform which lay the foundation for deeper 
development.  The first calculation, which vastly simplifies downstream calculation and provides 
the basis for a Dirac-type quantum theory of the electron and the photon based on Kaluza-Klein, 

is to obtain the contravariant (upper indexed) operators GΜ ΜΝ
ΝΓ = Γ  in two component form 

which consolidates the four spacetime operators µΓ  into a single four-covariant expression, then 
to do the same for the original ΜΓ  in (3.8). 

 

 As just noted, we may raise the indexes in the ΜΓ  of (3.8) by calculating GΜ ΜΝ
ΝΓ = Γ .  It 

is easiest to work from (3.8) together with the 3x3 form (4.20), then afterward consolidate to 2x2 

form.  So, we first calculate each of 0Γ , jΓ  and 5Γ  as such: 
 

( )( ) ( ) ( )

0 0 00 0 05
0 5

0
0 0 0 0

0 0

0 5 0

0 0 500

1

k
k

j
k

k

k k

k

jA A

A A

G G G G

k k

k k

γ γ

γ γ

γ γ γ γ γ γ

γ γ γ

φ φ φ

γ

Ν
Ν

+ Φ Φ Φ Φ

Γ = Γ = Γ + Γ + Γ

= + + + − Φ

+ Φ + Φ −

+

= Φ

, (5.1a) 

 

( ) ( ) ( ) ( )0

0 5
0 5

2
0 0 0

2
5

0 50

j jk j k j k j
k k

j k j

j j j jk j
k

k k

j jk

A A A

G G G G

k k k

k

A

kA A

γ γ γ γ

γ γ

γ γ γ γ γφ γ

γ

η

γ γ

φ φ

γ

φ

Ν
ΝΓ = Γ = Γ

Φ Φ − Φ Φ − Φ

+ Φ + Φ

+ Γ + Γ

= + + + + +

− Φ=

, (5.1b) 

 

( ) ( ) ( )

5 5 50 5 55
0 5

5
0

0
0 5 0

k
j

k
k

j k k

G

kA

G G G

kAγ γγ γ γ γ γ γφ φ γφ

Ν
Ν

Φ −

Γ = Γ = Γ + Γ + Γ

= − + + + + =Φ
. (5.1c) 

 

To reduce the above, we have employed ( )2 jAkµ
γφ φΦ =  from (4.17) which implies that 

0k
kAγΦ =  via 0k kA A =  from (2.10).  We have also used j k

jk
jA A Aγ γ γη= = −  from (20.16), and 

the basic Dirac identities 0
0γ γ= , kk

k k
jγ γη γ= −=  and 5

5γ γ= .  We also include a term 
00 0 0kAγ γΦ =  in (5.1a) to highlight the four-dimensional spacetime covariance with (5.1b), 

notwithstanding that this term is a zero because the gauge symmetry has been broken to that of a 
photon.  Making use of this, we consolidate all of (5.1) above into the two-part: 
 

( )0 0 5 5k k kkA Aµ µ µ
γ

µ
γγ γ γ γ γΜ + Φ + Φ − ΦΓ = . (5.2) 
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 As a final step to consolidate the Dirac matrices, we use the 2x2 consolidation of the metric 
tensor GΜΝ  in (3.13), with gµν µνη= , to lower the indexes in (5.2) and obtain a two-part 

G Ν
Μ ΜΝΓ = Γ .   Doing so we calculate: 

 

( )( )2 0

0 0

5
5

2 0 5 5

00
2

k

k

k

k kk

A A

G G G

kA A

kA

k k

Ak A kA

ν
µ µ µν µ

ν ν ν
µν γ µ γν γ γ

γ

ν
µ

µ µ γ µ γ µγ

γ γ γ γ γ

γ γ γ γ

η φ

Ν
ΝΓ = Γ = Γ + Γ

= + Φ

= −

+ + Φ + Φ − Φ

+ Φ Φ Φ + Φ

, (5.3a) 

 

( ) ( )

5
5 5 5 55

0 5 5
0 0

5 0 0

0 1kkkA A

G G G

k

ν
ν

ν ν ν ν
γ γν γ γ γ γ γ

γ γ

Ν
Ν

+ Φ + Φ − Φ +

Γ = Γ = Γ + Γ

= Φ + Φ Φ

= + Φ

. (5.3b) 

 

Above, we use the same reductions employed in (5.1), as well as 0A Aγν γ
ν = , 0Aγν

νΦ =  and 
2ν

ν φΦ Φ = .  We then consolidate this into the two-part: 

 

( )( )0 0 5 0 00 0kkA A Ak k kγ µ γµ µ µγγ γ γ γ γΜ + Φ Φ Φ + ΦΓ = − + Φ . (5.4) 

 

Making use of ( )2
jAkµ γφ φΦ ≡  in (3.12), again mindful that 0Aγ µ = , and noting that 

0 00 Ak γ µµ φ− =Φ Φ Φ =Φ  for the 0µ =  time component and 2
0 0 0k kA Ak kγ µ γµ φ− = −Φ Φ Φ =Φ  

for the kµ =  space components, it is a good exercise to confirm that (5.4) does reduce precisely 

to ( )0 0 5 0k jk jk kA Aγ γγ γ γ γ γφ φγφΜΓ = + + +  obtained in (3.8).   Using (5.2) and (5.4) and 

reducing with ( )2 jAkµ
γφ φΦ = , 0 0

k kγ γ γ γ= − , 0kk
j jA Aγ γγ γ = , 0Aµ γ

µΦ =  and 0A Aγ µ γ
µ = , it is 

also a good exercise to confirm that:  
 

5γ γΜ Μ
Μ ΜΓ Γ = = . (5.5) 

 
And, it is a good exercise to confirm that (5.4) and (5.2) used in (1.3), see also (3.1), respectively 
reproduce the covariant and contravariant metric tensors (3.13) and (4.22). 
 
 Finally, having the upper-indexed (5.2) enables us to extend the Dirac equation governing 
fermion behavior into all five of the Kaluza-Klein dimensions, in the form of: 
 

( )2 0i c mcΜ
ΜΓ ∂ − Ψ =ℏ . (5.6) 

 

If we then define a five-dimensional energy-momentum vector ( )5cp cp cpµΜ =  containing the 

usual four-dimensional ( )cp E cµ = p , and given that (3.13) and (4.22) provide the means to 
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lower and raise indexes at will, we may further define the wavefunction 

( ) ( )0 exp /U p ip xΣ Σ
ΣΨ ≡ − ℏ  to include a Fourier kernel ( )exp /ip xΣ

Σ− ℏ  over all five dimensions 

( )0 5x ct ctΣ = x .  These coordinates now include a timelike 
5 5x ct=  which is heretofore 

distinguished from the ordinary time dimension 
0 0x ct=  because as earlier reviewed, (3.13) has 

the tangent-space signature ( ) ( )diag 1, 1, 1, 1, 1GΜΝ = + − − − + .  And ( )0U pΣ  is a Dirac spinor which 

is now a function of all five components of pΣ  but independent of the coordinates xΣ
.  In other 

words,  ( )0 0U pΜ
Σ∂ = , which is why we include the 0 subscript.  With all of this, we can convert 

(5.6) from configuration space to momentum space in the usual way, to obtain: 
 

( ) ( )2
0 0mccp U pΜ Σ

ΜΓ − = . (5.7) 

 
 It is important to note that it is not possible to obtain the Dirac-type equations (5.6) and 
(5.7) from the usual Kaluza-Klein metric tensor and inverse (1.1), precisely because this metric 
tensor is not generally-covariant across all five dimensions.  And in fact, as we first deduced at 
(2.10), the Kaluza-Klein (1.1) are not even truly-covariant in the four spacetime dimensions alone 
unless we set the gauge field A Aµ γ µ֏  to that of a photon with only two transverse degrees of 

freedom.  Of course, we do not at this juncture know precisely how to understand the fifth 

component 5cp  of the energy momentum or the second time dimension 
5 5x ct= .  But it is the 

detailed development and study of the Dirac-Kaluza-Klein (DKK) equations (5.6) and (5.7) which 

may provide one set of avenues for understanding precisely how the energy 5cp  and the time 
5t  

are manifest in the natural world. 
 

6.  The Dirac-Kaluza-Klein Metric Tensor Determinant and Inverse 

Determinant 
 

It is also helpful to calculate the metric tensor determinants.  These are needed in a variety 
of settings, for example, to calculate the five-dimensional Einstein-Hilbert action, see e.g. [17], 

which expressly contains the determinant as part of the volume element 4dg x−  in four 

dimensions and which we anticipate will appear as 5dG x−  in five dimensions.  As we shall later 

elaborate in section 10, the Einstein-Hilbert action provides what is perhaps the most direct path 
for understanding the fifth dimension as a “matter” dimension along the lines long-advocated by 
the 5D Space-Time-Matter Consortium [18].  Moreover, the Einstein-Hilbert action, from which 
the Einstein equation is also derived as reviewed in [17], is also essential for calculating quantum 
mechanical path integrals which would effectively provide a quantum field theory of gravitation 
in five-dimensions.  For all these reasons, it is helpful to have obtained this determinant. 
 

To calculate the determinant, we employ the block calculation method reviewed, e.g., at 

[19].  Specifically, for an invertible matrix which we have shown GΜΝ  to be via GΜΝ
 in (4.22), 

the determinant is calculated with: 
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1G −
ΜΝ = −=

A B
A D CA B

C D
, (6.1) 

 
using the exact same blocks specified in (4.3) to calculate (4.2).  Keep in mind that the blocks in 
(4.3) are based on having used what we now understand to be the tangent Minkowski-space 

g ηΜΝ ΜΝ= .  As we found following (4.3), 2 21 1φ φ−= + =A , so (6.1) simplifies to 

1G −
ΜΝ = −D CA B .  Moreover, we already found 

1−−D CA B  in (4.6).  So, all that we need do is 

calculate the determinant of this 3x3 matrix, and we will have obtained GΜΝ . 

From (4.6) which we denote as the matrix 1
ijm −−≡ D CA B , we write out the full 

determinant, substitute (4.6), then reduce to obtain: 
 

( ) ( )
11 22 33 12 23 31 13 21 32 13 22 31 12 21 33 11 23 32

2 2
1 1 2 2 3 3

41 1

ijm m m m m m m m m m m m m m m m m m m

A A A Ak A Aγ γ γ γ γ γφ φ

= + + − − −

= − + ++− = −
. (6.2) 

 
Most of the terms cancel identically because of the equal number of + and – signs in the 

top line of (6.2).  The only remaining term besides –1 itself, contains 0j jA Aγ γ = , which is zero 

because of (2.10) which removed two degrees of freedom from the gauge field and turned it into 

A Aµ γ µ=  for a massless, luminous photon.  So, we conclude, neatly, that 1 1−− = −D CA B , and 

because 1=A , that 1G ηΜΝ ΜΝ= − = .  Moreover, because 
11M M

−− =  for any square matrix, 

we likewise conclude that 1G ηΜΝ ΜΝ= − = .  Then, because the blocks in (4.3) are based on 

having used g ηΜΝ ΜΝ= , we may employ minimal coupling to generalize from gηΜΝ ΜΝ֏ , so 

that the complete five-dimensional determinant and its inverse are: 
 

1 1;G G g g G G g g− ΜΝ ΜΝ −
ΜΝ ΜΝ= =≡ ≡ ≡ ≡ . (6.3) 

 
In the above, the massless, luminous A Aµ γ µ=  and the scalar field φ  wash entirely out of the 

determinant, leaving the determinants entirely dependent upon gΜΝ  which accounts for all 

curvatures other than those produced by Aγ µ  and φ .  

 
 For the determinant of the four-dimensional spacetime components Gµν  alone, we employ 

the exact same calculation used in (6.1), but now we split Gµν  into a 1x1 time “block” with 

1= =A A , a 3x3 space block with the same 2 2k A Aµν γ γµ νη φ= +D , and the 1x3 and 3x1 blocks 

0=B  and 0=C .   So (6.1) becomes Gµν = =A D D .  We next note that 
1−−D CA B  in (4.6) 

differs from D  in (4.3) merely by the term 4 2 Ak Aγνγ µφ− , which tells us that the calculation of D  

will produce the exact same result as (6.2) leading to 1Gµν µνη= − = , with the inverse following 
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suit.   Consequently, after generalizing gµν µνη ֏  via minimal coupling, we find that for the four 

dimensions of spacetime alone: 
 

;G g G gµν µν
µν µν= = . (6.4) 

 
Here too, the massless, luminous A Aµ γ µ=  with two degrees of freedom and the scalar φ  are 

washed out entirely.  Note, comparing (6.3) and (6.4), that we have reserved the notational 

definitions G GΜΝ≡  and g gΜΝ=  for the five-dimensional determinants. In four dimensions, we 

simply use the spacetime indexes to designate that (6.4) represents the four-dimensional spacetime 
subset of the five-dimensional metric tensor determinant and inverse. 
 

7.  The Dirac-Kaluza-Klein Lorentz Force Motion 
 
 Kaluza-Klein theory which will celebrate its centennial next year, has commanded 
attention for the past century for the very simple reason that despite all of its difficulties (most of 
which as will be reviewed in section 9 arise directly or indirectly from the degeneracy of the metric 
tensor (1.1) and its lack of five-dimensional covariance at the Dirac level) because it successfully 
explains Maxwell’s equations, the Lorentz Force motion and the Maxwell stress-energy tensor on 
an entirely geometrodynamic foundation.  This successful geometrodynamic representation of 
Maxwell’s electrodynamics – popularly known as the “Kaluza miracle” – arises particularly from 

the components 2
5 5 kG G Aµ µ µφ= =  of the metric tensor (1.1), because the electromagnetic field 

strength F A Aµν µ ν ν µ= ∂ −∂  is among the objects which appear in the five-dimensional Christoffel 

connections Μ
ΑΒΓɶ  (particularly in 5

µ
αΓɶ  as we shall now detail), and because these F µν  then make 

their way into the geodesic equation of motion in a form that can be readily connected to the 
Lorentz Force motion, and because they also enter the Einstein field equation in a form that can 
be likewise connected to the Maxwell stress-energy tensor.  Therefore, it is important to be assured 
that in the process of remediating the various difficulties of Kaluza-Klein’s metric tensor (1.1), the 
5-covariant metric tensor (3.13) does not sacrifice any of the Kaluza miracle in the process.  
 

 In (3.13), 2
5 5 kG G Aµ µ µφ= =  from (1.1) which are responsible for the Kaluza miracle are 

replaced by 5 5 5G G gµ µ µµ= = + Φ .  For a flat Minkowski tangent space g ηΜΝ ΜΝ=  these reduce 

to 5 5G Gµ µµ= = Φ .  At (3.4) we required 2
55 j jj AG kG γφ= =  to precisely match GΜΝ  from the 

Kaluza-Klein metric (1.1), maintaining the same spacetime covariance as 5 5G Gµ µ=  in (1.1) 

because 2
0 0kAγφ = , to keep the “miracle” intact.  So, for a five-dimensional metric defined by: 

 
2 2c d G dx dxΜ Ν

ΜΝΤ ≡  (7.1) 

 
the equation of motion obtained by minimizing the geodesic variation is: 
 

2 5 5

5 552

5

2
2

d dx dx dx dx dx dx dx dx

c d cd cd cd cd cd d cd

x

c cd

α β

αβ α

αΜ Β
Μ Μ Μ Μ
ΑΒ

Α

= −Γ −Γ − Γ − Γ
Τ Τ Τ Τ Τ Τ Τ Τ Τ

=ɶ ɶ ɶ ɶ  (7.2) 
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just as in Kaluza-Klein theory, with connections of the “first” and “second” kinds specified by: 
 

( )
( )

1
2

1
2

;G G G

G G G G G

Σ ΑΒ Β ΣΑ Α ΒΣ Σ ΑΒ

Μ ΜΣ ΜΣ
ΑΒ Β ΣΑ Α ΒΣ Σ ΑΒ Σ ΑΒ

Γ = ∂ + ∂ − ∂

Γ = ∂ + ∂ − ∂ = Γ

ɶ

ɶ ɶ
, (7.3) 

 

likewise, just as in Kaluza-Klein theory.  One may multiply (7.2) through by 
2 2/d dτΤ  to obtain: 

 
2 5 5

5 552

5

2
2

d dx dx dx dx dx dx dx dx

c d cd cd cd cd cd cd c

x

d cd

β

α

α α

β ατ τ τ τ τ τ τ τ τ

Μ Β
Μ Μ Μ

Β

Α
Μ

Α= −Γ −Γ − Γ − Γ=ɶ ɶ ɶ ɶ  (7.4) 

  
which is the equation of motion with regard to the ordinary invariant spacetime metric line element 
dτ , in which this four-dimensional proper time is defined by: 
 

2 2 2 2c d G dx d Ax g dx dx k dx dxAµ ν µ
γ µ γν

ν µ ν
µν µντ φ≡ = + . (7.5) 

 

The space acceleration with regard to proper time τ  is then given by 
2 2/jd x dτ  with 

1,2,3jΜ = =  in (7.4).  And if we then multiply this through by 0 22 /d dtτ  (mindful again that we 

now need to distinguish 
0dt  from the second time dimension 

5dt ), we obtain the space acceleration 
02 2/jd x dt  with regard to the ordinary time coordinate. 

 
The above (7.1) through (7.5) are exactly the same as their counterparts in Kaluza-Klein 

theory, and they are exactly the same as what is used in the General Theory of Relativity in four 
spacetime dimensions alone, aside from minor notational changes intended to distinguish four- 
from five-dimensional objects.  The only difference is that Kaluza-Klein theory uses the metric 
tensor (1.1) which has a spacelike fifth dimension, while the present DKK theory uses the metric 
tensor (3.13) which as a timelike fifth dimension.  But the main reasons we are reviewing the 
equation of five-dimensional motion (7.4) is to be assured that the Kaluza miracle is not 
compromised by using the different metric tensor (3.13) rather than the usual (1.1). 
 

As noted above, the connections 5α
ΜΓɶ  are the particular ones responsible for the Kaluza-

Klein representation of electrodynamics, whereby 5
µ
αΓɶ  governs accelerations in the four spacetime 

dimensions and 5
5αΓɶ  governs the fifth-dimensional acceleration.  So, let’s examine 5

µ
αΓɶ  more 

closely.  Using (3.13) and (4.22) in (7.3) along with the symmetric G GΜΝ ΝΜ=  we obtain: 

 

( )
( )

( ) ( ) ( ) ( )( )
( ) ( )

0 0 2

1
5 5 5 52

51 1
5 5 5 552 2

1
5 0 0 5 5

2

5
0

1
0

2

552

G G G G

G G G G G G

k kg A A g A A g

gg

gσ

µ µ
α α α α

µσ µ
σα α σ σ α α

µσ µ µ σ
γ γ σα γ σ γ α α σ σ α

µ
α

σ α

µ

Σ
Σ Σ ΣΓ = ∂ + ∂ − ∂

= ∂ + ∂ − ∂ + ∂

= − Φ Φ Φ Φ ∂ + Φ Φ + ∂ − ∂

+ − Φ ∂ +

+ + Φ + Φ

Φ Φ

ɶ

. (7.6) 
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For a flat tangent space G ηΜΝ ΜΝ=  with ( ) ( )diag 1, 1, 1, 1, 1ηΜΝ = + − − − +  thus 0Gα ΜΝ∂ =  this 

simplifies to: 
 

( ) ( )( ) ( )1 1
5 5 0 02 2

0 0 2 2
0 0k kA A A Aµ µσ µ µ σ µ

α γ γ γ σ γ α σ α
σ

σ ααηΓ = − Φ Φ Φ Φ ∂ Φ Φ + ∂ − ∂+ Φ Φ − ∂ ΦΦ Φɶ . (7.7) 

 
 What is of special interest in (7.7) is the antisymmetric tensor term α σσ α∂ − ∂Φ Φ , because 

this is responsible for an electromagnetic field strength F A Aγ µν µ γν ν γ µ= ∂ − ∂ .    To see this, we 

rewrite (3.12) as: 
 

( )2 2
0 jA kAkµ γ γφ φ φ=Φ + , (7.8) 

 
again taking advantage of 0 0Aγ =  to display the spacetime covariance of Aγ µ .  We then calculate 

the antisymmetric tensor in (7.7) in two separate bivector parts, as follows: 
 

( ) ( )
( ) ( )

( )

2 2
0 0 0

2
0 0 0 0

2
0 0

0

0

2

2

k k k

k k k k k

k k k

k

k

k k

k k

k k

A A

A A A A

F A A

γ γ

γ γ γ γ

γ γ γ

φ φ φ

φ φ φ φ

φ φ φ φ

Φ Φ =

=

∂ − ∂ ∂ − ∂ +

∂ − ∂ ∂ −+

= −

∂ − ∂

∂ − ∂ − ∂

, (7.9a) 

 

( ) ( )
( ) ( )

( )

2 2

2

2

2

2

j k j k j

j k j

k j k

k k j

jk k

j k

j k j

A A

A A A A

k k

k k

kF k A Aγ

γ γ

γ γ γ γ

γ γ

φ φ

φ φ φ

φφ φ

∂ − ∂ ∂ − ∂

∂ ∂ ∂ −

Φ Φ =

= − + ∂

∂ − ∂= −

. (7.9b) 

 
We see the emergence of the field strength tensor F A Aγ µν µ γν ν γ µ= ∂ − ∂  in its usual Kaluza-

Klein form 2kFγ µνφ , modified to indicate that this arises from taking F µν
γ  for a photon A ν

γ , which 

is a point to which we shall return momentarily.  The only term which bars immediately merging 
both of (7.9) in a generally-covariant manner is the gradient kφ−∂  in the 0k components of (7.9a).  

For this, noting that with reversed indexes 00j j∂ − ∂Φ Φ  (7.9a) will produce a gradient jφ+∂  in the 

j0 components, we define a four-component ( )1Iµ ≡ 0  and use this to form: 

 

( ) ( ) ( )00 1
1 0

k

k
j j

I I I Iµ ν µ ν µ ν ν µ

φ
φ φ φ φφ φ

−∂     
= − ∂ = ∂ − ∂ = − ∂ − ∂     ∂ ∂     

0
0 0

. (7.10) 

 
We then use this to covariantly combine both of (7.9) into: 
 

( ) ( )
( ) ( )( )

2

2

2

2 2

v

v

kF A A Ik

k

I

kF I A I kA

ν ν νµ µ γ µ γ µ γ µ µ ν ν µν

γ µ µ γ µ ν ν γ µν

φ φ φ

φ φ

φ

φ φ

∂ − ∂ ∂ − ∂ − ∂ − ∂

− + ∂ −= +

= −

∂

Φ Φ
 (7.11) 
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The newly-appearing vector ( )2 1 2 jkA AkIµ γ µ γφ φ+ =  which we represent by now removing 

0 0Aγ = , is itself of interest, because the breaking of the gauge symmetry in section 2 caused 

0 0Aγ =  to come out of the photon gauge vector which only has two transverse degrees of freedom.  

But in this new vector ( )1 2 jkAγφ , the removed 0 0Aγ =  is naturally replaced by the number 1, 

which is then included along with the remaining photon components jAγ  multiplied by 2 kφ .  

Again, the very small constant k which Kaluza-Klein theory fixes to (1.2) has dimensions of 
charge/energy, φ  is taken to be dimensionless, and so 2 jkAγφ  is dimensionless as well.  Compare 

also ( )2
jAkµ γφ φΦ = , then observe that ( )2 2 AkIkAµ γ µ µ γ µφ φ φΦ ++ = . 

 
 Most importantly, we now see in (7.11) that the field strength vFγ µ  which is needed for the 

Lorentz Force motion and the Maxwell tensor, does indeed emerge inside of 5
µ
αΓɶ  as seen in (7.7) 

just as it does from the usual Kaluza-Klein metric tensor (1.1), with the identical coefficients.  But 

there is one wrinkle:  F µν
γ  is the field strength of a single photon, not a general classical F µν  

sourced by a material current density ( )Jν ρ= J  with a gauge potential ( )Aµ φ= A  which can 

always be Lorentz-transformed into a rest frame with ( )0Aµ φ= 0  with  0φ being the proper 

potential (note: this is a different φ  from the Kaluza-Klein φ ).  In contrast, the photon A µ
γ  in 

(2.11) can never be placed at rest because the photon is a luminous, massless field quantum. 
 
 However, this can be surmounted using gauge symmetry, while making note of Heaviside’s 
intuitions half a century before gauge theory which led him to formulate Maxwell’s original theory 
without what would later be understood as a gauge potential.  Specifically, even though the gauge 

symmetry is broken for A µ
γ  and it is therefore impossible to Lorentz transform the luminous A µ

γ  

into a classical potential ( )Aµ φ= A  which can be placed at rest, or even to gauge transform 

A Aµ µ
γ →  from a luminous to a material potential because its gauge has already been fixed, the 

same impossibility does not apply to gauge transformations of F A Aµν µ ν ν µ
γ γ γ= ∂ − ∂  obtained 

from this A µ
γ .  This is because F A Aγ µν µ γν ν γ µ= ∂ − ∂  is an antisymmetric tensor which, as is well-

known, is invariant under gauge transformations qA qA qA cµ µ µ µ′→ ≡ + ∂ Λℏ , where q is an 

electric charge and ( ),tΛ x  is an unobservable scalar gauge parameter.  To review, if we gauge 

transform some 
] ;;[ ] ;[ ; ,qF q A q q cF A qFµν µ ν µν µ ν νµ µν′  = ∂ = ∂ ∂ → + ∂ Λ =ℏ , the gauge 

transformation washes out because the commutator 
;; 0, νµ ∂ ∂ Λ =  even in curved spacetime.  

This is because the covariant derivative of a scalar is the same as its ordinary derivative, so that 

the covariant derivative ; ; ;
σ

µ ν µ ν µ ν µν σ∂ ∂ Λ = ∂ ∂ Λ = ∂ ∂ Λ − Γ ∂ Λ , with a similar expression under 

µ ν↔  interchange, and because σ σ
µν νµΓ = Γ  is symmetric under such interchange. 
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So even though we cannot Lorentz transform A µ
γ  into Aµ , and even though the gauge of 

A µ
γ  is fixed so we cannot even gauge transform A µ

γ  into Aµ , we may perform a gauge 

transformation F Fγ µν µν→  precisely because the field strength (which was central to Heaviside’s 

formulation of Maxwell in terms of its bivectors E and B) is invariant with respect to the gauge 
that was fixed to the photon in (2.11) as a result of (2.10).  Another way of saying this is that 
F A Aγ µν µ γν ν γ µ= ∂ − ∂  for a photon has the exact same form as F A Aµν µ ν ν µ= ∂ − ∂  for a materially-

sourced potential which can be placed at rest, and that Fγ µν  enters into Maxwell’s equations in 

exactly the same form as Fµν .  The difference is that Fγ µν  emerges in source-free electrodynamics 

where the source current 0Jν =  while Fµν  emerges when there is a non-zero 0Jν ≠ . 

 

So irrespective of this A Aµ µ
γ=  symmetry breaking which arose from (2.10) to ensure 

Dirac-level covariance of the Kaluza-Klein metric tensor, the luminous photon fields Fγ µν  

emerging in (7.7) via (7.11) can always be gauge-transformed using F Fµν µν
γ →  into the classical 

field strength of a classical materially-sourced potential ( )Aµ φ= A .  Moreover, once we gauge 

transform F Fµν µν
γ → , the classical field strength F µν  will contain innumerably-large numbers 

of photons mediating electromagnetic interactions, and so will entirely swamp out the individual 

A µ
γ  which represent individual photons.  This transformation of F Fµν µν

γ →  by taking advantage 

of gauge symmetry, following by drowning out the impacts of individual photons as against 
classical fields, is exactly what the author did in Sections 21 and 23 of [16] to obtain the 
empirically-observed lepton magnetic moments at [23.5] and [23.6] of that same paper.   

 
So, we now substitute (7.11) with a gauge-transformed v vF Fγ µ µ→  into (7.7), to find that: 

 

( )
( ) ( )
( ) ( ) ( )( )

( )

0 0 2

0 0 2 2

21
5 2

1

0 0 2

0 0

5 0 02

1
2

1
2

2 2

A A F

A A A A

A

k k

k

A I A

k

I Ak k k

µ µσ µ µ σ
α γ γ ασ

µσ µ µ σ
γ γ γ σ γ α

µσ µ µ σ
γ γ α γ α σ σ γ σ α

µ

σ

σ

σ

α

η φ

η

η φ φ φ

Γ = − Φ Φ Φ Φ

+ − Φ Φ Φ Φ ∂ Φ Φ

− − Φ Φ Φ Φ + ∂ − + ∂

− Φ ∂

+

+

+

Φ Φ

ɶ

. (7.12) 

 
From here, further mathematical reductions are possible.  First, we noted earlier that 
i A q Aα γ µ α γ µ∂ =ℏ  for the photon field in (2.11), which we extend to five dimensions as 

i A q Aγ µ γ µΑ Α∂ =ℏ  by appending a fifth dimension in the Fourier kernel in (2.11a) just as we did for 

the fermion wavefunction following (5.6).  Thus, we find 5 5 0Ai A q AAσ σ
γ σ γ γ σγ ∂ = =ℏ  and so may 

set 5 0AAγ
σ

γ σ∂ = .  For similar reasons, see (4.17) and recall that 0 0Aγ = , we set 5 0Aσ
γ σΦ ∂ = .  

We also clear any remaining 0A Aγ
σ

γ σ =  and 0Aσ
γ σΦ = , and use 0A Iγ

σ
σ =  because 0 0Aγ = .  

Next, because 0 0Aγ = , wherever there is a remaining Aγ σ  summed with an object with an upper 
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σ  index, we set 1, 2,3kσ = =  to the space indexes only.  We also use 00
0 1I Iµσ

ση η= = .  And we 

substitute 0
0 φΦ = Φ =  throughout.  Again mindful that i A q Aγ µ γ µΑ Α∂ =ℏ , we also use 

j jk
kA Aγ γη=  from (4.16) to raise some indexes.  Finally, we apply all remaining derivatives, 

separate out time and space components for any summed indexes still left except for in Fασ , and 

reconsolidate.  The result is that strictly mathematically, (7.12) reduces to: 
 

( )
( )
( )( )
( )( )

2 21
5 2

01
2

01
02

2 21
2

2 21 1
5

2

2

2 2 2
5 52 2

2

2

2

k
k

k k
k

k

k k

k

k

k

A A F

A

I A

A A Ak k

k k

I A

A A kA A A A

µ µσ µ µ σ
α γ γ ασ

µ µ µ
γ α

µ µ
α γ α

µ µ µ
γ γ γ α γ α

µ µ µ
γ γ α γ

σ

γ α γ γ α

η φ φ

η η φ

η φ

η φ φ φ

φ φ φ

φ φ

φ φ

φ

φ

Γ = − Φ Φ

+ + − Φ ∂

− + Φ + ∂

− − + Φ + ∂

+ ∂ ∂ ∂

+

+ +

ɶ

. (7.13) 

 

 Now, it is the upper µ  index in 5
µ
αΓɶ  which, when used in the equation of motion (7.4), 

will determine the coordinate against which the acceleration is specified in relation to the proper 
time interval dτ .  So, we now separate (7.13) into its time and space components, as such: 
 

( )
( ) ( )( ) ( )

0 0 21
5 2

31 1 1
02 2 2

2 21 1 2 2k
k

F

I A A

k

Ak k kI

σ σ
α ασ

α α γ α γ α γ α

η φ φ

φ φ φφ φ φ φ φ

Γ = Φ

+ − ∂ − + + ∂ − + ∂

+ɶ

, (7.14a) 

 

( )
( )

( )
( )( )( )

2 2 21
5 2

21
2

21
02

2 41
2

2 21 1
5 5 52

2 2

2

2

2

2

1

2

2

j j j j

j

j

jk j k
k

j j j

k k k

k

A A A F

A

A I A

A A I A

A A A

k k

k k

k k kA A A

σ σ
α γ γ γ ασ

γ α

γ α γ α

γ γ α γ α

γ γ α γ α γ γ γ

σ

α

η φ φ φ

φ

φ φ

η φ φ φ

φ φ φ φ

φ φ

φ φ

φ

Γ = − Φ

+ − ∂

− + ∂

− − + ∂

+ ∂ ∂ ∂

+

−

+ +

ɶ

. (7.14b) 

 
It is noteworthy that all terms in (7.13) containing the fifth dimensional derivative 

5 5
5 / /x c t∂ = ∂ ∂ = ∂ ∂  also contain A µ

γ  and so drop out entirely from (7.14a) because 0 0Aγ = . 

 
 Now, as previewed prior to (7.12), Aγ α  is the field for a single photon, which is 

inconsequential in physical effect compared to Fασ  which has now been gauge-transformed to a 

classical electric and magnetic field bivector consisting of innumerable photons.  This is to say, if 
there is some interaction occurring in a classical electromagnetic field, a single photon more, or a 
single photon less, will be entirely undetectable for that interaction, akin to a single drop of water 
in an ocean.  Moreover, the constant k is very small, so that the dimensionless kAγ α  will be very 

small in relation to the numbers 1±  contained in µνη .  With this in mind, we may set 0Aγ α ≅  as 
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an extraordinarily-close approximation to zero all terms which contain Aγ α  in (7.14).  This 

includes for (7.14a), only retaining 0 φΦ =  in 2 0 2
0k kF Fσ

ασ αφ φ φ φΦ = Φ .  And in (7.14b) we further 

use jk
k jη ∂ = −∂ .  So now, both of (7.14) reduce to: 

 

( ) ( ) ( )0 2 21 1 1
5 0 02 2

2 2
21 11 F Ikα α α αφφ φ φ φ φΓ = + − ∂ − + ∂+ɶ , (7.15a) 

 
21 1

5 2 2

j j
jFk Iα α α φφΓ = + ∂ɶ . (7.15b) 

 

 Contrasting, we see that the former contains 0Fα  while the latter contains jFα  with a raised 

index.  To properly compare we need to carefully raise the time index in (7.15a).  To do this, we 

recall from after (2.11) that i A q Aα µ α µ∂ =ℏ , 0A qγ
α

α = , and 0j
jA q = , which also means that 

0Aγ
α

α∂ =  and 0j
jAγ ∂ = , thus 0j

jΦ ∂ =  when α∂  operates on Aγ µ .  Recall as well that 

0A Aσ
γ γ σ =  and 0Aσ

γ σΦ = .  So, working from F A Aγ σν σ γν ν γ σ= ∂ − ∂  for an individual photon and 

using (4.22) with g µν µνη= , we first obtain, without yet fully reducing: 

 

( ) ( )F G F G A G A A Aµ µσ µσ µσ
γ ν γ σν σ γν ν γ σ σ γ ν

µσ µ σ µσ µ σ
ν γ ση η= = ∂ − ∂ = + ∂ − Φ ∂Φ+Φ Φ . (7.16) 

 
Then, extracting the electric field bivector we obtain the field strength with a raised time index: 
 

( ) ( )
( ) ( )
( )( ) ( )

0

0 0 0 0

0 0

0 0 0 0

0 0 0 0

2
0

21 1

F A A A A

A A A A

A A F

σ σ σ σ
γ ν σ γν σ γν ν γ σ ν γ σ

γν γν ν γ ν γ

γν ν γ γ ν

η η

φ φ

Φ Φ Φ Φ

Φ

= ∂ + ∂ − ∂ + ∂

= ∂ + ∂ − ∂ + ∂

= + ∂ +

Φ

−

Φ

=

Φ

∂

. (7.17) 

 
Using the gauge transformation v vF Fγ µ µ→  discussed prior to (7.12) to write this as 

( ) 0
20 1F Fα αφ= + , then using this in (7.15a), now reduces the equation pair (7.15) to: 

 

( ) ( )0 21 1 1
5 02

0 2
2 2

21 1 IkFα α αα φ φ φ φφΓ = + − ∂ − + ∂ɶ , (7.18a) 

 
21 1

5 2 2

j j
jFk Iα α α φφΓ = + ∂ɶ . (7.18b) 

 

These clearly manifest general spacetime covariance between the 1
2

02kFαφ  and 21
2

jkFαφ  terms.   

 
At this point we are ready to use the above in the equation of motion (7.4).  Focusing on 

the motion contribution from the 5α
ΜΓɶ  term, we first write (7.4) as: 

 
2 5

52 2
2 ...

d dx dx

c d cd c

x

d

α

ατ τ τ

Μ
ΜΓ= +− ɶ  (7.19) 
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with a reminder that we are focusing on this particular term out of the three terms in (7.4).  We 

then separate this into time and space components and use (7.18) with F Fµ µ
α α= −  and 

( )1Iα = 0 .  Importantly, we also use the differential chain rule on the φ  terms.  We thus obtain: 

 

( ) ( )( )0 2
2 0 5 5

0 2
5 02 2

5
2

2

0
5

2

... ...

2

2 1 1

...

d dx dx dx dx
I

c d cd cd cd cd

dx dx dx d

cd cd cd cd

x
kF

k F

α α

α α

α

α

α

αφ φ φφ
τ τ τ τ τ

φ
τ τ τ τ

φ

φφ

− Γ − + − ∂ − + ∂= + = +

= + +

ɶ

 (7.20a) 

 

( )
2 5 5

2
52 2

5 5 0
2

...

.

2

..

j
j j

j

j

j

d dx dx dx dx
F I

c d cd cd cd cd

dx dx dx dx d
F

cd cd cd d

x

k
d

k

x c

α α α

α

α α

α

φ
τ τ τ τ τ

φ
τ τ τ τ

φ

φ

= + =− Γ − + ∂

= +−

ɶ

 (7.20b) 

 
In both of the above, for the scalar we find a derivative along the curve, /d cdφ τ .  Note further 

that in (7.20b) this is multiplied by the inverse of 0/ /j jdx v cdx =  where 0/j jv dx dt=  is an 

ordinary space velocity with reference to the ordinary time 0t  (versus the fifth-dimensional 5t ).  
In contrast, in (7.20a) the objects covariant with this velocity term simply turned into the number 

1 via the chain rule.  Given its context, we understand jv  to be the space velocity of the scalar φ .  

 
 This raises an important question and gives us our first piece of solid information about the 
physical nature of the Kaluza-Klein scalar φ :  Without the /d cdφ τ  term (7.20) consolidate into 

( )2 2 2 2 5 //d c d dxx k Fcd dx cdµµ α
ατ φ τ τ=  following which we can make the usual “Kaluza 

miracle” association with the Lorentz Force law.  However, with this term, if φ  is a material field 

or particle which can be Lorentz transformed to a rest frame with 0jv = , then we have a problem, 
because the latter term in (7.20b) will become infinite, causing the space acceleration to likewise 
become infinite.  The only way to avoid this problem, is to understand the scalar φ  as a luminous 

entity which travels at the speed of light and which can never be Lorentz transformed to a rest 
frame, just like the photon.  More to the point in terms of scientific method: we know from 
observation that the Lorentz force does not become infinite nor does it exhibit any observable 

deviations from the form ( )2 2 2 2 5 //d c d dxx k Fcd dx cdµµ α
ατ φ τ τ= .  Therefore, we use this 

observational evidence in view of (7.20b) to deduce that φ  must be luminous. 

 
 To implement this luminosity, we first write the four-dimensional spacetime metric for a 
luminous particle such as the photon, and now also the scalar φ , using mixed indexes, as 

2 0
00 j

jd dx dx dx dxτ= = + .  This easily is rewritten as 0
0

j
jdx dx dx dx= −  and then again as: 

 
0

0

j

j

dxdx

dx dx
= − . (7.21) 
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This is the term of interest in (7.20b).  Now, we want to raise indexes on the right side of (7.21) 

but must do so with (3.13).  Using 0 φΦ =  and gµν µνη=  as well as 0 0Aγ =  and A Aµ µν
γ γνη=  

from (4.16), we find: 
 

( )
( )

2
0 0 0

2

2 0
0 0

2 22j
j

k k
j j j

j

dx G dx k dx dx dx

dx G

A

dx k dx dx k dx

A

A A A A

ν γ γν ν

ν γ

ν ν ν
ν

ν ν
ν γν γ γ

η φ η

η φ φ

+

+

= = =

= +

=

= = −
. (7.22) 

 
Using the above in (7.21) then yields the luminous particle relation: 
 

0
2 2 2

0

2

0
ˆ ˆ

j k
j k

j

j k j kdx dx dx
k u k u

dx x
A A

x
A

d
A

d
γ γ γ γφφ= − = − . (7.23) 

 

Above, we also introduce a unit vector 0ˆ /j ju dx dx=  with ˆ ˆ 1j ju u =  pointing in the direction of 
the luminous propagation of φ . 

 
 Inserting (7.23) for a luminous scalar into (7.20b) then produces: 
 

2 5 5 5
2

2

2 2

2
ˆ ˆ

j
j j kj kd dx dx dx d dx d

F A A
c d cd cd cd

x
k u k u

cd cd cd

α

α γ γφ
τ τ τ τ τ τ τ

φ φφ−= +  (7.24) 

 
As we did starting at (7.15) we then set 0Aγ α ≅  because the gauge vector for a single photon will 

be swamped by the innumerable photons contained in the classical field strength jF α .  As a result, 

using (7.24), we find that (7.20) together now become: 
 

2 0 5 5
2

2 2

0 22
d dx dx dx d

c d cd cd

x
k F

cd cd

α

αφ
τ τ

φ
τ τ

φ
τ

= +  (7.25a) 

 
2 5 5

2

2 2
ˆ

j
j jd dx dx dx d

F
c d c

x
k

cd cd cd
u

d
α

α

φ
τ τ τ τ

φ
τ

−=  (7.25b) 

 
In (7.25b), φ  has now been made luminous. 

 
 Finally, we are ready to connect this to the Lorentz Force motion, which we write as: 
 

2

2 2 2

d x q dx
F

c d mc cdt

µ α
µ

ατ
= . (7.26) 

 
We start with the space components in (7.25b) combined with jµ =  in (7.26) and use these to 

define the association: 
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2 5 5
2

2 2 2
ˆ j

j
j jd x dx dx dx d q dx

F F
c d cd cd cd cd mc d

k u
c t

α

α

α

αφ
τ τ τ τ

φ
τ

− ≡= . (7.27) 

 
For the moment, let us ignore the term /d dφ τ  to which we shall shortly return, and focus on the 

term with jF α .  If this is to represent Lorentz motion insofar as the jF α  terms, then factoring out 

common terms from both sides, we obtain the following relation and its inverse: 
 

5 5 5 5
2 2

2 2 2
;

dx dt q dx dt q

cd d mc c
k k

d ckd m
φ φ

τ τ τ τ φ
= = = = . (7.28) 

 
This is why electric charge – and to be precise, the charge-to-mass ratio – is interpreted as “motion” 
through the fifth dimension.  However, because of the timelike fifth dimension in the metric tensor 
(3.13), the charge-to-energy ratio of a charged material body is no longer interpreted as spatial 
motion through an unseen fourth space dimension.  Rather, it is understood as a rate of time flow 
in a second time dimension. 
 

 Next, we substitute the above for 5 /dx cdτ  in each of (7.25) and reduce to obtain: 
 

2 0

2 2

0

2 2
2

d q dx q d

c d mc c

x
F

d mc cdk

α

ατ τ
φ
τ

= +  (7.29a) 

 
2

2 2 2 2 2

ˆj
j

jd q dx q d
F

c d mc cd c c

u

km

x

d

α

ατ τ φ
φ
τ

−=  (7.29b) 

 
This does indeed reproduce the Lorentz motion, except for the /d dφ τ  term in each.  Now, because 

there is no observed deviation for the Lorentz motion, in order to minimize the physical impact of 
these final terms, one might suppose that the luminous φ  is an extremely small field 0φ ≅  with 

/ 0d dφ τ ≅ , but this is problematic for two reasons:  First, if k turns out to be the extremely small 

ratio ( )22 / / ek c G k=  given by (1.2) as it is in Kaluza-Klein theory – and there is no reason to 

believe that k will turn out otherwise here – then the 1/k in both of (7.29) is an extremely large 
coefficient, which means that /d dφ τ  would have to be even more extraordinarily small.  Second, 

even if / 0d dφ τ ≅  in part because we make φ  extremely small, the presence of 21 / φ  in (7.29b) 

still causes a problem, because an extremely small 0φ →  implies an extremely large 21/ φ → ∞ .  

Ironically, the 21 / φ  which causes GΜΝ → ∞  in the usual Kaluza-Klein metric tensor (1.1) – which 

problem was solved by the non-singular (4.22) – nevertheless still persists, because of its 
appearance in (7.29b).  And it persists in the form of a very large yet unobserved impact on the 
physical, observable Lorentz motion.  The only apparent way to resolve this, is to require that 

/ 0d dφ τ = .  If that is the case, then (7.29) both condense precisely into the Lorentz Force motion.   

 
Now, on first appearance, the thought that / 0d dφ τ =  seems to suggest that φ  must be a 

constant field with no gradient, which as pointed out in [11] imposes unwarranted constraints on 
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the electromagnetic field, and which also defeats the purpose of a “field” if that field has to be 
constant.  But in (7.29), /d dφ τ  is not a gradient nor is it a time derivative.  Rather, it is a derivative 

along the curve with curvature specified by the metric tensor (2.15), and it is related to the four-

gradient µφ∂  by the chain rule ( ) ( )/ // x dd udxd µ µ µ
µφ φ φτ τ= ∂ = ∂∂  with /u dx dµ µ τ≡ .   

Moreover, we have now learned at (7.20) that φ  must be a luminous field, which requirement has 

been embedded in (7.29b).  So, this derivative along the curve will be taken in frames of reference 
which travel with the luminous field, which luminous reference frames cannot ever be transformed 
into the rest frame – or even into a relatively-moving frame – of a material observer.  As a result, 
it is indeed possible to have a zero /d dφ τ  in the luminous reference frame “along the curve” 

simultaneously with a non-zero gradient 0µφ∂ ≠  taken with reference to coordinates defined by a 

material observer.  As we now shall elaborate, this solves the “constant field / zero gradient” 
problems which have long plagued Kaluza-Klein theory, and teaches a great deal of new intriguing 
information about the physical properties of the scalar field φ . 

 

8.  Luminosity and Internal Second-Rank Dirac Symmetry of the Dirac-

Kaluza-Klein Scalar 
 
 Let us take the final step of connecting (7.29) to the observed Lorentz Force motion with 
nothing else in the way, by formally setting the derivative along the curve for φ  to zero, thus: 

 

0
dx

x

d

cd cd

µ

µτ τ
φ φ∂

∂
= = . (8.1) 

 
With this, both of (7.29) immediately become synonymous with the Lorentz Force motion (7.26).  
From the standpoint of scientific method, we can take (7.29) together with (7.26) as empirical 
evidence that (8.1) must be true.  Now, let’s explore what (8.1) – if it really is true – teaches us 
about the physical properties of φ . 

 
 To start, let us square (8.1) and so write this as: 
 

2

0
dx dx dx dx

x x

d

cd cd cd cd cd

µ ν µ ν

µ ν µ ντ τ
φ

τ
φ

τ
φ φ

τ
φ∂ 

  ∂ ∂
= ∂



∂ = ∂ = . (8.2) 

 
Next, let’s write the four-dimensional spacetime metric (7.5) for a luminous particle using (3.13) 
with gµν µνη=  and 0 φΦ =  as: 

 
2 2 2 20 c d G dx dx dx dx k x xA dA dµ ν µ ν µ ν

µν µν γ µ γντ η φ= = = + . (8.3) 

 

We already used a variant of this to obtain (7.23).  Then, also appending a 2φ  and using an overall 

minus sign which will become useful momentarily, we restructure this to: 
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( )2 2 2 0
dx dx

k
c

A
d

A
cd

µ ν

γ µ γνµνη φ φ
τ τ

− + = . (8.4) 

 
 The above (8.4) describes a luminous particle in a five-dimensional spacetime with the 
metric tensor (3.13).  So, we can use this luminosity to supply the zero for the squared derivative 
along the curve in (8.2) if, comparing (8.2) and (8.4), we define the relation: 
 

( )2 2 2 2/ 0k A Aµ ν γ µ γνµνφ φ η φ φ≡∂ ∂ − + ≠Ż , (8.5) 

 
where / 2λ π≡Ż  is a reduced wavelength of the scalar, needed and therefore introduced to balance 

the 21/ length  dimension of µ νφ φ∂ ∂  with the dimensionless 2 2G k A Aµν γµ µ νν γη φ= + .  Now, all we 

need to do is determine the first-order µφ∂  which satisfies (8.5). 

 
  What becomes apparent on close study of (8.5) is that there is no way to isolate a first-
order µφ∂  unless we make use of the Dirac gamma operators in a manner very similar to what 

Dirac originally used in [13] to take the operator “square root” of the Klein-Gordon equation.  And 
in fact, the operator square root we need to take to separate out a linear µφ∂  from (8.5) is precisely 

the ( )0 0j j j jA kAk γ γµ γ γ γ γΓ = + +  we found in (2.14) which satisfy (2.1) with gµν µνη= , that 

is, which satisfy { } 21
2

2, Ak Aµν µ νµ ν η φΓ Γ = + .  Therefore, we may now use these µΓ  to take the 

square root of (8.5), where we also use 1i− = −  choosing i−  rather than i+  for reasons which 
will become apparent at (8.10), to obtain: 
 

i µµφ φ= − Γ∂Ż . (8.6) 

 

 Now, just as the photon gauge field (2.11a) contains a Fourier kernel ( )exp /iq xσ
σ− ℏ  

where qµ  is the photon energy-momentum, and the fermion wavefunction used in (5.6) contains 

a Fourier kernel ( )exp /ip xΣ
Σ− ℏ  with a fermion five-momentum pΜ  (and we anticipate (5.6) will 

be used to inform us regarding 5p ), let us specify a Fourier kernel ( )exp /is xΣ
Σ− ℏ  with a five-

dimensional sΜ  which we regard as the five-momentum of the luminous scalar φ .  Moreover, 

because φ  is dimensionless and so too is ( )exp /is xΣ
Σ− ℏ , let us simply define: 

 

( ) ( )1
1 22

exp /i is xφ φ φ Σ
Σ≡ + − ℏ . (8.7) 

 

Above, ( )exp /is xΣ
Σ− ℏ  is a Fourier kernel in five dimensions, while 1 2iφ φ+  is a dimensionless, 

complex-valued amplitude. This complex amplitude, albeit dimensionless, is chosen to be 
analogous to the energy-dimensioned scalar field is used to break symmetry via the standard model 

Higgs mechanism, which we denote by ( )1
1 22h h hiφ φ φ≡ + .  Specifically, 1φ  and 2φ  introduce two 

degrees of freedom which can be used to give mass to otherwise massless objects.  Because
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( ) ( ) 2 2
1 2 1 2 1 2*i iφ φ φ φ φ φ+ + = + , the symmetry of the “circle” in the complex Euler plane of 1φ  and 

2φ  can always be broken by choosing the 2 0φ =  orientation, see Figure 14.5 in [20].  In the 

standard model, once the symmetry is broken, the scalar field is expanded about the vacuum having 

an expectation value v via ( ) ( )( )1

2h x v h xµ µφ = + , with fluctuations provided by the Higgs field 

( )h xµ .  In the standard model, the vev is taken to be 246.219650 eV8 Gv =  of the standard model, 

namely, the Fermi vacuum expectation associated with the Fermi coupling via 

( )321 / 2 / 2Fv G c= ℏ  based on the latest PDG data [21].  In (8.7), which we will connect directly 

to the standard model Higgs mechanism in the next section, the kernel ( )exp /is xΣ
Σ− ℏ  provides a 

third degree of freedom based on the orientation of the angle /s xθ Σ
Σ= ℏ .   

 

If we allow ( )1 xφ Μ  and ( )2 xφ Μ  to be functions of five-dimensional spacetime so they can 

be expanded about a minimum v in familiar form ( ) ( )( )1

2
x v h xφ Σ= +  after choosing an 2 0φ =  

orientation, then the five-gradient of (8.7) is straightforwardly calculated to be: 
 

1 2

1 2

i s
i

i

φ φφ φ
φ φ

Μ Μ Μ
Μ

 ∂ + ∂∂ = − + ℏ
. (8.8) 

 
If the then covariantly extend (8.6) into the fifth dimension in the form of iφ φΜ Μ= − Γ∂Ż  and then 

apply (8.8) we find:  
 

1 2

1 2

i s
i i

i

φ φφ φ φ
φ φ

Μ Μ Μ
Μ Μ

 ∂ + ∂= − = − Γ + 
∂Ż Ż

ℏ
. (8.9) 

 
Stripping off φ , following some algebraic rearrangement including multiplying through by c, then 

using /E c hfω= = =ℏ Ż ℏ for the energy magnitude of the scalar, we arrive at: 

 

1 2

1 2

i
cs i c

i

φ φω
φ φ

Μ Μ
Μ Μ

∂ + ∂= Γ −
+

ℏ ℏ . (8.10) 

 

The time component of ( )0 0 jjkAγω ω γ γΓ = +ℏ ℏ  within the energy component 0cs  above is 

positive for the upper (particle) components of ( ) ( )0diag ,I Iγ = + −  in the Dirac representation, 

and negative for the lower (antiparticle) components, which we interpret using Feynman–

Stueckelberg.  Having these upper components be positive is the reason we used 1i− = −  at (8.6). 
 
 Finally, we insert (8.10) into (8.7) for the luminous scalar and reduce, to obtain: 
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( )

( )

1 2
1 2

1 2

1 2
1 2

1 2

1
exp

2

1
exp exp

2

i
i i x x

c i

i
i i x x

c i

φ φωφ φ φ
φ φ

φ φωφ φ
φ φ

Σ ΣΣ Σ
Σ

Σ ΣΣ Σ
Σ

 ∂ + ∂= + − Γ − + 

 ∂ + ∂ = + − Γ −   +   

. (8.11) 

 
The product separation of exponentials in the lower line is possible in view of the Zassenhaus-

Baker-Campbell-Hausdorff relation ( ) [ ]( )exp exp exp exp , / 2 ...A B A B A B+ = −  because 

although xΣ
ΣΓ  is a 4x4 matrix operator, the second additive term in the top line is a 4x4 diagonal 

matrix which does commute with the first term, i.e., [ ], 0A B = .   Because (8.10) contains an 

energy E hfω= =ℏ , we now must interpret φ  as single luminous field quantum just as at (2.11) 

we were required to regard A Aµ γ µ=  as an individual photon quantum.  Significantly, both the 

energy-momentum five-vector csΜ  in (8.10) for the scalar, and the scalar itself in (8.11), are 

actually 4x4 operator matrices owing to the presence of ΣΓ  in each.  Thus, these both have an 

implied second rank index pair AB with Dirac spinor indexes 1, 2,3, 4A =  and 1, 2,3, 4B = .   

 
To make use of the luminous scalar operator (8.11) in later calculations, it is helpful to 

separate the kernel ( )exp /i x cω Σ
Σ− Γ  into sine and cosine terms using the Maclaurin series 

( ) 2 3 4 51 1 1 1
2! 3! 4! 5!exp 1 ... cos sinix ix x i x x ix x i x− = − − + + − − = − .  To do so, we first use the 

anticommutator (3.1) to calculate the square: 
 

 ( ) { }2 2 21
2

x x x G x x cΣ Μ Ν Μ Ν
Σ Μ Ν Ν Μ ΜΝΓ = Γ Γ + Γ Γ = ≡ Τ , (8.12) 

 

where 2 2 2S c G x xΜ Ν
ΜΝ≡ Τ ≡  is a finite invariant proper length / time in the five-dimensional 

geometry.  Thus ( )2 2 2/x cω ωΣ
ΣΓ ≡ Τ .  Then, we insert this into the series to obtain: 

 

( ) ( ) ( )

2 2 4 4 2 2 4 4

3 3 5 5

1 1 1 1
exp 1 1 ...

2! 4! 3! 5!

1 1
cos ... cos sin

3! 5!

i x i x
c c

x x
i i

c c

ω ωω ω ω ω

ω ω ω ω ω ω

Σ Σ
Σ Σ

Σ Σ
Σ Σ

   − Γ = − Τ + Τ − Γ − Τ + Τ +   
   

Γ Γ = Τ − Τ − Τ + Τ + = Τ − Τ Τ Τ 

, (8.13) 

 
To get to the sin term in the bottom line, we multiplied through by 1 /ω ω= Τ Τ .  Inserting this into 
(8.11) gives us the final expression for the luminous, dimensionless. massless scalar: 
 

( ) ( ) ( ) 1 2
1 2

1 2

1
cos sin exp

2

x i
i i x

c i

φ φφ φ φ ω ω
φ φ

Σ
ΣΣ Σ Σ  Γ ∂ + ∂= + Τ − Τ −  Τ +   

. (8.14) 

 



Jay R. Yablon, September 4, 2018 

37 
 

The Dirac operator characteristics of φ  are now seen to be isolated in and stem from the xΣ
ΣΓ  

matrix which multiplies the ( )sin ωΤ  term.  In view of (8.12) it is clear that ( )2 21
1 22*φ φ φ φ= + , 

which is precisely the property this luminous scalar it should have in order to be able to break a 
local U(1) gauge symmetry, see, e.g., sections 14.7 and 14.8 in [20].  But as noted after (8.7), what 
is now the more-recognizable angle θ ω= Τ  provides a third degree of freedom.  In the next 
section, we shall see that (8.14) above further simplifies when we geometrize the fermion rest 
masses and break the symmetry such that two degrees of freedom give mass to fermions and the 
third degree of freedom gives mass to the massless scalar φ  and produces the massive Higgs.  

 
The luminous massless scalar operator (8.14) with second-rank Dirac internal symmetries 

solves the Kaluza-Klein problem of how to make the scalar field “constant” to remove what are 
otherwise some very large terms, while not unduly constraining the electromagnetic fields:  The 
gradient can be non-zero, while the derivative along the curve can be zero, / 0d cdφ τ = , so long 

as the scalar is a luminous particle which also has a second rank Dirac structure.  In turn, if we 
then return to the metric tensor GΜΝ  in the form of, say, (3.11), we find that this too must also 

have implied Dirac indexes, that is, ABG GΜΝ ΜΝ=  owing to the structure (8.14) of the scalar fields 

which sit in its fifth dimensional components.  So (8.14) gives a second rank Dirac structure to the 
metric tensor, alongside of its already second-rank, five dimensional spacetime structure.  And of 
course, with (8.14) being derived to obey / 0d dφ τ = , (7.29) become synonymous with the 

electrodynamic Lorentz force motion, which is one of the key touchstones of Kaluza-Klein theory. 
 

And so, the Kaluza-Klein fifth dimension, taken together with using Dirac theory to enforce 
general covariance across all five dimensions, has turned a metric tensor (1.1) with an entirely 
classical character, into a quantum field theory metric tensor with luminous photons and luminous 
scalar field quanta.  If this is all in accord with physical reality, this means that nature actually has 
three spin types of massless, luminous field quanta: spin-2 gravitons, spin-1 photons and gluons, 
and spin-0 scalars with an internal second rank Dirac-tensor symmetry.  This also means that the 
massless, luminous Kaluza-Klein scalar in (8.14) is not the same scalar as the usual Higgs, because 
the latter is massive and material.  However, the scalar (8.14) has properties similar to the Higgs, 
and as we shall now see, it can be used to spontaneously break symmetry, whereby the two degrees 

of freedom in the amplitude ( )1 2 / 2iφ φ+  give the fermions their rest mass, and the third degree 

of freedom θ ω= Τ  does produce the Higgs in its known massive form.  And, there is a direct 
relation which we shall see between the DKK scalar field and the Higgs field which will enable us 
to develop a theory of fermion masses and mixing angles which fits the experimental data. 
Moreover, the type of Higgs production paired with top quarks reported out of CERN only in the 
past several weeks [22], [23], [24] is better-understood by using (8.14) as the scalar for 
spontaneous symmetry breaking leading to fermion rest masses. 
 

9.  Spontaneous Symmetry Breaking of the Massless Luminous Dirac-Kaluza-

Klein Scalar 
 
 With the result of the last two sections in hand, let us now find out more about the new 

component 5cp  in the energy-momentum five-vector ( )5jcp E cp cpΜ =  defined prior to the 
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momentum space Dirac equation (5.7).  Leaving pΣ  in ( )0U pΣ  implicitly understood, we first 

swap upper and lower indexes in (5.7) and expand using the three-part metric tensor (3.8) as such:  
 

( ) ( )
( )

2 0
0 0 5 0

0 0 5 0 0

5 2

5 5 2

0 j

j j
k j

j

k j

cp U cp cp cp U

E k E cp k cp cp cp

mc c

A mc U

m

Aγ γφ φ φγ γ γ γ γ γ

Μ
Μ= Γ − = Γ Γ Γ −

= −

+ +

+ + + + +
. (9.1) 

 

Now, 
2mc  is the rest energy of the fermion.  This is placed into the Dirac equation by hand, and it 

originates in the relativistic energy-momentum relation 2 4m c g p pµ ν
µν=  into which it is also 

placed by hand.  It would be very desirable to give this rest mass an interpretation purely in terms 

of the geometry and the 5cp  component of the five-momentum so it need not be entered by hand, 

and even more desirable if the scalar φ  which we now know is luminous and massless can be used 

in a manner analogous to the Higgs mechanism to break symmetry and enable us to predict or at 
least better understand the observed pattern of fermion rest masses. 
 

 Toward these ends, suppose that starting with (9.1) we remove the hand-added 
2mc  entirely 

and instead use the 5cp  terms, by postulate, to define the eigenvalue relation: 

 

( )5
0 5 0 0 0

5 5 2
5cp U c mcp cp U Uφγ γ ≡Γ −+= . (9.2) 

 

By this postulate from which we shall now explore the implications, a fermion rest energy 
2mc  

represents the eigenvalues of the operator 5
5

5 0
55cp cp cpφγ γ= − −−Γ .  Not only are 0γ  and 5γ  4x4 

Dirac operators as always, but from the result in (8.14), so too is the luminous scalar φ . 

 
This highlights some very important points regarding using spontaneous symmetry 

breaking to arrive at a fermion rest masses which it is not presently known how to do in detail, as 
opposed to arriving at gauge boson rest masses which it is known how to do.  Specifically, when 
a scalar field (also denoted φ ) is used to break symmetry, for example, for a triplet of three weak 

interaction gauge fields 
aW µ

 in the adjoint representation of a local SU(2) Yang-Mills  [25] gauge 

group where 1,2,3a =  is an internal symmetry index associated with the SU(2) generators 
aτ  

which have a commutator relation ,a b abc cτ τ ε τ  =   (see section 14.9 of [20]), the scalars are 

placed into the fundamental representation of SU(2) whereby ( ) ( )1 2 3 4
T i iα αφ φ φ φ φ φ φ= = + +  

is an SU(2) doublet of complex scalars providing four scalar degrees of freedom.  This structural 
matching of the scalars in the fundamental representation of SU(2) with the gauge bosons in the 
adjoint representation of SU(2) enables the scalars to be coupled to the gauge fields the Lagrangian 

density term 2 † a a b b
Wg W W µ

µφ τ τ φ , which coupling underlies the spontaneous symmetry breaking 

(note 
†a aτ τ=  are Hermitian).  So, if we restore into (9.2) the Fourier kernel and thus 

( )0 exp /U ip xΣ
Σ≡ −Ψ ℏ  specified prior to (5.7), and knowing the form of the Lagrangian density 

for the fermion rest masses, and explicitly showing the normally-implicit Dirac spinor indexes A, 
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B, C, all ranging from 1 to 4, we see looking closely at (9.2) that the Lagrangian density will 

contain a term 5
0A AB BC Ccpφ γΨ Ψ .  In other words, ABφ φ=  in (8.14) couples perfectly to Dirac 

fermion wavefunctions, so symmetry can be broken and the fermions obtain rest masses. 
 

This means that the seeming “oddity” of the luminous scalar having picked up a second 
rank Dirac structure in (8.14) in order to have / 0d dφ τ =  in (8.1) so that (7.29) can be covariantly 

collapsed to precisely reproduce the Lorentz force motion as geodesic motion in the Kaluza-Klein 
geometry, actually makes perfect sense in view of (9.2):  Gauge bosons have a Yang-Mills internal 
symmetry structure against which must be matched by the internal symmetries of the scalars used 
to spontaneously break symmetry and give mass to these gauge bosons via the Higgs mechanism, 
so that the scalars properly couple to the bosons.  Likewise, fermions have a Dirac spinor structure 
(in addition to their Yang-Mills internal structure) against which we have to expect any scalars 
used to spontaneously break symmetry and give mass to the fermions will also have to have to be 
matched with a Dirac structure, so the scalars properly couple to the fermions.  So, the luminous 
scalar (8.14) having a Dirac structure which couples with the Dirac structure of the fermions is in 
precisely the same league as the scalars used to break gauge boson symmetries having an internal 
symmetry structure to couple the internal symmetry of the gauge bosons.  And it is in the same 
league, for example, as having to use a spin connection (see, e.g., [26]) for fermions to be able to 
covariantly couple to gravitation.  So, notwithstanding the “oddity” of the scalar in (8.14) picking 
up  Dirac structure, this luminous massless scalar (8.14) turns out to be ready-made for generating 
fermion rest masses through spontaneous symmetry breaking using the Higgs mechanism.   

 
Finally, when we do the accounting for degrees of freedom, the luminous massless scalar 

(8.14) is also perfectly matched to generate fermion masses while also generating a massive Higgs 
scalar.  By way of contrast, with a subscript H used to denote the standard Higgs mechanism, a 

scalar which we write as ( )1 2 / 2h h hiφ φ φ= +  used to break a local U(1) gauge symmetry starts 

out with two scalar degrees of freedom provided by 1Hφ  and 2Hφ .  And of course, 

( )† 2 21
1 22h h h hφ φ φ φ= +  defines the “circle” for symmetry breaking.  One of these degrees of freedom 

is “swallowed” by a gauge boson which starts out massless with two degrees of freedom (see, for 
example, (2.11b) for the photon polarization) and thereby becomes massive by acquiring a 

longitudinal polarization.  The other degree of freedom is swallowed by a Higgs scalar ( ),h t x  

introduced by the expansion ( ) ( ), ,h t v h tφ = +x x  about the vacuum vev v, thereby giving mass to 

that scalar.  The empirical observation at CERN of the Higgs scalar [27] with the theoretically-
anticipated mass is perhaps one of the most significant scientific events of the past few decades.   

 

Here (8.14) contains the same form of expression ( )1 2 / 2iφ φ+  used in the Higgs 

mechanism.  Likewise, ( )2 21
1 22*φ φ φ φ= +  defines the circle for symmetry breaking.  So, these 

fields 1φ  and 2φ  carry two degrees of freedom available to be “swallowed” by other particles during 

symmetry breaking via the Goldstone mechanism [28].  But there are two important differences 
which we shall now study:  First, (8.14) has an additional the angle θ ω= Τ  in the Fourier kernel, 
which can be oriented in any direction as an additional aspect of symmetry breaking and used to 
provide a third degree of freedom which can also be swallowed by other particles.  Second, in 
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contrast to the usual Higgs scalars, 1φ  and 2φ  in (8.14) are presently dimensionless, whereas in 

( )1 2 / 2h h hiφ φ φ= +  these have energy dimension and so can be connected with 

( ) ( ), ,h t v h tφ = +x x  following symmetry breaking to create a scalar field expansion about the 

Fermi vacuum.  So, we will need to find a way to introduce an energy dimensionality the fields in 
to (8.14), which we shall do shortly.   

 
Further, it is well-known that any hypothetical “massless” fermion would carry two degrees 

of freedom and be fully chiral:  Consider that a generation ago, when neutrinos were thought to be 

massless before this was disproven by leptonic neutrino oscillations, the massless ( )51
2 1Lv vγ= +  

would have had only two degrees of freedom, with right-chirality nonexistent.  So, for (8.14) to 
generate a fermion mass, it is necessary that both degrees of freedom from 1φ  and 2φ  in (8.14) go 

into the fermion, so that the fermion can be bumped up from two to four degrees of freedom and 
acquire a mass.  But this leaves nothing more for the scalar, so we cannot reveal a massive Higgs 
scalar unless there is a third degree of freedom.  This, as we shall now see, is provided by the 
degree of freedom in θ ω= Τ , and is precisely the benefit of this third degree of freedom, because 
now masses can be acquired by both the fermions and the Higgs field. 

 
With this overview, let’s now proceed with some further calculations using (9.2).  First, 

starting with the Dirac equation (9.1) we initially remove the hand-added 2mc  and so write this as 

the entirely geometric 00 cp UΣ
ΣΓ= .  Then we reintroduce the mass term, but using (9.2), thus:  

 

( ) ( ) ( )2 5 5
5

5
0 0 0 5 0 00 cp U cp cp U cp U cp cp cp Umcσ σ

σ σ
σ

σ γ φγΣ
Σ= = + +Γ Γ Γ = Γ − Γ += . (9.3) 

 
The fermion mass term is no-longer hand-added, but rather, originates in the fifth-dimensional 

operator 5
5cpΓ , with its usual appearance ( )2

00 mcp Ucσ
σΓ −=  when the fifth-dimensional 5

5cpΓ  

is replaced by 2mc− .  So, the momentum space Dirac equation (5.7) becomes 0 0cp UΣ
ΣΓ = , and 

the configuration space equation (5.6) is now simply 0i c Μ
ΜΓ ∂ Ψ =ℏ , without a hand-added mass. 

 
 Next, let us use the anticommutator (3.1) for three interdependent calculations, starting 

with 0 0cp UΣ
ΣΓ =  and 0 0

2cp U Umcσ
σ =Γ  and 5

0 0
2

5cp U Umc=Γ  all of which are contained in 

(9.3), and the last of which is also (9.2).  In all cases, we “square” the operators using an 
anticommutator, strip off the operand, and apply (3.1) to obtain, respectively: 
 

{ }1
2 , 0cp cp cp cp G cp cpΜ Ν Μ Ν Μ Ν

Ν Μ Ν ΜΝΜ = =Γ Γ Γ =Γ , (9.4a) 

 

{ } 2 41
2 ,cp cp cp cp G c cc mp pµ ν µ ν µ ν

µνµ ν µ νΓ Γ =Γ Γ= = , (9.4b) 

 
5 5 5 5

5
2 4

5 55cp cp G cp cp m cΓ =Γ = . (9.4c) 
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Note that 2 4G cp cp m cµ ν
µν =  in (9.4b) is just the usual form of the relativistic energy momentum 

relation prior to applying local gauge symmetry.  Expanding (9.4a) in two-part form, we obtain: 
 

5 5 5
5 5520 G cp cp G cp cp G cp cpµ ν µ

µν µ= + + , (9.5) 

 
which we may then combine with (9.4b) and (9.4c) to write the chain of relations: 
 

5 5 5
55

2 4
5G cp cp G cp cp G cp cpm c µ ν µ

µν µ= = = − . (9.6) 

 
As we shall see in section ???, (9.6) can be used to derive Weyl’s local U(1) gauge theory [5], [6], 
[7] from Kaluza-Klein theory, but for the moment, we remain focused on spontaneous symmetry 
breaking to generate fermion rest masses. 
 

Equation (9.4a) leads to a very interesting and important consequence for the five-
dimensional metric line element Sd cd= Τ  defined by: 
 

2 2c d G dx dxΜ Ν
ΜΝΤ ≡ . (9.7) 

 
Specifically, if we further define the five-momentum in terms of mass and motion in the usual way 

by 2 /cp mc dx cdτΜ Μ≡  where 2 2c d G dx dxµ ν
µντ ≡  is the four-dimensional line element, and if we 

then multiply (9.7) above through by 
2 4 2 2/m c c dτ , we obtain: 

 
2

2 4 2 2

2

d dx dx
m c G mc mc G cp cp

d cd cdτ τ τ

Μ Ν
Μ Ν

ΜΝ ΜΝ
Τ = = . (9.8) 

 
Then, comparing (9.8) with (9.4a) which is equal to zero and identical to (9.8), and presuming 
non-zero 0m ≠  and 0dτ ≠ , the five-dimensional infinitesimal line element must also be zero: 
 

S 0d cd= Τ = . (9.9) 
 
This is a very important and useful result, and it is one of the direct consequences of the postulated 
eigenvalue relation (9.2) for the fermion rest mass. 
 

Our first use of this result, will be to break the symmetry of the sine and cosine terms in 
(8.14).  In this regard, what we learn from (9.9) is that any finite five-dimensional proper metric 

interval 
0 0S S Sc d cd c= Τ = = Τ = = Τ   obtained from (9.9) whether of length or time 

dimensionality can only be a constant of integration 0 0S c= Τ .  And this in turn means that Τ  in 

(8.14) is zero up to a constant of integration, and specifically, that 00Τ = + Τ .  So, we now wish to 

use this finding in the most advantageous way possible. 
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Toward this end, starting with ( )cos ωΤ  in (8.14), let us break the symmetry in the plane 

of the angle θ ω= Τ  by imposing the symmetry-breaking constraint ( )cos 1ωΤ ≡ .  This of course 

means that 0 2 nω ω πΤ = Τ =  is quantized, with ( )0, 1,2,3...n = ±  being any integer.  Using c ω= Ż  

and 2λ π= Ż  which we can do because φ  in (8.14) is massless and luminous, this constraint 

2 nω πΤ =  is alternatively formulated in terms of five-dimensional space-dimensioned proper line 
elements S c nλ= Τ =  which are essentially quantized units of five-dimensional length.  As well, 

this means that ( )sin 0ωΤ = , but we need to be careful because there is also a cΤ  in the 

denominator of the ( )sin ωΤ  term in (8.14).   

 
So, for the sin term, we insert the same 0 2 nω ω πΤ = Τ = , then use c ω= Ż  and 2λ π= Ż : 

 

( ) ( ) ( )sin sin 2 sin 2
2

x x x
i i n i n

c nc n

ωω π π
π λ

Σ Σ Σ
Σ Σ ΣΓ Γ Γ− Τ = − = −
Τ

. (9.10) 

 
If we select 0n =  which produces a 0 / 0 , then we deduce from the top line of (8.13) that (9.10) 

will be equal to /i xΣ
Σ− Γ Ż  and not be zero.  But for any other integer 0n ≠ , the above will be 

equal to zero.  So, we break symmetry by restricting n to a non-zero integer ( )1,2,3...n = ± .  With 

this final constraint (9.10) does become zero and (8.14) reduces to: 
 

( ) 1 2
1 2

1 2

1
exp

2

i
i x

i

φ φφ φ φ
φ φ

ΣΣ Σ ∂ + ∂= + − + 
. (9.11) 

 

Having used S c nλ= Τ =  to break symmetry with ( )1,2,3...n = ±  being a positive or negative non-

zero integer, we see that finite five-dimensional proper lengths are quantized integer multiples of 
the wavelength λ  first specified in (8.5) for the now-luminous Kaluza-Klein scalar field φ .  This 

follows a long tradition of quantization based on wavelength fitting which started with Bohr [29] 
and culminated with DeBroglie [30]. 
 

Importantly, with (9.11) we need no longer be concerned with the Dirac operator matrix 

ΣΓ  in φ , because we have broken symmetry so as to effectively diagonalize the operation of this 

operator.  We do however need to be mindful that in breaking symmetry in this way, we have 
eliminated any overt appearance of the scalar frequency / 2f ω π=  or wavelength 2λ π= Ż  or 

energy hf ω= ℏ  of the scalarφ , which were overt in (8.14), and particularly, the dimensionless 

ratio /x λΣ  in (9.10).  This does not mean that the scalar no longer has a frequency or wavelength 
or energy.  Rather, it means that the symmetry breaking has hidden these attributes.  Making note 
of all this, we shall find occasion shortly to reintroduce λ  as the “initial value” for a constant of 
integration we will momentarily come across. 
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 We complete the symmetry breaking in the usual way by again noting that 

( )2 21
1 22*φ φ φ φ= +  defines a symmetry breaking circle, and by orienting the scalar in this circle by 

setting ( )2 0xφ Σ = .  This further reduces (8.14) to its final symmetry-broken form: 

 

1
1

1

1
exp

2
x

φφ φ
φ

ΣΣ ∂= − 
 

. (9.12) 

 
 Now let us return to (9.2) where we defined the fermion rest mass strictly in terms of the 

geometry of 55 0γ γφΓ = +  and the fifth-dimensional component 5cp  of the energy-momentum 

vector.   Into (9.2) we now insert the symmetry-broken (9.12) and restructure, to obtain: 
 

1
5 1 0 0

1

5 5 21
0 exp

2
mccp cp x U

φγ φ γ
φ

ΣΣ 
=   
 

∂+ − + 
 

. (9.13) 

 
Of special interest in (9.13), is that whereas 1φ  has all along been physically dimensionless, now 

in (9.13) this is multiplied by 5cp  which has dimensions of energy.  This means that 5
1cp φ  now 

has precisely the same characteristics as 1hφ  in the scalar field ( )1 2 / 2h h hiφ φ φ= +  employed in 

standard model Higgs field theory, and being an energy-dimensioned scalar field, may therefore 
present the opportunity for a connection with the standard model Higgs field h. 
 
 To pursue this possibility, we first use the Dirac representation of γ Μ  to write (9.13) as: 

  

2 5 5

5 2 5

1
1 0

1

1
01

1

1
exp

2
0

1
exp

2

A

B

cp x cp U

Uc

mc

pcp xm c

φφ
φ

φφ
φ

ΣΣ

ΣΣ

  ∂−  
  =   ∂ −  

  

+  
 
 
 −  

. (9.14) 

 
The eigenvalues are obtained by setting the determinant of the above matrix to zero as such: 
 

( ) ( )
2

22 5 52
1

1

1

1
exp 0

2
cp cpmc x

φφ
φ

ΣΣ
  ∂− − =  

  
− . (9.15) 

 
Restructuring and taking both the ±  square roots, we then obtain the eigenvalues: 
 

( ) ( )2
1

1

2 2

1
5 51

exp
2

c pmc p c x
φφ

φ
ΣΣ ∂± = − 

 
− . (9.16) 

 

The above now presents a differential equation for 1φ  as a function of the five-dimensional xΣ . 
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 To solve this equation, we first restructure a bit, then take the natural log of both sides, then 

use the identity ( )ln ln lnAB A B= +  to obtain: 

 

( ) ( )2

1 1

2

1

1

2 5

5 1

1

2
ln ln exp ln

cp
x

mc
x

cp

φ φφ φ
φ φ

Σ ΣΣ Σ

 
  ∂ ∂ ± = − = −     

  
 

−


. (9.17) 

 

Then we isolate the rightmost term in the above, use / xΣ
Σ∂ = ∂ ∂  and ( )ln / ln lnA B A B= − , then 

further simplify, as such: 
 

( ) ( ) ( ) ( )

( ) ( ) ( )

2 2

1
1

2 22

1

5 2 5

5 5

2

1

2

1

2 5 5

2 21
ln ln ln

ln 2 ln

mc mc

m

cp cp
x

x cp cp

cp cpc

φ φ
φ φ

φ

Σ
Σ

   
∂    − = ± − = ±   ∂    

   

 = ± −


− 

−



−

. (9.18) 

 
Then we finally restructure this into: 
 

( ) ( ) ( )
1

222 1
1

5 5

1 1 1

ln 2 lnmc

x
x

cp cp

φ
φφ

Σ
Σ ∂ = − ∂

  − 
 

−±
. (9.19) 

 
 Now, we set up an integral by converting d∂ →  and placing an indefinite integral sign to 
operate on each side.  And, to simplify the integration, we briefly define the substitute variables 

1y φ≡ , ( ) ( )22 25ln 2 mcA cp
 ≡ ± − 
 

 and 5B cp≡ .  Then we carry out the integration.  Prior to 

the equal sign we employ an integration constant defined by ( )5ln 1/C L≡  with 5L  being a 

constant that has dimensions of length to the fifth power.  Then we conclude by replacing the 
substitute variables, to obtain: 
 

( ) ( )( )

( ) ( ) ( )
( ) ( ) ( )

0 1 2 3 5
0 1 2 3 5

0 1 2 3 5 5

0 1 2 3 5

5

2

1 1
2

22 5 5

22 5
1

5 1

1 1
ln ln ln ln ln ln

1 1
ln ln ln

ln

1 1
ln ln 2 ln

ln 2 ln

dx dx dx dx dx
dx x x x x x

x x x x x x L

x x x x x
dy A By

L A By y

d cp cp

cp

m

m cp

c

c

φ φ
φφ

Σ
Σ

 
= + + + + = + + + + + 

 

 
= = − = −  − 

  = − = ± − −      ± − − 
 

 





. (9.20) 
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The middle line includes using the generalized ( )( )( ) ( )( )1/ ln ln lnA By y dy A By C− − = − + . 

 

 The upshot, now exponentiating each side and again using ( )ln / ln lnA B A B= − , is: 

 

( ) ( ) ( ) ( ) ( )2
0 1 2 3 5

2

15

22 5
22 5

1

5

5

2
ln 2 ln ln

mc cpx x x x x
cp cp

L cp
mc φ

φ

 −  = ± − − = ±      
 

. (9.21) 

 

Exponentiating one final time and isolating the energy dimensioned field 5
1cp φ , and denoting the 

five dimensional coordinate set as xΜ ≡ X , the final result is:  
 

( ) ( ) ( )
0 1

25 2 5
2 3 5

2

1 5
2 exp

x x x x x
c pmp c

L
cφ  

= ± − − 
 

X . (9.22) 

 

The numerator inside the exponent, which we may write in consolidate form as ( )
0 1 2 3 5

5
V x x x x x≡ , 

is a five-dimensional volume with dimensions of length to the fifth power.  Because the argument 
of the exponential is required to be dimensionless, this means that the constant of integration is 

embodied in 5L  is likewise required to have dimensions of length to the fifth power.  This is the 
first of several “initial conditions” we will utilize to determine this integration constant.  Later, 

cognizant that the ratio /x λΣ  in (9.10) and more generally the energy and wavelength of the scalar 
field φ  of (8.14) became hidden when we broke symmetry, we will add to this initial condition an 

expectation 5L  relate in some way to the wavelength of a scalar field, at fifth order. 
 

Now, to see how 5
1cp φ  connects to Higgs fields, we turn our attention obtaining a direct 

expression for the fifth component of the energy momentum, ( )2 55 /cp mc dx cdτ=  which appears 

particularly in the radical above.  
 

10.  The Fifth-Dimensional Component of the Dirac-Kaluza-Klein Energy 

Momentum Vector 
  

To directly study 5cp , recall that (7.28) connects electric charge to motion in the Kaluza-

Klein fifth dimension.  So, using 5 2 2/ /dx cd q mckτ φ=  in (7.28), and also borrowing k from (1.2), 

we obtain: 
 

2
5

2 2

5
2

2
ekq qdx

cp mc
c Gd

c

kφ φτ
= = = . (10.1) 

 
Formally speaking, we have not yet proved that (1.2) is the correct value of k for the DKK metric 
tensor (3.13), see also (3.12).  Rather, we have “borrowed” the value for k which is determined 
using the ordinary Kaluza-Klein metric tensor (1.1) in the five-dimensional Einstein equation.  
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When this calculation is carried out, included amidst the expressions obtained is the term 

combination  1
4g F F g F Fαβ αβ

µα νβ µν αβ−  recognizable as the body of the Maxwell stress-energy 

tensor, see, e.g. [11].  Then, the definition (1.2) is required to match this body with its correct 
coefficients in the stress-energy.  However, the DKK metric tensor does not omit any of the terms 
in (1.1).  Rather, referring to (3.11) for g ηΜΝ ΜΝ=  in view of 0 0Aγ = , it merely adds terms while 

fixing the gauge field via A Aµ γ µ֏  to that of a photon field quantum.  In particular, it adds a 1 to 
2φ  in 55G , and it adds a φ  to 0 0Aγ =   in 05G , while fixing A Aµ γ µ֏ .  Moreover, we proved in 

section 7 how the field strength F A Aµν µ ν ν µ= ∂ − ∂  appears in the DKK equation of motion just as 

it does in ordinary Kaluza-Klein theory following the gauge transformation v vF Fγ µ µ→  reviewed 

prior to (7.12), and at (7.28) how electric charge becomes connected to fifth-dimensional motion 
in the exact same way.  There are additional terms in DKK, but no terms are lost.  So, there is 

every reason to expect that the exact same stress energy body 1
4g F F g F Fαβ αβ

µα νβ µν αβ−  will appear 

when the DKK metric tensor (3.13) is used in the five-dimensional Einstein equation, and that k 
will likewise turn out to be exactly the same as it is in (1.2).  It is for this reason, in advance of a 
detailed calculation of the five-dimensional Einstein equation using the DKK (3.13) which will be 
the subject of a subsequent paper not this paper, that we “borrow” k from (1.2).  But we shall also 
continue to show k in our calculations, in order to also obtain results without this borrowing. 
 

 We then combine (10.1) with 5 2
5

45
5G cp cp m c=  from (9.4c) and 2

55 1G φ= +  from (3.13) 

and (3.12) when g ηΜΝ ΜΝ= , and also borrow (1.2), to obtain: 

 

( ) ( )
422

5 5 2 2
5

4

45
2

4 2
1 1

4
eqq

G cp cp
k

k c
m c

Gφ
φ φ

φ
= + = + = . (10.2) 

 

This easily restructures into a quadratic for 2φ , which we write as: 

 
2 4 2

2

2

4 4
2

2

2
0 1 4 1

e

m c Gm

k

k

q q
φ φ φ φ= − − = − − , (10.3) 

 

which we see includes the very small dimensionless ratio 22 / eGm k q  of gravitational-to-electrical 

interaction strength for a charge q with mass m. 
 
 The next step is to solve the quadratic equation for (10.3).  But first, because q and m in 
(10.3) are the charges and masses of individual fermions given the genesis of (10.3) in the DKK 
Dirac equation (9.3), it will be helpful to rewrite this ratio to facilitate downstream calculation.  
First, we observe that q Qe=  for any individual fermion, where Q is the electric charge generator 

for that fermion, and where the charge strength e is related to the electromagnetic running coupling 

by 2 /ek e cα = ℏ , with 1 /137.035999139α =  being the low-probe value of the running fine 

structure number as reported in [21].  The charge generator 1Q = −  for the , ,e µ τ  leptons, 

2 / 3Q = +  for the , ,u c t  quarks and 1/ 3Q = −  for the , ,d s b  quarks, and have reversed signs for 
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the antiparticles.  Also, we note that the Planck mass 19 21.220 910 1 0  GeV /PM c= ×  using the value 

reported in [31], is defined as the mass for which the coupling strength 2
PGM c≡ ℏ .  Therefore, 

we may calculate that the ratio 22 / eGm k q  in (10.3) may be rewritten as: 

 
2 2 2 2 2

2 2 2 2 2 2 2 2
e e P P

Gm Gm Gm Gm m

k q Q k e Q c Q GM Q Mα α α
= = = =

ℏ
. (10.4a) 

 
For the square root of this, which will also be of interest, we write: 
 

2

2
e e e P

Gm G m G m Gm m

k q k q k Qe Q c Q Mα α
= = = =

ℏ
 (10.4b) 

 
without the ±  that regularly arises when taking a square root, because masses such as m and PM  

are always taken to be positive numbers, because α  is always taken to be a positive 

dimensionless measure of charge strength, and because it is important to maintain the proper 
positive or negative sign for Q without washing it out with a ± .  The above enables us to readily 
use each fermion’s / Pm M  ratio, as well as to directly account for its positive or negative Q. 

 
 Solving with the quadratic equation, and using (10.4), the positive and negative roots are 
found to be at: 
 

2 22 4 2 2
2

2 4 2 22 2 2 2

22 2

2
16 16

8
1 1 4 1 1 1 1

2 8
e P

e P

k Q Mm c Gm m

m c Gm k m Q

qq k

k q Mq

αφ
α±

     
= ± + = ± + = ± +     

     
     

. (10.5) 

 

Placing this into 2φ  in (10.1) we arrive at two corresponding values for 5cp , namely: 

 
2 4 2 2 2

5

22 4 2

22

22

2 2

2
4 4

1 1 4 1

1

16 11 1 1 6
e P

e P

k
c

m c Gm mc m mc

k q Q Mm c G
p

q k

q q

m m

k Q M

α
α

± = = =
± + ± + ± +

 (10.6) 

 

Applying what we now write as ( )2 55 /cp mc dx cdτ± ±= , it is also helpful to obtain: 

 
2 2

2

5

2 4 2 2

2 2

2

2 2

2
4 4

1 1 4 1

1 1 1

6 1 61 11 1
e P

e P

mc Gm m

k q Q Mm c

d

Gm m

k Q M

x k

cd q k

q q

ατ
α

± = = =
± + ± + ± +

 (10.7) 

 

for the “motion” 5 5/ /dx cd dt dτ τ± ±= , which is really a rate of time progression through the 

timelike fifth DKK dimension.  Also, because the DKK metric tensor component 2
55 1G φ= +  for 
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g ηΜΝ ΜΝ= , see (3.11), which we now write as 2
55 1G φ± ±= + , it is also useful to employ (10.5) to 

write these two solutions as: 
 

2 4 2

55 2 4 2

2 2 2

22 2
2

2 2

2 2 2

2
1 1 1 1 4 1 1 16

16
8

1
2 8

1 1 1

e

e

P

P

km c Gm
G

m c Gm k

Q M m

m Q

qq k

M

k q q

α

φ

α

± ±

   
= + = + ± + = + ± +   

   
   

 
= + ± + 

 
 

, (10.8) 

 

 Now, the ratio 2 2 2 2216 / 16 / 1e PGm Qqk m Mα= ≪  inside the radicals above is a very small 

number for all of the elementary fermions with an electrical charge 0Q ≠ , because the ratio 
2 2/ Pm M  is on the order of 

4010−
 for all of the known fermions.  Moreover, even if we had not 

“borrowed” from (1.2), we likewise expect 22 4 24 / 1km qc ≪  to be a very small number.   

Therefore, it is helpful to use the first three terms of the series expansion 
2 2 41 1

2 81 1x x x+ = + − +…  in each of (10.5) through (10.7) to obtain: 

 
2 4 2

2

2 4 2 4 2 2

2 2 2 2 2

2 2

2 22 2 2

2 2 2 2

2 2

1
2 8 8

1

1

2
4

4
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P
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q qq q k
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Q M Q M m

m Q

q

m M

φ

α α
α

± + − +… + − +
  

= ± = ±   
 

…

+ − +

 


± …


=  

 

, (10.9) 
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, (10.10) 

 
5
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2 2

22 22 4 2 4 2 2

2
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1 2 2 1 8 32
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1 1
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q
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. (10.11) 
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 Now let’s consider the separate ±  solutions originating when we applied the quadratic 

equation to (10.3), as well as certain inequalities.  Using 22 / 1Pm M ≪  which is valid to a 1 part 

in 1040 approximation, (10.9) separates into: 
 

2 2
2

2 4

22

2 2 2

2 4 2
2

2

22 2

1
4 4

1 4 11

e P

P

k Q M

m c Gm m

m

qq

k

k

q

c m

Q M

αφ

φ
α

+

−

≅ = =

≅ − + = − + ≅ −

≫

. (10.12) 

 

Likewise, also using ( )1/ 1 1x x− ≅ +  for 1x≪ , (10.10) separates into: 

 
2 4 2

5 2 2 2 2 2

2

5 2 2 2 2

2 2

2

2 2 2

1 1

2 2

1

1

2

e P P

e P
P

k
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qq
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m c Gm m
mc mc m c mc

k q Q M Q M

k Q M
mc mc Q M c mc

mc Gk mm

α α

α α

+

−

≅ = = =

≅ − = − = − = −

≪

≫

. (10.13) 

 
And for (10.11) we similarly obtain: 
 

5

25

2 2

2

2 4 2

2 2

1 1
1

2 2

1
e P

e P

dx k

cd q

qdx q

c

mc Gm m

k q Q M

k Q M

m c Gmd k m

τ α

τ
α

+

−

≅ = =

≅ − = − = − ≫

≪

. (10.14) 

 

Also, because the DKK metric tensor component 2
55 1G φ= +  for g ηΜΝ ΜΝ= , see (3.11), which 

we wrote as 2
55 1G φ± ±= +  at (10.8), it is also useful to use (10.12) to write the two solutions as: 

 
2 2 2 2

55 2 4 2 2 2

2

2

4 2

2
2

2

55 2

2

2
2

2 22

4 4 4
1 1 1 1 1

0 41 4 1

e P P

e P

k Q M Q M
G

m c Gm m m

m c Gm m
G

k Q

qq

k

k

q Mq

α αφ

α
φ

+ +

− −

= + ≅ + =

<

+ = + ≅

= + ≅ = = ≪

≫

. (10.15) 

 
Note also, referring to (3.11) through (3.13), that (10.12) can be used in the 5 5G Gµ µ=  metric 

tensor components.  With 20/ 10PM m ≅  roughly, 5 20/ 10dx cdτ− ≅  in (10.14) reproduces the usual 

result from ordinary Kaluza-Klein theory, see toward the end of [12].  However, 55G − , albeit very 

small, still retains a timelike rather than a spacelike signature, so that 5 5/ /dx cd dt dτ τ− −=  is a 

very rapid rate of fifth dimensional time flow, and not a space velocity on the order of 
2010 c . 

 
 Finally, we return to (9.22) and use the next-to-last expression in the two solutions (10.13) 
to likewise split this into: 



Jay R. Yablon, September 4, 2018 

50 
 

 
2

0 1 2 3 5 0 1 2 3 5

1 5 5

2
0 1 2 3 5 0 1 2 3
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5
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2
1 5

2 4 exp 2 exp

1
2 1 exp e
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4 2

P
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m
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x x x x x x
c

Q M

Q M
m

x x x x
cp

L L

x x x x x i x x x x x
cp

m
c M c

L L
Qφ

α

α α

φ+

−

     
= ± − − ≅ ± −      

    

     
= ± − − ≅ ± −      

    

. (10.16) 

 

Recall again that these two solutions for 1
5cp φ+  and 1

5cp φ− , represent the two roots solutions to the 

quadratic (10.3) which we obtained starting at (10.5).  We note that up to parts per 1040 the former 

is independent of the fermion charge generator Q and α , while the latter is not.  As we shall see 

in the next section, the former solution applies in the Fermi vacuum with an energy vev 

246.219650 eV8 Gv =  rooted in the Fermi coupling via ( )322 FG v c= ℏ  [21], while, the latter 

applies in the Planck vacuum in which the Planck energy 2 191.220 910 1 0  GeVPM c = ×  [32] is 

established from the Newton coupling via 2
PGM c≡ ℏ . 

 

PART II: THE DIRAC-KALUZA-KLEIN SCALER, THE HIGGS FIELD, 

AND A THEORY OF FERMION MASSES, MIXING ANGLES AND BETA 

DECAYS WHICH FITS THE EXPERIMENTAL DATA 
 

11.  Connection between the Dirac-Kaluza-Klein Scalar and the Higgs Field 
 

 At the outset it should be noted that ( )1
5cp φ+ X  and ( )1

5cp φ− X  in (10.16) are both energy-

dimensioned scalar fields, as is the Higgs field ( )h X .  Shortly, we shall study the volume element 

( )
0 1 2 3 5

5
V x x x x x=  in detail, but first let us glean some basic data from (10.16).  To begin, recall that 

5L  arose at (9.20) via the constant of integration ( )5ln 1/C L≡ , with a length to the fifth power 

dimensionality establish as an “initial condition” to provide a proper argument to the exponential 
in view of ( )5

V  also having a fifth order length dimension.  We also recall that in the standard 

model, we expect a fermion (f) rest energy 2
fm c  to be related to 246.219650 eV8 Gv ≅  by the 

relation 2 / 2f fm c G v=  where fG  is an arbitrary coupling not provided by presently-known 

theory and only deducible by knowing the observed fermion mass, see, e.g., [15.32] in [20].  So 

for the moment, irrespective of what number 5L  actually is or what ( )1
5cp φ+ X  and ( )1

5cp φ− X  

physically represent, for a coordinate assignment ( )0,0,0,0,0xΜ = =0  at an origin the solutions 

where ( )( )5

5
exp / 0V L− =  (10.16) reduce to: 

 

( )1

1
1

2

5 2

2

5 2 ff

P

cp G v

cp

c

i

m

M c Q

φ

φ α
+

−

= ±

= ±

= ±0
, (11.1) 
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where we have replaced the approximation sign ≅  in (10.16) with an equal sign by recognizing 
that the 1 part per 1040 discrepancy is exceptionally small and unlikely to be observable. 
 

Conversely, again irrespective of 5L , for a coordinate assignment with ( )
5

5
/ 1V L ≫ , the 

exponential will approach zero, and (10.16) will reduce to: 
 

( )( )
( )( )

5

1 5

5
1

55

5
/ 1 0

/ 1 0

cp V L

cp V L

φ

φ

+ +

− −

=

=

≫

≫

, (11.2) 

 

So, these energy-dimensioned fields ( )5
1 / 2cp φ+ X  and ( )5

22cp φ− X  are equal to zero far from 

the origin, while at the origin, they are equal to 2
fm c±  and 2

PM c Q α±  respectively, where 2
fm c  

is a fermion rest energy and 2
PM c  is the Planck energy. 

 

Now, the Higgs field ( )h X  is a scalar field with dimensions of energy.  Therefore, as with 

any energy field, the physics transpiring in this field will favor states of lower energy and disfavor 
states of higher energy.  Of course, Heisenberg uncertainty does not permit us to talk about the 
“position” of a fermion in more than a statistical way, and so we cannot technically say that a 

fermion is “at a given coordinate” xΜ  in the five-dimensional space.  But we can say that if the 
Higgs field provides energy “wells” for the fermions from which the fermions also obtain their 
rest masses, then the fermions will find “nests” in which they are most likely to situate at 
energetically-minimized locations in the Higgs field.  Additionally, in the standard model, the 
initial scalar field which we denote by hφ  to distinguish from the Kaluza-Klein field φ , is given 

the following assignments at the various steps of symmetry breaking:  
 

( ) ( )1 1 1
1 2 12 2 2h h h hi v hφ φ φ φ= + = = + . (11.3) 

 

That is, we first assign ( )1
1 22h h hiφ φ φ= + .  Then we break symmetry in the 2 2

1 2h hφ φ+  circle by 

setting 2 0hφ = .  Then, working from the leading terms of a potential 2 2 41 1
2 4h hV µ φ λφ= +  for the 

scalar field, we find that this potential has minima at 2 /h vφ µ λ= ± = ± − .  Finally, we 

perturbatively expand around the minima at h vφ =  using the Higgs field h which represents 

quantum fluctuations about the minima.  Note that V has physical dimensions of energy to the 
fourth power, because in the simplest setting this is part of a Lagrangian density T V= −L  with 

( )( )1
2 h hT µ

µφ φ= ∂ ∂  and V as above.  And in more advanced settings where boson masses are 

generated, ( )22 † †
h h h hV µ φ φ λ φ φ= +  and ( ) ( )†

h hT D Dµ
µφ φ=  with D iqAµ µ µ= ∂ + , but V still 

reduces to the simpler form 2 2 41 1
2 4h hV µ φ λφ= +  after symmetry is broken with (11.3) because of 

the 1/ 2   coefficient being squared or raised to the fourth power.  This is all nicely reviewed in 
section 14.6 through 14.9 of [20]. 
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Most importantly for the present discussion, because h vφ = ±  are the minima of the 

potential V and because 246.219650 eV8 Gv =  is a constant energy number, the expectation value 

( )1 1

2 2h v h vφ = ± + = ± , which means that the expectation value of the Higgs field 0h = .  

This of course makes sense because the Higgs field is defined to represent quantum fluctuations 
about the minima in the potential V.  But by being very explicit about all of this, now we see how 

to assign 5cp φ  to the respective Higgs fields in both the Fermi and the Planck vacuums. 

 

Specifically, for both solutions (10.16), at ( )
5

5
/ 0V L =  the exponential 

( )( )5

5
exp / 1 0V L− = >  is above zero.  Further, where ( )

5

5
/ 1V L ≫ , the exponential 

( )( )5

5
exp / 0V L− =  drops to zero.  So, if we want the origin at xΜ = 0  be the most energetically-

favorable locale for a fermion to “nest” at, we must choose the – signs from the ±  in (10.17) for 

both solutions.  Then, following this choice of sign, we assign ( ) ( )1
5cp hφ+ +≡X X  and 

( ) ( )1
5

2
icp hQ αφ− −≡X X , with h+  and h−  representing Higgs field associated with each 

respective solution.  As a result, also showing 2 / 2f fm c G v= , (10.17) now become: 

 

( ) ( ) ( )

( ) ( )

0 1 2 3 5
5 5

5 5 5

0 1 2 3 5
5
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2
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2
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2 exp 2 exp exp

2 exp 2 exp

f ff

P P

V Vx x x x x
h Gm c m c v

L L L

Vx x x x x
h M c M

L L
c

+

−

    
= − − = − − = − −             

  
= − − = − −       

X

X

. (11.4) 

 

The latter assignment includes Q α , to make the background field ( )h− X  independent of the 

specific charge generator Q of any fermion which may be situated in this field, a factor of i to 
maintain a real relation between h−  and the energy-times-exponential term, and a factor of ½ to 

have the exact same form in both solutions with the sole difference being fm  in the former and 

PM  in the later.  Now let’s examine the evidence in favor of these assignments. 

 
 With these assignments, the Higgs fields will have minima at the origin which means the 
origin will be the most energetically-favorable locale for fermions to nest at.  So now, given the 

energy minima at the origin, we can think of a fermion being situated at the origin xΜ = 0  with 

the highest statistical likelihood.  As to the handling of the 1

2
 factor, we observe from (11.3) that 

following symmetry breaking, ( )1

2h v hφ = +  and that the energy in the potential 

2 2 41 1
2 4h hV µ φ λφ= +  is obtained from hφ  in which 1

2
 is the coefficient of v h+  and so “cuts” the 

energies of v and h by this same factors as regards their entry into physical energies.  Thus, at the 

origin where a fermion is most likely to nest, ( )1

2

2
fh m c+ = −0  and ( )1

2

2
Ph M c− = −0 , while far 

from the origin ( )( )5

5
/ 1 0h V L+ + =≫  and ( )( )5

5
/ 1 0h V L− − =≫ .  For both solutions, far from a 



Jay R. Yablon, September 4, 2018 

53 
 

fermion the Higgs fields have zero energies which are consistent with their expected values 

0h =  and 0H = .  Conversely, at the origin where we expect fermions to nest, we have 

( ) 21

2
0fh m c h+ + = =0  and ( )1

2

2 0Ph M Hc− + = =0 , with the energy effect of the Higgs field 

perturbed below its expected value, but in a fashion that precisely counterbalances the rest energy 
it has given to the fermion for h+ , and that counterbalances the Planck energy for h− .  That is, for 

h+ , when and where a fermion “embeds” or “nests” itself in a Higgs field, it appropriates an energy 
2

fm c  out from the Higgs field for its own rest energy, and as a result, it creates a perturbation 

which drops the Higgs field down to an energy 2
fm c− .  This is energy conservation appearing in 

yet another guise. 
 

 As to the h−  solutions, it is the serendipitous appearance of the Planck energy 2
PM c  which 

leads to us conclude that h−  represents a Higgs field in the Wheeler / Planck vacuum [3], [33], 

where we expect that the rest masses of all fermions will converge and become synonymous with 
the Planck mass based on our limited understanding of Grand Unified Theories which include 

gravitation.  In this solution, each fermion similarly takes an energy 2
PM c  for itself from the 

Higgs, and the Higgs itself compensates by dropping to an energy 2
PM c− .  Again, energy 

conservation in another guise.  It should also be noted that the geometrodynamic Wheeler / Planck 
vacuum comes about when – on statistical average – an inordinate number of Planck-energy 
fluctuations are separated from one another by the Planck length, whereby the negative 
gravitational energy arising from the Newtonian gravitational interactions of these fluctuations 
precisely cancels the energies of the fluctuations themselves, creating this geometrodynamic 
“vacuum.”  Later, following Hawking’s [34], it became understood that the black holes inherent 
in this vacuum have the statistical character of a blackbody spectrum.  Now, the association in 

(11.4) and particularly ( )1

2

2
Ph M c− = −0  is suggestive of the Higgs field h−  being synonymous 

with the quantum gravitational field. 
 
The aforementioned energy conservation is seen explicitly by observing that when we 

integrate (11.4) from zero to infinity over the entire five-dimensional volume ( )
0 1 2 3 5

5
V x x x x x= to 

ascertain the total energy taken out of the Higgs field to give mass to a fermion.  Again, recognizing 

from ( )1

2h v hφ = +  and 2 2 41 1
2 4h hV µ φ λφ= +  the we calculate energies by cutting h by a factor of 

1

2
, we find that: 
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So indeed, with the association ( ) ( )1
5cp hφ+ +≡X X  made in (11.4), and with choosing the – signs 

in (10.17) to place the energy minima at the origin, we find that a fermion with a mass 2
fm c  gains 

this mass by extracting a total energy 2
fm c  out of the Higgs field.  That is, integrated over the 

entire expanse of ( )5
V , the perturbations in the Higgs field all sum to 2

fm c− , with the Higgs field 

thereby having given up precisely the amount of energy which the fermion acquired for its rest 

energy.  Likewise with ( ) ( )1
5

2
icp hQ αφ− −≡X X  for 2

PM c  and 2
PM c−  in the Planck vacuum.  It 

is because of these results, that the evidence supports the identifications of ( ) ( )1
5cp hφ+ +≡X X  and 

( ) ( )1
5

2
icp hQ αφ− −≡X X  with the Higgs fields in (11.4). 

 

 Next, let us combine ( )1

2h v hφ = +  from (11.3) with each of (11.4) to obtain: 
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= + = − −    

  

X

X

. (11.6) 

 

What is of interest now, is the expression for hφ +  written in terms of the coupling 2 1

2f fm c vG=  

of the fermion rest mass to the vacuum.  This is the fermion counterpart of the coupling  form 
2 1

2bM c vg=  by which massive vector bosons obtain their masses in the standard model.  Setting 

( )
5

5
/x V L=   and 2 /hy vφ +=  this function takes the mathematical form of ( )1 expfy G x= − − .  

For 1x≫  this function has a flat line at 1y = .  Near the 0x =  origin where a fermion is 

energetically most likely to situate this function dips into an energy well with a minimum 
1 fy G= −  at the origin.  For light fermions such as the electron, and in fact, for all fermions except 

the top quark, which all have empirical values 1fG ≪ , this energy well is only mildly depressed 

below 1y = .  But for the top quark which has 1tG ≅  slightly less than 1, in a result of significance, 

this energy well dips almost down to zero.  Let us now take a closer look at this. 
 

 Using the empirical value 174.103584/ 2 eV7 Gv = , and using empirical mass data from 

PDG’s [35], the dimensionless couplings 2 1

2
/f fG m c v=  for the up, charm and top quarks are: 

 
0.000003 0.00014
0.000002 0.000200.000013 0.00732 0.99366 0.00230; ;u c tG G G+ +

− −= = = ± , (11.7a) 

 
while the down, strange and bottom quarks these are: 
 

0.000003 0.000052 0.00023
0.000002 0.000017 0.00017; ;0.000027 0.000546 0.02401d s bG G G+ + +

− − −= = = . (11.7b) 
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And using the PDG mass data from [36], for the three charged leptons we obtain: 
 

6 14 4 11 72.935028288 10 1.8 10 6.06870758 10 1.4 10 0.010205; 8 9 10; 6.eG G Gµ τ
− − − − −× ± × × ± × ± ×= = = . (11.7c) 

 
In (11.7a) we see clearly how tG  is just under 1, irrespective of the error bars.   In other words, 

although tG  is close to 1, it is not possible for this to be equal to 1, because such a result would be 

outside the errors bars.   
 

As we start speak about quark masses and their “errors,” it must be noted that the error bars 
of the quark masses in [35] are not just ordinary experimental errors owing to limitations in the 
resolutions of observational equipment.  Rather, as elaborated in [37], “Unlike the leptons, quarks 
are confined inside hadrons and are not observed as physical particles.  Quark masses therefore 
cannot be measured directly, but must be determined indirectly through their influence on hadronic 
properties.  Although one often speaks loosely of quark masses as one would of the mass of the 
electron or muon, any quantitative statement about the value of a quark mass must make careful 
reference to the particular theoretical framework that is used to define it. It is important to keep 
this scheme dependence in mind when using the quark mass values tabulated in the data listings 
(original emphasis).”  For the moment, we will speak “loosely” about these error spreads, and later 
on, will discuss these spreads in more precise terms in relation to observational schemes. 
 

It is illustrative to show the graph of ( )φ + X  in (11.6) for the top quark which is by far the 

most-massive elementary fermion, and by way of contrast, for the electron which is the lightest 
fermion.  These two plots are shown below: 
 

 
 

Figure 1: Higgs field extraction of rest energy from the Fermi vacuum, for the top quark 
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Figure 2: Higgs field extraction of rest energy from the Fermi vacuum, for the electron 

 
We see in these two graphs both based upon the underlying mathematical relation 

( )1 expfy G x= − − , that the curves have exactly the same shape, culminating in an energy well 

minimum at the origin of the Higgs well where the fermion is energetically most likely to be nested.  
But the energy extracted to give the electron its rest mass only causes a very slight dip down to 
1 / .999997h v++ ≅  at the origin.  In contrast, at the center of the top quark error-bar range the 

energy needed to give the top quark its mass depresses to 0.006 4/ 1 31 th v G++ = − ≅  at the origin, 

only slightly larger than zero.  That is, at the origin of the Higgs well for the top quark, almost all, 
but not all, of the energy has been removed from the vacuum to give the top quark its rest mass.  
Moreover, in accordance with (11.5), all of the energy extracted from the vacuum in this way, 
integrated over ( )5

dV  from the origin out to infinity, its precisely equal to the rest energy of each 

fermion, and likewise for all fermions.  So, the fermions do acquire their rest masses by quite 
literally sucking out of the Fermi vacuum via the Higgs field, an energy exactly equal to their rest 
energies.  Finally, the very recent observation at CERN of a clear affinity between the Higgs boson 
and the top quark [22], [23], [24] is very graphically understood on the basis of Figure 1 as a 
manifestation of how the top quark – uniquely amongst all fermions given the empirical data in 
(11.7) – draws almost all of the energy out of the Fermi vacuum, in its immediate vicinity. 
 
 This insight about how the top quark removes almost all of the energy from the Fermi 

vacuum, while very interesting in its own right and illustrative of the observed tH H  affinity, 
points toward a deeper meaning that leads directly to a theory of why the fermions actually have 
the rest masses that they do.  This is the subject of the next section. 
  

12.  Theory of Fermion Rest Masses and Mixing: Up, Charm and Top 
 
 It is highly intriguing in its own right that the mass coupling 0.99366 0.00230tG ±=  for 

the top quark is very close to 1 but just under 1, and also, that this closeness to 1 is outside the 
error bars.  In other worlds, there is no possibility that 1tG =  and simply needs to be established 
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as such by more accurate testing.  This leads us to raise the question whether the sum of the up-
plus-charm-plus-top rest energies might yield total energy for which the coupling is equal to 1 
within experimental and scheme-dependent errors, and if so, whether this could be of theoretically 
significances as the “tip of the spear” toward developing a viable theory that solves the presently-
unsolved mystery puzzle of why the fermions have the rest masses that they do. 
 

 It turns out that if we calculate this coupling 2 1

2
/f fG m c v=  for the sum of the three 

isospin-up quark masses, and account for the error bars in all three, we obtain:  
 

( ) 0.0024439
0.0025008

2 1

2
1.000997 , i.e. 0.998496 1.00344/ 1u c t u c t u c tG m m m c v G+ + +

+
−+ = + + = < < . (12.1) 

 
So, given the errors, it is possible that the sum of these three quark masses is exactly equal to 1

2
v

and that this equality is a true relation of physical significance.  If this is so, then because 
246.2196508v =  is known with greater precision than any of the up, charm or top quark masses, 

we first of all have an immediate resource for narrowing the range of error in the top quark mass, 
down to the error range of the charm quark.  This provides immediacy in its ability to be confirmed 
or contradicted by more-precise experiments to measure the top quark mass.  Secondly, if this 
equality is true, then it becomes possible to account for all three quark masses using bi-unitary 
CKM-style mixing rotations acting on a mass matrix, which possibility has been entertained on 
and off for four decades, see., e.g., [38].  Third, once these bi-unitary transformations are 
established for the isospin-up quark masses, similar transformations may be established for the 
isospin-down quarks, and for the charged leptons.  Fourth and finally, once such transformations 

have been established, we are able to revisit the potentials 2 2 41 1
2 4h hV µ φ λφ= +  for the Higgs theory 

scalar, and reestablish these in a fashion that ties together all of the foregoing fermion masses with 
the very tiny masses of the neutrinos.  Let us now take up each of these four matters in turn. 
 
 First, let us use the empirical data that 0.998496 1.003441u c tG + +< <  to postulate that in 

fact, this coupling 
 

( ) 2 1

2
/ 1u c t u c tG m m m c v+ + = + + ≡ , (12.2) 

 
based on this being true within experimental and scheme-dependent errors.  Directly in terms of 
rest energies, this means: 
 

2 2 2 1

2
174.1035847 GeVu c tm c m c m c v+ + ≡ = . (12.3) 

 

The precision in (12.3) for v is far greater than the precision in either .0005
.0004.0022 GeVum +

−=  or 
.025
.0351.275 GeVcm +

−= , as well as in 173.0 0.4 GeVtm = ± , see [35].  So, we need not be concerned 

with the precision in v, but instead will account for the errors particularly in cm .  Combining (12.3) 

with the known up and charm mases we deduce that: 
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0.0354
0.02

2 2

2

55
2174.1035847 GeV 172.8264 GeV;

i.e. 172.8009 172.8618 GeV

t c u

t

m c m c m c

m c

+
−− =

<<

= −
. (12.4) 

 
which is more accurate than the currently-known range 172.6 173.4 GeVtm< <  by two-to-three 

orders of magnitude.  This result in (2.4) is a prediction which can and should be tested in 
experiments designed to obtain a more precise direct measurement of the top quark mass.  If (12.4) 
is true, then it is also convenient for the next step to collect all of these quark masses together: 
 

2 .0005 2 .025 2
.0004 .035

0.0354
0.0255. 172.8264 GeV0022 GeV; 1.275 GeV;u c tm c m c m c− −

+
−

++= = = . (12.5) 

 
We may also revise the top quark couplings in (11.7a) as such: 
 

0.000003 0.00014 0.00020
0.000002 0.00020 0.000150.000013 0.00732 0.99266; ;u c tG G G+ + +

− − −= = = , (12.6) 

 
 Second, taking the foregoing to be true, and also given what we just learned in relation to 
Figure 1, let us now form the following hypothesis of how these three fermions obtain their mass:  
In Figure 1, at the origin of the Higgs field energy well where the top quark is energetically most 
likely to be seated, almost all of the energy, but not quite all of the energy, is drawn out of the 
Fermi vacuum and used to give the mass to the top quark, via the energy integration calculated in 
(11.5).  But if there was to exist a single quark with the sum (12.3) of all three quark masses – or 
if the masses of all three quark masses could be transformed into the mass of a single quark – then 
that single quark would draw the entirety of the energy out of the Fermi vacuum at the origin of 
its Higgs field energy well.  And in fact, the type bi-unitary mass matrix transformations discussed 
in [38] provide the precise vehicle for this to occur.   
  
 Specifically, we know there is a Fermi vacuum with an energy that has an expected value 

246.219650 eV8 Gv = , and that fermions acquire their masses by drawing energy out of this 

vacuum.  So one means for the top, charm and up quarks to acquire their masses would be for all 
three quark to start out formally massless (i.e. with two degree of freedom), for the symmetry to 
be broken in the manner reviewed leading to (9.12) whereby the top quark gains a mass of 

2 1

2
174.1035847 GeVtm c v≡ =  which depressed the vacuum down to a rock bottom 0 GeV at the 

origin of the Higgs well, and where some of this mass is then rotated over to the charm and up 

quarks via a bi-unitary transformation operating on a mass matrix with the rest energies 2
tm c , 

2
cm c  and 2

um c  on its diagonal.  Specifically, let us begin with a mass matrix defined by: 

 
1

2

2 2

174.1035847 GeV0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

t t c t u

uct t c c c u

t u c u u

m m m m m v

M c m m m m m c

m m m m m

          ≡ = =     
         

 . (12.7) 
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Then, let us transform this into †
uct uct uctM M U M U′ ′→ = , where U is a unitary matrix † 1U U = .  

The important point to note, is that under a bi-unitary transformation the trace ( ) ( )tr truct uctM M ′=  

is preserved so that 2 2 2 1

2u c tm c m c m c v+ + ≡  in (12.3) will remain true not matter what specific 

angles or phases are used in this transformation. 
 
 The next deliberation is what to use for the unitary matrix U.  As a 3x3 matrix this could 
have up the three real angles 21θ , 32θ , 31θ  and one imaginary phase δ  in the same manner as the 

CKM mixing matrix used to characterize generation-changing weak interaction beta decays for 
both quark and leptons.  But the up, charm and top masses represent three unknown mass 
parameters.  The relation (12.3) reduces this down to two unknown parameters, plus the Fermi vev 
which is known.  So, we ought not use more than two real angles without a phase (or more 
precisely, with 0δ =  so exp 1iδ = ) to re-parametrize these two unknown masses, so that we 

simply trade two mass unknowns for two angle unknowns.  For this purpose, we may choose any 
two of 21θ , 32θ , 31θ  and structure the matrices accordingly.  Specifically, we may choose a first 

parametrization with 32θ  and 21θ , whereby some of the mass in 2 1

2tm c v=  first is rotated into 

2
cm c  , then “downward cascades” into 2

um c .  The second parameterization is to use 32θ  and 31θ  

where the top quark mass is “distributed” to both the charm and up quarks.  The third alternative 
is to use 31θ  and 21θ  where the top mass rotates into the up quark, then “upward cascades” into the 

charm quark.  For reasons that momentarily become apparent, it is fruitful to develop both the 
“downward cascade” and the “distribution” parameterizations, while the third parameterization 
turns out to be duplicative of the first but with a 90-degree rotation of one of the angles. 
 
 Using the “downward cascade” parameterization, this bi-unitary transformation is: 
 

2 2 † 2

1

232 32 32 32

21 21 32 32 32 32 21 21

21 21 21 21

2
32 32 32 21 32 32 21

21
32 32 21 32 212

0 01 0 0 c s 0 c s 0 1 0 0

0 c s s c 0 0 0 0 s c 0 0 c s

0 s c 0 0 1 0 0 0 0 0 1 0 s c

c c s c c s s

c s c s c

uct uct uctM c M c U M c U

v

v

′→ =

 −     
      = − −      

       −      

= 2 2 2
32 21 21

2 2 2
32 32 21 32 21 21 32 21

s c s

c s s s c s s s

t t c t u

t c c c u

t u c u uI

m m m m m

m m m m m c

m m m m m

 ′ ′ ′ ′ ′ 
   ′ ′ ′ ′ ′=   
    ′ ′ ′ ′ ′   

. (12.8a) 

 
So now the energy 1

2
v  from the Fermi vacuum that started out all in the top quark has been rotated 

into and shared with the charm and up quarks.  With the “distribution” parameterization we obtain: 
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2 2 † 2

1

231 31 32 32 32 32 31 31

32 32 32 32

31 31 31 31

2 2 2
32 31 32 32 31 32 31 31

1
32 32 31 32

0 0c 0 s c s 0 c s 0 c 0 s

0 1 0 s c 0 0 0 0 s c 0 0 1 0

s 0 c 0 0 1 0 0 0 0 0 1 s 0 c

c c c s c c c s

c s c s

uct uct uctM c M c U M c U

v

v

′→ =

 − −     
      = −      

       −      

= 2 2
2 32 32 31

2 2 2
32 31 31 32 32 31 32 31

c s s

c c s c s s c s

t t c t u

t c c c u

t u c u uII

m m m m m

m m m m m c

m m m m m

 ′ ′ ′ ′ ′ 
   ′ ′ ′ ′ ′=   
    ′ ′ ′ ′ ′   

. (12.8b) 

 
 There are three mathematical points to note in (12.8).  First, as already mentioned, the trace 

is preserved under (12.8), because 2 2 2 2 2
32 21 32 21 32s s s c c 1+ + =  in the former and 

2 2 2 2 2
32 31 32 31 32c c c s s 1+ + =  in the latter.  Thus, 2 2 2 2 2 2 1

2u c t u c tm c m c m c m c m c m c v′ ′ ′+ + = + + = , so 

we also preserve (12.3) as required.  Second, all of the square root relations in the off-diagonal 

positions are preserved, viz: 2 2 2
32 32 21c s ct cm m′ ′ = , 2 2 2

32 32 21c s st um m′ ′ =  and 4 2 2
32 21 21s c sc um m′ ′ =  in 

the former while 2 2 2
32 32 31c s ct cm m′ ′ = , 4 2 2

32 31 31c c st um m′ ′ =  and 2 2 2
32 32 31c s sc um m′ ′ = , whether 

calculated from the diagonal or the off-diagonal elements.  Third, the masses and their associated 

couplings related by 21

2 f fvG m c=  are the same no matter which parameterization scheme we 

use, but that the angles are defined differently depending on the scheme.  For this reason we have 
denoted all of the angles on the final lines of (12.8) by the I and II subscripts outside the matrix 
containing the sines and cosines of these angles.  Note also, if we use the mass-to-vacuum coupling 

relation 21

2 f fvG m c= , then dropping the primes of the transformations in (12.8) from here on, 

we can explicitly identify these couplings to be: 
 

2
32 32 32 21 32 32 21

2 2 2
32 32 21 32 21 32 21 21

2 2 2
32 32 21 32 21 21 32 21

c c s c c s s

c s c s c s c s

c s s s c s s s

t t c t u

uct t c c c u

t u c u u I

G G G G G

G G G G G G

G G G G G

   
   = =   
       

, (12.9a) 

 

2 2 2
32 31 32 32 31 32 31 31

2
32 32 31 32 32 32 31

2 2 2
32 31 31 32 32 31 32 31

c c c s c c c s

c s c s c s s

c c s c s s c s

t t c t u

uct t c c c u

t u c u u II

G G G G G

G G G G G G

G G G G G

   
   = =   
       

. (12.9b) 

 
Note, that for both of these, the trace tr 1uct t c uG G G G= + + = .  This is another refection of (12.3). 

 
Now we turn to the empirical data and calculate these angles to see if they bear any relation 

to any other known empirical particle data.  Specifically, we use the revised mass coupling data in 
(12.6) to calculate 32Iθ  and 21Iθ  in (12.9a), and  32IIθ  and 31IIθ  in (12.9b).  From (12.9a) we first 
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deduce 2
32cI tG= , then ( )2 2 2

21 32 32c / s / 1 cI c I c IG G= = − , then ascertain the angles in both radians 

and degrees.  From (12.9b) we likewise deduce 2
32s II cG=  followed by 

( )2 2 2
31 32 32c / c / 1 sII t II t IIG G= = −  followed by the angles.  In this way, we calculate that: 

 
0.00085 0.04893
0.00120 0.06874

0.00084 0.04801
0.00119 0.06801

0.00403 0.23071
0.00343 0.19673

0.00038
0.000

32

32

2

31 34

1

0.08575 rad 4.91338

0.08568 rad 4.90914

0.04152 rad 2.37864

0.00357 ra

I

II

I

II

θ
θ
θ
θ

+ +
− −

+ +
− −

+ +
− −
+
−

= °

= °

=

=

== °

= 0.02206
0.01953d 0.20442+

−= °

. (12.10) 

 
The scheme-dependent 32θ  differ but slightly as between these two parameterizations, and the 

angles of approximately 4.91°  do not “ring any bells” with regard to other known empirical data.  

But as to 21Iθ  and 31IIθ  one cannot help but notice based on the 2018 PDG data [39] that these 

are equal to two of the three CKM quark mixing angles within experimental errors.  Specifically, 
using the Wolfenstein parameterization reviewed in [39], it is possible in a known manner to 
deduce that for the empirically-observed standard parameterization CKM angles (subscript C): 
 

0.0003 0.015
0.0002 0.013

0.0348 1.995
0.0335 1.91

12

13

23

7

0.2265 0.0005 rad 12.975 0.026

0.0036 rad 0.209

0.0422 0.0009 rad 2.415 0.053

1.2391 rad 70.998

C

C

C

C

θ

δ

θ

θ

+ +
− −

+ +
− −

= ± ± °

= °
= ± ± °=

==

=

=

°

 . (12.11) 

 

Doing the comparisons, we see that 0.23071
0.1967321 2.37864Iθ +

−= °  versus 23 2.415 0.053Cθ ±= °  which 

overlap within the error bars, and that 0.02206
0.01953 31 0.20442IIθ +

−= °  versus 0.015
0.0113 30.209Cθ +

−= °  which 

likewise overlap within the error bars.  In fact, 21Iθ  which has a wider error bar has a central 

portion fitting entirely within the error range for 23Cθ , and 31IIθ  with a wider spread also has a 

central region fitting entirely within the errors for 13Cθ . 

 
 So, our goal was to see whether the mass mixing angles in the bi-unitary transformation 

†
uct uct uctM M U M U′ ′→ =  bore any relation to any known data.  And in the comparison between 

(12.10) and (12.11) we found that we have two “hits” directly in the middle of the empirical data 
for two of the three real CKM mixing angles.  (Shortly, we will likewise connect with the third 
real CKM angle using the isospin-down quark masses.)  With two such hits not one, the statistical 
chances of this being a coincidence are extremely remote.  Therefore, let us now conclude that this 
concurrence between (12.10) and (12.11) in fact is the discovery of two fundamental physical 
relations whereby we use the empirical data concurrence to define the physical relations: 
 

21 23

3
0.015
0.1 13 013

2.415 0.053

0.209

I C

II C

θ θ
θ θ +

−

± °

≡

≡ =

= °
. (12.12) 
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Note also that we have used the CKM angles to reestablish the empirical range of the mass-based 

21Iθ  and 31IIθ  because the former have tighter (smaller) error ranges.  Consequently, we may use 

(12.12) to more tightly tune the isospin-up quark masses using CKM data, rather than vice versa. 
 
 Once we have made the connections in (12.12), it becomes possible to express the isospin-

up quark masses via their couplings 2 1

2
/f fG m c v= , directly in terms of the CKM mixing angles, 

and vice versa.  From the relations embedded in (12.9) which were used to obtain (12.10), we may 
now use (12.12) to find that: 
 

2 2
23 21 2 2

32 32

2 2
13 31 2 2

32 32

cos cos
sin 1 cos 1

cos cos
cos 1 sin 1

c c c
C I

I I t

t t t
C II

II II c

G G G

G

G G G

G

θ θ
θ θ

θ θ
θ θ

= = = =
− −

= = = =
− −

. (12.13) 

 
Then, solving (12.13) as simultaneous equations in tG  and cG ,  while also using 

2 2 2 2
32 21 32 31s s c su I I II IIG = =  from (12.9) along with (12.12), we are able to deduce: 

 
2 2 2 2

2 223 31 23 31
23 312 2 2 2

23 31 23 31

sin cos cos sin
; ; tan tan

1 cos cos 1 cos cos
C C C C

t c u c C t C

C C C C

G G G G G
θ θ θ θ θ θ

θ θ θ θ
= = = =

− −
. (12.14) 

 

This expresses the 2 1

2
/f fG m c v=  for the isospin-up quarks, entirely in terms of the CKM 

angles 31Cθ  and 32Cθ  which mix the third-generation quarks with the first and second generations.  

Only two of the three relations (12.14) are independent.  But together with (12.4) which related 
the sum of the three isospin-up quarks directly to the Fermi vev, we have now expressed all of 

these three quark masses as functions ( )31 23, , , ,u c t C Cm m m F v θ θ=  of other known parameters, 

namely, the Fermi FG  coupling and its related vev, and the two third-generation CKM mixing 

angles.  In this way, what began at the start of this section as twelve unexplained fermion rest 
masses (six quarks flavors and six lepton flavors) have now been reduced down to only nine 
remaining unexplained masses.  Three of these twelve masses, for the isospin-up quarks, can now 
be expressed entirely in terms of other known physical parameters. 

 
In fact, there is a very simple geometric interpretation of the results in (12.13).  From (12.9) 

we may use 1t c uG G G+ + =  then 21

2 f fvG m c=  to rewrite (12.13) as: 

 
2 2

2 2
23 21 2 2 2 2

2 2

2 2
13 31 2 2 2 2

cos cos
1

cos cos
1

c cc c
C I

t c u c u c u

t tt t
C II

c t u t u t u

G mG G

G G G G G m m

G mG G

G G G G G m m

θ θ

θ θ

= = = = =
− + + +

= = = = =
− + + +

. (12.15) 
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If we now establish a three-dimensional rest mass space in which the square roots cm , um  and 

tm  are respectively plotted against the x, y, and z axes, we see that 13 31C IIθ θ θ= =  is simply the 

polar angle θ  of descent from the z axis and 23 21C Iθ θ φ= =  is the azimuthal axis of rotation 

through the x and y plane about the z axis, using spherical coordinates.  This is graphically 
illustrated below, using the quarks mass values in (12.5): 

 
Figure 3: Isospin-Up Quark Mixing in Rest Mass Space 

 
Because, comparatively speaking, the top quark mass is so huge and the up quark mass is so small, 
even after taking square roots the top-to-up ratio is about 280-to-1.  So, any visual representation 
drawn to scale with be difficult to see.  Therefore, in the above we have rescaled the axis for the 
top mass by dividing by 10 and rescaled the axis for the up mass by multiplying by 10.  What is 
remarkable is not only that the Fermi vev of about 246.22 GeV can be rotated in this square root 
space to produce the mass of each quark as illustrated, but that the azimuthal and polar angles 
correspond also to two of the three CKM mixing angles. 
 
 One final point is worth noting before we move on to examine the isospin-down quark 
masses.  As between the first and second parameterizations, we also uncovered two other angles 
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32Iθ  and  32IIθ  in (12.10).  And we did not develop an available third parameterization using what 

we shall denote as 21IIIθ  and 31IIIθ .  This is because as noted, the angles obtained from the bi-

unitary transformations in (12.8) are parameter-dependent but the masses and their couplings are 

not nor can they be.  So, once we attach a physical significance to 2
21cos Iθ  and 2

31cos IIθ  in (12.12) 

we have squeezed all of the independent information we can out the bi-unitary transformations.  
The remaining angles 32Iθ  and  32IIθ  furnish no further information, as they are not independent of 

the physical connections established in (12.12) but simply contain redundant information.  
Likewise, the third parameterization using what we shall denote as 21IIIθ  and 31IIIθ  produces a 

21 2190 III Iθ θ=° −   and 31 32III Iθ θ=  which effectively rotates of 21Iθ  by 90 degrees,  a renames 32Iθ  

to 31IIIθ , and in the process, also flip the signs of all the square roots which contain cG .  As such, 

this too is redundant and adds no new salient data. 
 

13.  Theory of Fermion Rest Masses and Mixing: Down, Strange and Bottom 
 

 If it is possible to express the three up quark masses as ( )31 23, , , ,u c t C Cm m m F v θ θ= , and 

given that the two CKM angles parameterize generation changes during weak beta decays between 
isospin-up and isospin-down quarks, and because 12 12.975 0.026Cθ ±= °  in (12.11) is still 

unaccounted for, it is natural to examine whether a carbon copy of the bi-unitary transformations 
in the last section can be used the characterize the down, strange and bottom quark masses in a 
similar fashion, while also relating 12 12.975 0.026Cθ ±= °  to these masses.  From here, to avoid 

notational confusion, we shall start to use the subscript   to denote various angles and objects 
associated with the isospin-down quarks when necessary to distinguish from the results of the last 

section, and will add the subscript   to the objects and angles of the last section when necessary 
to establish a clear distinction. 
 
 To cut right to the chase, let us replicate (12.9a) identically, but with the substitutions 
u d֏ , c s֏  and t b֏ , as such: 
 

2
32 32 32 21 32 32 21

2 2 2
32 32 21 32 21 32 21 21

2 2 2
32 32 21 32 21 21 32 21

c c s c c s s

c s c s c s c s

c s s s c s s s

b b s b d

dsb b s s s d

b d s d d I

G G G G G

G G G G G G

G G G G G 

   
   = =   
       

, (13.1a) 

 

2 2 2
32 31 32 32 31 32 31 31

2
32 32 31 32 32 32 31

2 2 2
32 31 31 32 32 31 32 31

c c c s c c c s

c s c s c s s

c c s c s s c s

b b s b d

dsb b s s s d

b d s d d II

G G G G G

G G G G G G

G G G G G 

   
   = =   
       

. (13.1b) 

 
Here, it is clear that 1b s dG G G+ + = .  As with (12.8) and (12.9), these coupling matrices utilizing 

the first and second parameterizations arise following a bi-unitary transformation 
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2 2 † 2
dsb dsb dsbM c M c U M c U

 
′ ′→ =  in which before the transformation, dsbM  contains all of the rest 

mass in the bottom quark.  Because the diagonals sum to 1, 2 2 2
d s bm c m c m c+ +  is invariant under 

these unitary transformations.  Of course, however, the empirical 
2 2 2 2 2 2 1

2d s b u c tm c m c m c m c m c m c v+ + ≠ + + = .  So, to mirror the development of the last section 

we shall need to postulate a new, second vev defined by: 
 

0.284
0.192

2 2 21

2
4.2797 GeVd s bv m c m c m c +

−
≡ + + = , (13.2) 

 
while re-denoting 1

2
174.1035847 GeVv


=  to identify this as the vacuum which, cut by the same 

2  factor, is now understood to be equal to the sum of the isospin-up quarks.  The be clear: at the 
moment, the existence of this second vev this is a postulate, intended to see if we can account for 
the remaining CKM angle 12 12.975 0.026Cθ ±= °  in the same way we have already accounted for 

the other two CKM angles.  If we can, then the postulate is validated.  If, not, then it is not.  Along 
with the definition above, we have used the empirical data in [35] to provide a numerical value for 

0.284
0.192

1

2
4.2797 GeVv −

+= , where the upside error of 284 MeV  is based on the unlikely event of all 

three quarks having a mass at the top end of their error bars and the downside error of 192 MeV  

conversely is based on all three quarks being at the low end. 
 
 Now, in (11.7b) we calculated couplings G for the down, strange and bottom quarks which 

were based on the relation 2 1

2
/f fG m c v


= .  But in introducing 1

2
v

 with a much smaller energy, 

we are implicitly introducing the prospect that the potential ( ) 2 2 41 1
2 4 ...h h hV φ µ φ λφ= + +  not only 

has a first minimum at 174.10358472 GeVv


= ⋅ , but has a second minimum at 

0.284
0.1924.2797 e2 G Vv +

−
= ⋅ .  This in turn requires us to no longer ignore the higher order terms in 

the potential which will be of order 6
hφ , 8

hφ , 10
hφ  and so on, because we cannot have a second 

minimum (and perhaps a third for the charged lepton masses and a fourth right near zero for the 
neutrino masses) without these higher order terms.  We will examine this more closely in the next 

section, but for the moment, let us simply posit that there is some ( )hV φ , not yet known, which 

has a second minimum at 0.284
0.1924.2797 e2 G Vv +

−
= ⋅ , and indeed, which is ascertained subject to 

the requirement that it have this second minimum at this exact energy as well as the usual first 

minimum at the energy 174.10358472 GeVv


= ⋅ . 

 
 Now, because the trace of the matrices in (13.1) sums to 1 by trigonometric identity and 
thus 1d s bG G G+ + = , the relation (13.2) requires us to recalibrate the coupling for each individual 

quark to 2 1
, , , , 2

/d s b d s bG m c v


= , using the second minimum at 0.284
0.1924.2797 e2 G Vv +

−
= ⋅  rather 

than the first minimum at 246.21965 GeV08v


= .  Similarly to the procedure followed at (12.9), 

we use (13.1a) to calculate 2
32c bI

G


=  followed by 2 2
21 32c / ssI I

G
 

=  followed by the two angles, 

and (13.1b) to calculate 2
32sII sG


=  followed by 2 2

31 32c / cII b IIG
 

=  followed by the two angles.  
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However, unlike in the last section where v


 was independently-known because it is simply the 

vev energy magnitude associated with the Fermi coupling constant, the 0.284
0.192

1

2
4.2797 GeVv −

+=  

in (13.2) is itself a function of the down, strange and bottom masses and so is subject to their error 
bars.  Moreover, the , ,d s bG  of the individual quarks are interdependent with and so subject to the 

error bars of the other two quarks.  As a result, we shall review four different calculations each 
based on different assumptions about the error bars in the quark mass measurements and in the 
CKM mixing angle 12 12.975 0.026Cθ ±= °  in (12.11). 

 
Drawing again from PDG’s [35], we start with the individual quark masses 

2 0.0005
0.0003.0047 GeVdm c +

−= , 2 .009
0.003.095 GeVsm c +

−=  and 2 0.04
0.034.18 GeVbm c +

−=  which, it will be noted, 

sum to the result in (13.2).  In the first calculation we simply use the central value of the error bars 
in PDG’s [35] for each of the three quark masses to calculate the four mass mixing angles as 
reviewed in the previous paragraph, as such: 

 

32

32

21

31

0.153 rad 8.779

0.150 rad 8.568

0.219 rad 12.540

0.034 rad 1.921

I

II

I

II

θ
θ
θ
θ









=
=

= °
=

=
=

°
= °
= °

. (13.3) 

 
At the lower end of the empirical 12 12.975 0.026Cθ ±= ° , is the value 12 12.949Cθ = ° , which differs 

from 21 12.540Iθ


= °  in (12.10) by a mere 0.409° .  Coupled with having already connected two 

mass mixing angles to the real CKM angles in (12.12), this leads us to suspect that 21Iθ


 is in fact 

physically equivalent to 12Cθ , i.e., that 21 12I Cθ θ


= .  So, the next step is to see if such a suspected 

connection falls within the error bars for the three quark masses that went into the calculation 
summarized in (12.10). 
 
 It turns out that 21Iθ


 which was calculated to be 12.540°  in (12.10) is very-sensitive to 

variations in the down quark mass, is moderately-sensitive to variations in the strange quark mass, 
and is virtually unaffected by variations in the bottom quark mass.  So for a second calculation, 

we leave the strange and the bottom masses alone at their centers by using 2 .095 GeVsm c =  and 
2 4.18 GeVbm c = , and simply see whether there is some value for the down quark mass that will 

enable 21 12I Cθ θ


=  to in fact become a valid relation within the errors of 2 0.0005
0.0003.0047 GeVdm c +

−=  

and 12 12.975 0.026Cθ ±= ° .  The combinations of results turn out to be: 

  
2 2 2

21

2 2 2
21

2 2 2
21

if 4.18 GeV and 95 MeV and MeV, then 

if 4.18 GeV and 95 MeV and GeV, then 

if 4.1

5.064 13.001

5.043 12.9

8 GeV and 95 MeV and GeV, then 

75

5.022 12.949

b s d I

b s d I

b s d I

m c m c m c

m c m c m c

m c m c m c

θ

θ

θ







= = = =

= = = =

= =

°

°

= = °

. (13.4) 
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That is, now in MeV, with the bottom and strange quarks left at their centers, a down quark mass 

in the range 2 5.043 .021 MeVdm c = ±  corresponds to the range 12 12.975 0.026Cθ ±= °  of the first 

and second generation CKM mixing angle.  Because the error bars for the down quark mass can 

be as high as 2 5.2 MeVdm c = , we have now established that 21 12I Cθ θ


=  can indeed be a valid 

physical relationship within the known error bars for the isospin-down quark masses and the CKM 
mixing angles.  It also turns out that for the down quark mass taken closer to its central value 

2 4.7 MeVdm c = , it is necessary to reduce the strange quark mass somewhat to stay within the 

range of 12 12.975 0.026Cθ ±= °  for the CKM mixing angle.  

 
 So, in a third calculation, knowing that 21Iθ


 is most sensitive to the down mass which 

needs to be elevated above 2 4.7 MeVdm c =  to hit the CKM target of 12 12.975 0.026Cθ ±= ° , we 

start with a lower down quark mass assumed now to be 2 4.9 MeVdm c = .  Then, we examine the 

ranges of acceptable values for the strange quark mass which achieve 12 12.975 0.026Cθ ±= ° .  The 

result of this calculation are as follows: 
 

2 2 2
21

2 2 2
21

2 2 2
21

if 4.18 GeV and MeV and MeV, then 

if 4.18 GeV and MeV 

4.9 91.918 13.001

4.9 92.299 12.and MeV, then 

if 4.18 GeV an

975

4.9 92.68d MeV and MeV, th3 en 

b d s I

b d s I

b d s I

m c m c m c

m c m c m c

m c m c m c

θ

θ

θ







= = = =

= = = °

= =

°

=

= = 12.949°

. (13.5) 

 

Noting again that 2 .009
0.003.095 GeVsm c +

−= , we see that for the top line calculation the strange mass 

falls just below the error bar, while for the middle and bottom line calculations the strange mass 
ends up below its center but still within the PDG error range.  Weighing all of the data, for the 

example of 2 4.9 MeVdm c =  whereby the down and strange quarks “share” the variations with the 

down moved above center but not as high as in (13.5) and to compensate the strange is moved 

below center, and given that with a .009
0.003 GeV+

−  variation the strange quark has less movement 

available on the low end than on the high end, it seems most reasonable to expect that 12Cθ  is likely 

on the low end of  12 12.975Cθ = °  than on the high end.  That is, with 21 12I Cθ θ


=  taken to be a 

correct physical relationship given that it is in fact true within the experimental and scheme-
dependent error bars, we expect that a) the down quark mass is higher than the middle of 

2 0.5
0.34.7 MeVdm c +

−= , b) the strange quark mass is lower than the middle of 2 9
395 MeVsm c +

−= , and 

c) the CKM angle is lower than the middle of 12 12.975 0.026Cθ ±= ° . 

 
 But what is most important is that 21 12I Cθ θ


=  is in fact a correct physical relationship 

within the known experimental and scheme-dependent errors for the pertinent empirical data.  
Once this relationship is taken to be a given, it then becomes possible to more finely tune the up 
and strange masses and the CKM angle 12Cθ .  Again, the bottom mass has negligible impact on 

any of this.  So, we now take the step of establishing 21 12I Cθ θ


=  as a true physical relationship, 

and adding this to (12.2) updated to differentiate isospin-up from isospin-down, whereby: 
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21 12

31

2

0.015
0.

1 23

31 01313

         

12.975 0.026

1.921

2.415 0.053

0.209

I C

II

I C

II C

θ θ
θ
θ θ

θ θ







+
 −

± °
°
± °≡

≡

≡ =
=
=

= °

. (13.6) 

 
Now, all three of the CKM mixing angles have been connected to mixing angles which are the 
direct result of bi-unitary transformations operating on quark mass matrices. There is also a fourth 
“leftover” angle 31 1.921IIθ


= ° , also shown. 

 
 In a fourth and final calculation, which also necessitates a brief preface, we address the 
scheme-dependency of the quark masses about which to this point we have been speaking loosely.  
Although the quark masses deduced from hadronic scattering experiments are scheme-dependent 
as reviewed in [37], this does not mean we ought to conclude the quarks do not each have an 
objective mass that is scheme-independent, as do the leptons.  In this regard, the key statement in 
[37] is that “quark masses therefore cannot be measured directly, but must be determined indirectly 
through their influence on hadronic properties.”  Ordinarily, these influences are observed in 
scattering experiments.  However, in [11.22] of [40] and [10.1] of [41], the author demonstrated 
the existence of a pair of simultaneous equations 
 

( ) ( )

( ) ( )

3

2

3

2

3 / 2π                                      

3 2 3 2π

d u e

n p u d μ d u

m m m

M M m m m m m

 − =

 − = − + −


 (13.7) 

 
through which the up and down quark masses may be deduced with extremely high precision based 
on the tightly-known, scheme-independent rest mass of the electron  em  and the tightly-known, 

scheme independent difference n pM M−  between the neutron mass and the proton mass.  In this 

scheme, named the “Electron, Proton, Neutron (EPN) scheme,” the electron, proton and neutron 
masses as well as nuclear binding energies and mass defects express indirect influences and 
manifestations of objective quark masses and are essentially “fingerprints” or parts of a “nuclear 
genome” from which the quark masses may be inferred.  Using, (13.7), one may deduce very 
precise values for the up and down quark masses, which are: 
 

2.22379240 M0 002387339327 u

0 005267312526 

eV

u 4.90647034 MeV

u

d

m .

m .

= =
= =

. (13.8) 

 
So, in the fourth and final calculation we use these very precise values of the up and down quark 
masses, which enables us to tighten up the error ranges for other quantities which are 
interconnected with these. 
 
 So now, with (13.8), we repeat the calculations of (13.4) and (13.5) to obtain: 
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2 2 2
21

2 2 2
21

2 2

4.90647034 MeV 92.039 13.001

4.90647034 

if 4.18 GeV and  a

MeV 92.421 12.975

4

nd MeV, then 

if 4.18 GeV and  and MeV, then 

if 4.18 GeV and  a. nd90647034 MeV

b d s I

b d s I

b d s

m c m c m c

m c m c m c

m c m c m c

θ

θ




= = = =

= = = =

=

°

°

= 2
21MeV, the92.806 1n 2.949Iθ


= = °

. (13.9) 

 
It should also be noted that keeping the down and strange masses as is, and using a bottom quark 

mass anywhere over the entire range given by 2 0.04
0.034.18 GeVbm c +

−= , produces absolutely no 

change in the value of 21Iθ


.  This is why we made the statement at (13.4) that this mass mixing 

angle and therefore the CKM angle 12 21C Iθ θ


=  now related to this by (13.6) is virtually unaffected 

by variations in the bottom quark mass.  Based on the match to the central empirical date 

12 12.975 0.026Cθ ±= °  in (12.11), we shall henceforth use the middle line of (13.9) for the mid-

range masses of the isospin-down quarks.   
 
 Because we have shown in (13.6) that 21 12 12.975 0.026I Cθ θ


±= = °  within experimental 

error bars, and because this is based on the postulate that the Higgs vacuum has a second vev 
2 2 21

2 d s bv m c m c m c


≡ + +  which represents another minimum of the potential for the scalar field, 

the connection established in (13.6) also is confirming evidence that this second vev postulated in 
(13.2) does in fact physically exist.  The first minimum was of course independently-set by the 
fermi vev 246.2196508 GeVv v


= = .  But at the moment, all we know about v


 are the masses 

of the down, strange and bottom quarks of which this is the sum.  Therefore, it is important to get 
the tightest error bar fit that we can for this second vev.  For this purpose, we use the calculation 
in (13.9), and we use 12 12.975 0.026Cθ ±= °  to set the outer bounds on v


.  As a result, recognizing 

that 2 0.04
0.034.18 GeVbm c +

−=  is the least-precise ingredient that goes into this vev, we calculate
1

2
4.2773 0.0004 GeVv


±= , which now replaces (13.2).  Note, the high end of v


 corresponds 

to the low end of 12Cθ  and vice-versa.  Any further precision in this number will depend entirely 

up ascertaining additional precision for the bottom mass.  Rewritten without 2  to enable direct 
comparison to the Fermi vev including its error bars in [21], we have: 
 

( )
( )

2 2 2

2 2 2

6.0491 0.0002

2

5 GeV

246.2196508 0.0000633 GeV

d s b

u c t

v m c m c m c

v m c m c m c





= + + =

=

±

+ = ±+
. (13.10) 

 
Again, the outer bounds on v


 are now set, not by the masses, but by 12 12.975 0.026Cθ °= ∓ , 

which this sign flip correspondence explicit.  The ratio 40.7035/v v
 

≅ .  The Higgs field rest 

energy extraction plots for the isospin-down quarks look identical to those of Figures 1 and 2 with 
the depth dependent upon the particle mass, with the exception that while / /h v h v+ + 

=  in Figures 

1 and 2, for the isospin-down quarks it becomes / /h v h v+ + 
= .  So, the energy drop begins in a 

vacuum with a magnitude that is smaller by a factor of just over 40. 
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 It is also possible using v


 in (13.10) together with 2.22379240 MeVum =  obtained in the 

EPN scheme via (13.7) and 2 0.025
0.0351.275  GeVcm c +

−=  from [35] to tighten our knowledge of the top 

quark mass.  This is presently known to be 2 173 0  GeV.4tm c ±=  based on [35].  Now, the central 

value and error bar range are inherited from the charm quark, whereby: 
 

2 0.025
0.035172.  GeV826tm c +

−= . (13.11) 

 
Moreover, because as noted the results in (13.9) are impervious to bottom mass swings over the 

whole range of 2 0.04
0.034.18 GeVbm c +

−= , we can use the very precise down quark mass in (13.8) and 

the fairly tight 12 21C Iθ θ


=  to calculate a more precise magnitude for the strange quark mass.  This 

is presently known to be 2 9
395  MeVsm c +

−= , and is now tightened to: 

 
0.385
0.382

2 92.421  MeVsm c −
+= ± . (13.12) 

 
These are both more than ten times as accurate as what is presently known for the top and strange 
quark masses, and constitute two additional empirical predictions of this theory which can and 
should be tested. 
 
 The connection in (13.6) whereby 21 12 12.975 0.026I Cθ θ


±≡ = °  also means that there are 

some additional theoretical relations between the CKM mixing angles and the    quark masses as 

represented by their couplings ( ) 2 1
, , , , 2

/d s b d s bG v m c v
 

=  .  These relations, assembled with the 

earlier (12.13) updated to reflect that these are   quarks which use a different vev, are: 
 

( ) ( ) ( )
( )

( ) ( ) ( )
( )

( ) ( ) ( )
( )

( )

2 2
21 21 2 2 2 2

32 32

2
31 2 2

32 32

2 2
23 21 2 2

32 32

2 2
13 31

cos cos
sin 1 cos 1

cos
cos 1 sin 1

cos cos
sin 1 cos 1

cos cos
cos

s s s

C I
bI I

b b b

II

II II s

c c c

C I

I I t

t

C II

G v G v G v

G v

G v G v G v

G v

G v G v G v

G v

G v

θ θ
θ θ

θ
θ θ

θ θ
θ θ

θ θ

  



  

  



  

  



  





= = = =
− −

= = =
− −

= = = =
− −

= =
( ) ( )

( )2 2
32 321 sin 1

t t

II II c

G v G v

G vθ θ
 

  

= =
− −

. (13.13) 

 
We have also included the “leftover” angle 31 0.034 rad 1.921IIθ


== °  which, at least for the 

moment, does not relate any other independently-known data, but which, like 2 2
21 21cos cosC I

θ θ


=  

above, is a function of the strange and bottom quark couplings. 
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 Then, solving the top two (13.13) as simultaneous equations in bG  and sG ,  while also 

using 2 2 2 2
32 21 32 31s s c sd I I II IIG

   
= =  from (13.1) along with the results in (13.6), and assembling 

this with (12.14) also updated to reflect the   vacuum, we obtain: 
 

2 2 2 2
23 31 23 31 2 2

12 312 2 2 2
23 31 23 31

2 2 2 2
223 31 23 31

232 2 2 2
23 31 23 31

sin cos cos sin
; ; tan tan

1 cos cos 1 cos cos

sin cos cos sin
; ; tan

1 cos cos 1 cos cos

C II C II
b s d s C b II

C II C II

C C C C
t c u c C

C C C C

G G G G G

G G G G

θ θ θ θ
θ θ

θ θ θ θ

θ θ θ θ θ
θ θ θ θ

 


 

= = = =
− −

= = = =
− −

2
31tant CG θ

. (13.14) 

 

In contrast to (12.14) where ( )31 23, , , ,u c t C Cm m m F v θ θ=  so that all three quark masses may be 

expressed as a function of three independently-know parameters, the three , ,d s bG  and associated 

quark masses are now reduced in “freedom” by only one independently-known parameter, namely, 

the third mixing angle 2
21cos Cθ .  So, we may write ( )21, , , ,d s b d s Cm m m F m m θ=  or alternatively 

( )21, , , ,d s b d b Cm m m F m m θ= , because ( )2
21cos / 1C s bG Gθ = −  eliminates either sG  or bG  but not 

both as independent parameters.  Thus, all told, we have now taken six previously-unexplained 
quark masses, and reduced this to two unexplained quark masses, plus the three CKM angles, plus 
the Fermi vev.  So now we focus on the question of the remaining two quark masses. 
 

Similarly to (12.15), using 1b s dG G G+ + =  from (13.1) we may rewrite the upper two 

relations (13.13) as: 
 

2 2

2 2
21 21 2 2 2 2

2 2

2
31 2 2 2 2

cos cos
1

cos
1

s ss s
C I

b s d s d s d

b bb b
II

s b d b d b d

G mG G

G G G G G m m

G mG G

G G G G G m m

θ θ

θ





= = = = =
− + + +

= = = =
− + + +

. (13.15) 

 
Then we may graph a similar geometric relationship in a three-dimensional rest mass space in 

which the square roots sm , dm  and bm  are plotted against the x, y, and z axes.  Here, the 

masses are close enough once the square root is taken, that they may be drawn to scale, without 
re-scaling any axis.  The result is shown below: 
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Figure 4: Isospin-Down Quark Mixing in Rest Mass Space 

 
Here too, what is remarkable, taken together with Figure 3, is that the azimuthal angle ϕ  here 

corresponds also to the third of the three CKM mixing angles.  Each of the four angles in Figures 
3 and 4 is needed to specify the projections of the vector associated with the vacuum into each of 
the individual masses, but only three of these angles are used also for CKM mixing. 
 
 Taking stock of where we are at the moment, there are two reasons, one for each, why there 
are two free parameters still remaining in the isospin-down portion of (13.14).  First, there are only 
three real CKM mixing angles, not four.  Two of those already went into 

( )31 23, , , ,u c t C Cm m m F v θ θ= .  All that was left for the isospin-down masses was 21Cθ .  The 

“leftover” angle 2
31cos IIθ


 previously-referenced at (13.6) and (13.13), if it had an independent 

basis, could squeeze out another degree of freedom from , ,d s bm m m .  One possibility to consider 

is whether the “leftover” CP-violating phase angle 13δ  associated with the 13 transition in the 

standard CKM parameterization bears some relation to “leftover” angle 2
31cos IIθ


.  But at the 

moment, whether this phase can provide an independent basis for the leftover mass mixing angle, 
or some other basis is required, is presently not clear.  Second, for the isospin-up quarks, we had 
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available v v


=  as an independent energy number supplied by the Fermi vev.  On the other hand, 

at present, we have no independent information about v


 in (13.10).  Rather, we only know about 

this from the 2 2 2
d s bm c m c m c+ +  mass sum.  So, to squeeze out another degree of freedom from 

the unknown numbers in the natural world, we would need to have independent knowledge of 
v v


=  separately from its value in (13.10) arrived at from the quark masses themselves.  And this 

raises the final matter to be explored before we turn to the lepton masses. 
 

14. The Two-Minimum, Two Maximum Lagrangian Potential for Quarks, 

and the Role of the Higgs Boson and its Mass in Weak Beta-Decay 
 
 When we first introduced the postulate of a second vev for the isospin-down quarks, this 
was speculative.  But because this postulate led to the connection 21 12 12.975 0.026I Cθ θ


±≡ = °  

with observed empirical data at (13.6), this connection is confirming evidence of this second vev.  

Normally, the Lagrangian potential 2 2 41 1
2 4 ...h hV µ φ λφ= + +  with higher-order terms above 4

hφ  

neglected is used to establish the vev and the Higgs fields in a well-known manner, see, e.g., 
section 14.6 of [20] including Figure 14.3.  But if is there is now to be a second minimum at v


, 

we can no longer neglect these higher order terms, because they will need to be responsible for 
providing this second minimum. 
 

To review the standard model calculation so that we can consider the form of the required 
higher order terms, we start with V sans any higher order terms then calculate its first derivative 

( )2 2/ h h hV dV dφ φ µ λφ′ = = + .  This will equal zero at either 0hφ =  or at 2 2/ hµ λ φ− =  , so these 

two points on the domain will be minima or maxima of the original V dependent on overall sign.  
We then assert the condition that the latter stationary point is to be a minimum at h v vφ


= =  (now 

distinguishing v


 from v


) by defining 2 2 2/ h vµ λ φ


− = ≡ .  At the same time, the expansion 

( ),v v h t
 

+ x֏  about the vacuum using a Higgs field reveals a Higgs boson rest energy 
2 4 2 22 2hm c vµ λ


= − =  in the usual way.  These two results may be combined to inform us that 
2 4 2/ 2hm c vλ


= , which says that the parameter λ  is undetermined unless and until we know the 

mass of the Higgs boson.  So, with these items of information we may return to the original V as 

well as / hV dV dφ′ =  and rewrite these as: 

 

( )

( ) ( )

2 4
2 2 4 2 4 2 41 1

2 4 2

2 4
2 2 2 2

2

1 1

4 8

2

h
h h h h h

h
h h h h

m c
V v m c

v

m c
V v v

v

λ φ φ φ φ

λφ φ φ φ





 



= − + = − +

′ = − = −
. (14.1a) 

 
 Now, we note from (13.10) that the two vevs which specify minima of the potential are 

stepped up from their respective fermion mass sums by a factor of 2 .   At the same time 
following symmetry breaking and defining a Higgs field to represent perturbations about the vev 
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minimum, there is a similar 2  factor in the relations 1 2h hv h φ φ


+ = =  in (11.3), now using 

v v


=  .  So at the minimum where h = 0, we have 1 2h hv φ φ


= = , or 2 2 2
1 2h hv φ φ


= = .  In contrast, 

from V ′  in (14.1b) as written, the minimum will occur when 2 2
h vφ


= .  Thus, in view of what we 

learned from (13.10 about the relation between mass sums and vevs, we see that (14.1b) needs to 

be recalibrated so that the minimum occurs when 2 2
1 0h vφ


− = , not 2 2

h vφ


− .  That is, (4.1) needs 

to be recalibrated by a factor of 2 , which is most simply achieved by replacing 1 2h h hφ φ φ=֏  

in (14.1b).  Doing so, with 1/ hV dV dφ′ = , this now becomes:   

 

( )

( ) ( )

2 4
2 2 4 2 4 2 41 1

1 1 1 12 4 2

2 4
2 2 2 2

1 1 1 12

1 1

4 8

2

h
h h h h h

h
h h h h

m c
V v m c

v

m c
V v v

v

λ φ φ φ φ

λφ φ φ φ





 



= − + = − +

′ = − = −
. (14.1b) 

 

Given that 2 4 2/ 2 0hm c vλ


= > , and examiningV ′ , we see that V will have a maximum at 

1 0hφ =  and a minimum at 2 2
1h vφ


= .  When we break symmetry of  ( )1

1 22h h hiφ φ φ= +  from (11.3) 

in the symmetry circle, in addition to choosing 2 0hφ = , we also chose 1h vφ


= +  as between the 

two possible choices 1h vφ


= ± .  Empirically, 246.2196508 0.00006 G V33 ev v


= ±=  is obtained 

from the Fermi coupling constant FG .  We calculated 6.0491 0.0005 GeVv


±=  at (13.10) from 

the sum 2 2 21

2
4.2773 0.0004 GeVd s bv m c m c m c


= ±+ + =  of the isospin-down quarks.  And 

while over four decades passed between when the Higgs boson was first postulated and when it 
was finally observed, today we have experimental data showing the Higgs boson to have a rest 

energy 2 125.18 0.16 GeVhm c ±= , see PDG’s [42].  It is noteworthy that 2
hm c  is just a touch 

larger than half the Fermi vev, and to be precise, that 2 2.07 0.16 GeV/ 2hm c v


±− = .  Also, 

because we now know the Higgs mass empirically, we may deduce that the undetermined 

parameter 2 4 2 0.1292 0.0003/ 2hm c vλ


±= = .  Were the Higgs mass to be exactly equal to half 

the Fermi vev, we would have 1/ 8λ = .  The consequences of this slight deviation from 1/ 8λ =  
are important, and will drive many of the results now to be reviewed. 
 

 Now, turning to theory, if ( )hV φ  is to have a second minimum at 1h vφ


=  along with its 

first minimum at 1h vφ


= , as well as its maximum at 1 0hφ =  , then it must now also have a second 

maximum at some definitive 1hv vφ
 

< <  in between the two minimum points.  So this raises an 

obvious question: where might this second maximum be?  Just as v


 and v


 are physically 

meaningful numbers, we expect that the energy of 1hφ  at this second maximum should have some 

physical meaning, for example, that it may be the rest mass of an elementary particle.  The 
empirical rest masses of significance between about 6 GeV and 246 GeV are the top quark mass, 
the masses WM  and ZM  of the electroweak vector bosons, and the Higgs mass.  The top mass and 
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the electroweak bosons are theoretically accounted for in other ways, so let’s make an educated 
guess that it is the Higgs mass itself which establishes the second maximum.  Specifically, as a 
hypothesis to again be tested against empirical data, let us hazard a guess that:   
 

2
1 2h hm c vφ λ


≡ = . (14.2) 

 
In other words, this second maximum occurs precisely where 1hφ  has an energy equal to the energy 

equivalent of the Higgs mass itself. Then let’s again turn back to the empirical data to test this. 
 

 As noted just above, the Higgs rest mass 2 2.07 0.16 GeV/ 2hm c v


±= +  is slightly above 

the halfway point between zero and the Fermi vev 246.2196508 0.000063 e3 G Vv


= ± .  Another 

way to say this is that twice the Higgs mass is 2 4.12 4 0.32 GeVhm c v


±= + , which exceeds the 

Fermi vev by 4.14 0.32 GeV± .   Comparing 2 2 21

2
4.2773 0.0004 GeVd s bv m c m c m c


= ±+ + =  

from (3.10) we see that these two numbers match up within experimental errors.  This means that 
within experimental errors, the Higgs mass is exactly halfway between 

1

2
4.2773 0.0004 GeVv


±=  and 246.2196508 0.000063 e3 G Vv


= ± .  Or, put differently, if we 

now theoretically define the Higgs mass to be the average: 
 

( )

1
2 2

2 2 2 2 2 2

125.18 0.16 GeV 125.2485 0.0002 GeV
2

2

2

h

u c t d s b

v v
m c

m c m c m c m c m c m c

 ± ≡ ±
+

= =

+ + +
=

+ +
. (14.3) 

 

of v v


=  and 2 2 21

2 d s bv m c m c m c


= + +  using the data from (13.10) for the latter, we find that 

this relationship ( )2 1

2
/ 2hm c v v

 
= +  in (14.3) is true within experimental errors.   

 

The question now becomes whether ( )2 1

2
/ 2hm c v v

 
= +  above really is a relation of 

genuine physical significance, or is just a coincidence.  There are good reasons why this is a real 
relation:  First, a second maximum is required at some 1hv vφ

 
< < .  Second, given this domain 

for the maximum, it makes particular sense in the present context for the maximum to be 

established right at the domain point where  ( ) 21
1 2h hv h m cφ = + = , as in (14.2).  Third, it makes 

sense for the maximum to be fairly close to the halfway point between v


 and v


, as 2
1h hm cφ ≡  

is.  Fourth, 2
1h hm cφ ≡  is in fact precisely halfway between v


 and 1

2
v

 within experimental errors 

based on empirical data, which certainly qualifies as “fairly close” to the halfway point.  Finally, 

the Higgs mass itself and the related parameter 2 4 2/ 2hm c vλ


=  have long been entirely 

unexplained as a theoretical matter.  Given that we now have good empirical data for the Higgs 

mass, and that ( )2 1

2
/ 2hm c v v

 
= +  is confirmed by that data within experimental errors, we now 
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regard (14.3) to be a new, correct theoretical relation of physical significance.  Finally, because 
the empirical data on the right in (14.3) has a tighter error bound than the data on the left, we 
further use (14.3) as a prediction that as the Higgs mass becomes measured even more tightly than 

at present, it will be found to fit in the range 2 125.2485 0.0002 GeVhm c ±= .  Now let’s proceed 

forward regarding ( )2 1

2
/ 2hm c v v

 
= +  in (14.3) to be a true theoretical physical relation for the 

Higgs mass. 
 

Following (13.14) we noted using ( )21, , , ,d s b d s Cm m m F m m θ=  that we had squeezed one 

degree of freedom from the isospin-down quark masses via the relation (13.13) for the CKM 
mixing angle 21Cθ  and these masses.  With the discovery of (14.3), we now have a basis for 

expressing the previously-undetermined number v


 as a function ( ), hv F v m
 

= .  In other words, 

given the Higgs mass and the Fermi vev, we may deduce ( )2 2 22 d s bv m c m c m c


= + + .  This 

means that if we choose to regard the Higgs mass as a “given” number, we have squeezed yet 
another unexplained energy number out of the parameters which drive the natural world.  So, we 

can remove sm  from the prior relation and now write ( )21, , , ,d s b d h Cm m m F m m θ= .  Together 

with ( )31 23, , , ,u c t C Cm m m F v θ θ= , we have now eliminated five (5) out of the six unexplained 

quark masses and “explained” them insofar as they relate to 21Cθ , 23Cθ , 31Cθ , v, and hm .  Of course, 

this does not “explain” why the five numbers 21Cθ , 23Cθ , 31Cθ , v, and hm  have the empirical values 

that they have.  But we have explained how these are related to the quark masses and so have 
rendered five of these six mass numbers into the status of “redundant” data.  “Explaining” why 
these five numbers have their observed values, should an expected by-product of a successful GUT 
theory and its stages of symmetry breaking down to observable energies. 
 

Again turning to the square roots of masses, if we write (14.3) as: 
 

( ) ( ) ( )2 2 2
4/ / 2 2 hv c v c m

 
+ = , (14.4) 

 

we see a Pythagorean relation amongst /v c


, 4/ 2v c


 and 2 hm , with the former two on the 

legs of a right triangle and the latter on the hypotenuse.  This can be used to define an angle: 
 

4

4

/ 2 /
sin ; cos ; tan

2 2 2
v v v

h h

v c v c v

m m v
θ θ θ  



≡ = = , (14.5) 

 
such that vθ  effectively measures the magnitude of each vacuum in relation to one another and the 

Higgs mass.  Using the data from (13.10) and (14.3) we calculate that the central value for this 
angle is 6.308519vθ = ° .  This can be represented in the rather simple geometric Figure below: 
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Figure 5: Vacuum and Higgs Mass Mixing in Quark Rest Mass Space 

 

This is important, because in Figure 3 ( ) 4/ / 2v c


 was the hypotenuse which was 

projected into each of three isospin-up mass roots and in Figure 4 4/ 2v c


 was the hypotenuse 

projected into each of three isospin-up mass roots.  This means that (14.4) is the bridge between 
the two spaces in Figures 3 and 4, in a square root mass space that is overall six dimensional.  So, 
with the coefficients and square roots as shown, one starts with the Higgs mass hm  axis which is 

the diagonal in Figure 5.  That is projected into the two orthogonal axes, represented with   and 

  for the isospin-up and isospin-down vevs v


 and v


.  Then, in three of the six dimensions v


 is 

further projected into the masses for the top, charm and up quarks as shown in the (not to scale) 
Figure 3, and in the other three of six dimensions v


 is projected into the bottom, strange and down 

masses.  The azimuthal and polar angles in the former, and the azimuthal angle in the latter, then 
provide three the real angles for CKM mixing. 

 

 Once we advance ( )2 1

2
/ 2hm c v v

 
= +  in (14.3) to a meaningful relation between the 

mass of the Higgs boson and the two vevs, we also may deduce that the long-undetermined 

parameter λ  in 2 2 41 1
1 12 4 ...h hV µ φ λφ= + + , in view of (14.5), is theoretically given by: 

 

( ) ( )
2 212 4

22 2

2 2

1 1 1
1 1 tan

2
0.1292 0.000

8 8 8
3

2
h

v

v v vm c

v v v
λ θ  

  

+  
= = = + = + = 


±


. (14.6) 

 
So physically, λ  is now understood as another measure of how the energy equivalent of the Higgs 
rest mass is distributed into the two quark vevs in accordance with Figure 5, with these two vevs 
then parceling out their energies into the rest energies for each quark in their sector. 
 

 Now, with the theoretical relation (14.3) which relates 2
hm c  to v


 and v


, we have all the 

ingredients we need to revise the potential in (14.1b) with the higher-order terms necessary to 
provide the usual first minimum at 1h v vφ


= =  and the usual first maximum at 1 0hφ = , as well as 

a second minimum at 1h vφ


=  and a second maximum at 2
1h hm cφ ≡ .  We start with 1/ hV dV dφ′ =  

and build in these minima and maxima by defining: 
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( )( )( )

( ) ( )( )

2 4
2 2 2 2 4 2 2

1 1 1 12

2 4
2 2 2 4 2 2 2 2 4 2 2 4 3 2 2 2 4 5 7

1 1 1 12

2

2

h
h h h h h

h
h h h h h h h h

m c
V A v m c v

v

m c
A v v m c v v v m c v m c v v m c

v

φ φ φ φ

φ φ φ φ

 



       



′ ≡ − − −

= − + + + − + + +
. (14.7) 

 

This is constructed so that the leading terms ( ) ( )2 4 2 2 2
1 1/ 2h h hm c v vφ φ

 
−  in the top line above 

precisely match the usual V ′  in (14.1b).  We also include an overall coefficient A which we will 

use to make certain that when we momentarily integrate (14.7), the leading 2
1hφ  term of V in 

(14.1b) will continue to be 2 4 21
4 h hm c φ , with all changes to V be introduced at higher order.  It will 

be seen by inspection that the top line in the above will be zero at all four of 1 0hφ = , 2
1h hm cφ = , 

1h vφ


=  and 1h vφ


= .  The first two will provide maxima and the latter two will provide minima 

for V itself, or vice versa, depending on the overall sign in A. 
 

Next, we easily integrate the bottom line above.  For the leading term to match 2 4 21
14 h hm c φ  

in V from (14.1b) we must set 2 2 41/ hA v m c


= .  Also based on matching (14.1b) as an “initial 

condition,” we discard any integration constant.  We then consolidate and reduce to obtain: 
 

( ) ( )2 4 2 2 2 2 2 4
2 4 2 4 6 8

1 1 1 1 12 2 2 2 2 2

2 2 2 42 4 2 4
2 4 2 4 4 6

1 1 1 12 2 2 2 2

1 1 1 1 1
1

4 8 12 16

1 1 1 1 1 1
1

4 8 8 12 16

h h
h h h h h h

hh h
h h h h h

m c v v v v m c
V m c

v v v v v v

v v m cm c m c
m c

v v v v v v

φ φ φ φ φ

φ φ φ φ

   

     

 

     

 +  + +
 = − + + − +      

   + +
= − + + + − +      

   

8
12 hφ

. (14.8) 

 

Comparing with V in (14.1b), we indeed see the original 2
1hφ  and 4

1hφ  terms.  We also see some 

new 4
1hφ  terms, and as expected, some new 6

1hφ  and  8
1hφ  terms.  These new terms, of course, are 

the ones which will deliver the second maximum and minimum as specified via (14.7). 
 
 To simplify calculation, it is very useful to segregate those terms which contain the Higgs 

rest energy 2 4
hm c  from those that do not, and then to use ( )2 1

2
/ 2hm c v v

 
= +  from (14.3) to 

replace the Higgs mass with the vevs.  Doing so, we find: 
 

( )
2 2 2 2

2 4 2 4 6 4 6 8
1 1 1 1 1 12 2 2 2 2 2 2 2

2 2 2 2 21
2 4 6 42

1 1 1 12 2 2 2 2 2

1 1 1 1 1 1 1 1

4 8 12 8 12 16

1 1 1 1 1 1

2 4 8 12 8 12

h h h h h h h h

h h h h

v v v v
V m c

v v v v v v v v

v v v v v v

v v v v v v

φ φ φ φ φ φ φ

φ φ φ φ

   

       

     

     

   + +
= − + − + − +      

   

+    + +
= − + − + −    
   

6 8
1 12 2

1 1

16
h h

v v
φ φ

 

 
+  

 

. (14.9) 

 

So, the behavior of ( )hV φ  is entirely driven by the two energy-dimensioned numbers in (13.10).  

The first is the Fermi vev v v


=  which establishes the usual minimum, and which we have learned 
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here is related to the sum of the isospin-up quark masses via ( )2 2 22 u c tv m c m c m c


= + + .  The 

second is the second vev v


 which establishes a second minimum and is related to the sum of the 

isospin-down quark masses via ( )2 2 22 d s bv m c m c m c


= + + .  Additionally, the Higgs mass itself 

establishes a second maximum, but the new relation ( )2 1

2
/ 2hm c v v

 
= +  uncovered in (14.3) 

means that only two of these energy numbers are truly independent of one another.   
 

 It is pedagogically-useful to graph the potential ( )1hV φ  in (14.9) using the numerical values 

of v


 and v


 in (13.10).  Substituting these into the bottom line of (14.9), reconsolidating terms at 

each order, and rounding the coefficient at each order to four digits, we obtain: 
 

( ) 2 4 6 8
1 1 1 1 1

83918 53.69 0.002868 2.818 10h h h h hV φ φ φ φ φ−= − ×+ − + . (14.10) 

 

Keeping in mind from following (11.3) that ( )1hV φ  is a term in part of the Lagrangian density and 

so has physical dimensions of quartic energy, and that 1hφ  is linear in energy, (14.10) produces: 

 
Figure 6: Lagrangian Higgs potential – wide view  

 
 Above we see the usual minimum at 1 246.22 GeVh vφ = ≅ , where along the y axis we have 

( ) ( )4

1 498.46 GeVhV φ ≅ − .  But we now have a new maximum at 2
1 125.25 GeVh hm cφ = ≅  based 

on (14.3), and at this maximum, ( ) ( )4

1 297.92 GeVhV φ ≅ .  Closer to the origin is the usual 

maximum at  1 0hφ =  and the new minimum at 1 6.05 GeVh vφ


= ≅ .  But by comparison, these are 



Jay R. Yablon, September 4, 2018 

80 
 

relatively extremely small, and impossible to see in Figure 6.  So, it is also useful to also magnify 
the domain from 110 GeV 10 GeVhφ− < <  from Figure 6, as is shown below:  

 
Figure 7: Lagrangian Higgs potential – magnified view  

 

Here, the usual maximum at ( )1 0 0hV φ = =  is readily apparent, as is the new minimum at 

1 6.05 GeVh vφ


= ≅ where ( ) ( )4

1 16.36 GeVhV φ ≅ − .  The above is simply an extremely magnified 

view of the region in Figure 6 close to the origin.   
 

But even with Figures 6 and 7, the energetic behavior of particles in these wells and the 
impact of the new maximum are not brought out as much as they could be, because 1hφ  is linear 

in energy while V is quartic in energy.  So, it is also useful to reproduce Figures 6 and 7 by taking 

the fourth root ( )4
1hV φ , and also by scaling the energies along the ordinate and the abscissa to 

match one another precisely.  Of course, the fourth root of +1 has the quartic roots 1, –1, i, and –i, 

and below the x axis, to connect everything together, we wish to display what is really ( )4
1hV φ− −  

using 1 for the quartic root.  So, taking the fourth root along the vertical axis in Figure 6 and scaling 
what are now linear energy numbers in each axis to one another, we obtain the plot below: 
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Figure 8: Lagrangian Higgs potential fourth root – wide view 

 
Above, we are able to see both minima and both maxima in the same plot, although the central 
region is still rather small.  Therefore, in Figure 9 below, we also magnify Figure 8 over the domain 

110 GeV 10 GeVhφ− < < .  This Figure 9 is equivalent to the fourth root of the magnified view of 

the potential in Figure 6. 
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Figure 9: Lagrangian Higgs potential fourth root – magnified view 

 
 These two plots in Figures 8 and 9 help provide a deeper understanding of how quarks 
behave in the Higgs fields.  First, it will be seen with energies linearized along both axes and scaled 
at 1:1, that the potential wells are very deep and steep.  Moreover, it will be seen that the maximum 

at ( )1 0 0hV φ = =  is not smooth as one might conclude looking at Figures 6 and 7.  Rather, when 

comparing energies to energies to scale, this maximum is very steep, effectively coming to a sharp 
upward point with a slope that is infinite at the origin.  Second, it is apparent, most clearly from 
Figure 8, that the v


 potential well establishes a local minimum while the v


 potential well 

presents a global minimum.  The v


 local minimum has an energy depth of –16.36 GeV and the 

v


 global minimum has a depth of –498.46 GeV, about 30.46 times as large.  Third, we see that 

there is high barrier between the two wells set by the new maximum which has a height of +247.92 

GeV.  Using 2 125.2485 0.0002 GeVhm c ±=  as refined in (14.3), it should be noted that the ratio  

247.92 /125.25 1.979= , and so is slightly under twice the Higgs mass, and that the ratio 
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498.46/125 325 0. .98= , which is slightly under four times the Higgs mass.  All this will be 
important shortly, to better understand the role of the Higgs field and boson in weak beta decay. 

 

Now, let’s cross- reference this with Figures 1 and 2, in which 1 2h hφ φ += .  Recall how 

each quark uses the Higgs boson to extract energy from the vacuum and acquires its rest mass in 
accordance with (11.5) and (11.6).  Figures similar to Figures 1 and 2 may be developed for all the 
other quarks and leptons, but all have the same basic character so we will not take the space to do 
so here.  Also, recall as discussed after (13.10) that the rest energy extraction plots for the isospin-
down quarks draw rest energy out of the vacuum in the much-less-energetic well at 1h vφ


= , versus 

the isospin-up quarks drawing their rest energies in the more-energetic well at 1h vφ


=  with 

/ 40.70v v
 

≅ .  For each quark, 1hφ  is plotted on the vertical axis of its own variant of Figures 1 

and 2 and reaches minimum at ( )
5

5
/ 0V L =  along the horizontal axis.  Recall that ( )

0 1 2 3 5

5
V x x x x x=  

was defined at (9.22), and 5L  is a constant of integration with dimensions of length to the fifth 
power as an “initial condition,” emerging from the integration (9.20).  Thus, the horizontal axes of 

Figures 1 and 2 are established by space and time (including 5t ) coordinates, while 1hφ  sits on the 

vertical axis of Figures 1 and 2.  In contrast, in Figures 6 through 9 this exact same 1hφ  is plotted 

on the horizontal axis.  In short: 1hφ  on the vertical axes of Figures 1 and 2 is synonymous with 

1hφ  on the horizontal axes of Figures 6 through 9, so these may be cross-referenced. 

 

So, in Figures 8 and 9, we have also cross-referenced where the minima at the ( )
5

5
/ 0V L =  

for each quark in their Figure 1 and 2 variants end up situating.  First, in Figure 8, the up and charm 
quarks barely perturb away from the v


 vev minimum to extract the rest energy for their masses, 

as is indicated by the upward-pointing arrow designating their ( )
5

5
/ 0V L =  point of maximum 

energy extraction from the vacuum.  However, the top quark, plotted in Figure 1, has the entirely 
unique characteristic of drawing almost all of the energy out of the vacuum, and this is from the 
larger well with 246.22 GeVv v


= ≅ .  Via (13.10), what remains in the vacuum and is not drawn 

out, is equivalent to the sum of the charm and up rest energies.  Thus, for the top quark energy 

extraction in Figure 8, we see the top quark ( )
5

5
/ 0V L =  point perturbed so far to the left that it 

becomes nested in the v


 energy well.  This crossover characteristic is unique to the top quark.  

Then in Figure 9 which has a closeup view of the v


 well, we see the down quark barely perturbed 

and the strange quark slightly more perturbed from the v


 minimum of this well, while the bottom 

quark is extremely perturbed almost to 1 0hφ = , “hugging” the x axis.  But in this v


 well, we also 

have the top quark which is a “visitor” from the v


 well because of its exceptionally large mass. 

 
Now, it has long been understood – at least in general if not specific terms – that the Higgs 

boson and associated fields are the responsible mechanism for giving rest masses to elementary 
particles, including fermions.   What Figures 8 and 9 show is that the Higgs bosons and fields are 
also centrally involved in the mechanism for weak interaction beta decays between isospin-up and 
isospin-down quarks.  Experimentally, this also means that close observations of beta decays may 
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provide another good way to study the Higgs boson.  It is helpful for the ensuing discussion of this 
to refer to the nine empirical components of the CKM mixing matrix CKMV , such as may be found 

at [12.27] of PDG’s [39]. 
 
Looking at Figure 8 and its centrally-magnified view of Figure 9, we see that there are two 

steep energy wells which, by design starting with (14.7), bottom out along the horizontal axis at 

1h vφ


=  and 1h vφ


= .  And by the same design there is also a high barrier between the wells which 

peaks at 2
1h hm cφ = . But only the down and strange quarks nest in the v


 well, because the top 

mass is so large that its Figure 1 minimum at ( )
5

5
/ 0V L =  has nested in the v


 well.   So, the v


 

well detailed in Figure 9 naturally nests the down, strange and bottom, as well as the top quark. 
 

Beta decay, of course, only occurs between isospin-up and isospin-down quarks.  For a 
decay event between an up or charm quark and a down, strange or bottom quark, the decaying 

quark must acquire enough energy to “jump” over the barrier peak at 2
1h hm cφ = .  But uniquely, 

for a decay event between a top and any of the down, strange or bottom quarks, there is no need 
for the requisite energy to jump the barrier, because both the top and bottom quarks are nested in 
the same well, owing to the unique crossover properties of the top quark.  This would suggest that 
for same-generation transitions the same-well diagonal CKM element 0.999105 0.000032tbV ±=  

ought to more energetically-favored thus substantially closer to 1 than either of the well-changing, 

barrier-jumping 0.00010
0.000110.97359csV +

−=  or 0.97446 0.00010udV = ± , which in fact it clearly is by a 

ratio of just under 30-to-1 in both cases.  (Note different use of V than for the Lagrangian potential.)  
 

Now let’s take a closer look at the well-changing transitions, in which a charm or up quark 
beta-decays into a down, strange or bottom quark, or vice-versa.  All of these transitions – which 
are in the top two rows of CKMV  in [12.27] of [39] – cannot happen without the fermions drawing 

sufficient energy out of the vacuum via the Higgs fields and bosons to “jump” over the Lagrangian 

potential maximum at ( )24
1 247.92 GeVh hV m cφ = ≅ .  Given that fermions acquire their masses 

from the Higgs field drawing energy out of the vacuum in accordance with the upper equation 

(11.5), it seems that the energy to jump this barrier at 2
1h hm cφ =  would come from the very same 

source: the Higgs field and bosons.  This is where the vertical heights of both the wells and the 
new maximum in Figures 8 and 9 come into play. 

 
First, start with an up or charm quark in the v


 well.  As noted earlier the energy deficit at 

the bottom of the v


 well is –498.46 GeV.  And as seen in Figure 8, the up and charm quarks for 

all practical purposes nest at the bottom of this well, which is an energetically-preferred state.  

Ignoring the error bars for the moment, with 2 125.2485 GeVhm c ≅  ratio 498.46/125 325 0. .98= .  

So, the energy equivalent of just under four Higgs boson masses is needed just to get from the 
bottom of v


 to 0V = .  Then, with a height of +247.92 GeV and 247.92 /125.25 1.979= , the 

energy of just under two additional Higgs bosons is needed to scale the wall and beta decay from 
an up or charm in the v


 well, to any of a down, strange or bottom in the v


 well, from right-to-

left in Figure 8.  So even if these quarks utilize all of their rest energy to clear the well barrier, they 
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still need an energy boost from a total of six Higgs bosons.  Additionally, because all of u dm m<  

and u sm m<  and u bm m< , any beta decay that starts with the up quark will require the new quark 

at the end to retain for its new rest mass, some of the energy that was used to boost it over the well 
wall.  For the charm quark with c dm m>  and c sm m>  but c bm m< , after the barrier transition some 

of its rest energy is released back into the vacuum for the former two transitions, but for charm-
to-bottom, some of the barrier-jump energy will be retained for additional rest mass. 

 
Now, let’s start in the v


 and go the opposite direction left-to-right.  As noted, top to bottom 

and vice versa decays are intra-well and so occur most freely, which is why 
0.999105 0.000032tbV ±= .  For inter-well transitions we start with one of down, strange or bottom 

and need to hop the barrier in Figure 8.  Here, the energy deficit at the bottom of the well is only 
–16.36 GeV, which is much less than the energy deficit of the v


 well.  For all practical purposes, 

the strange and the down quarks nest at the bottom of this well, which is an energetically-preferred 
state.  To raise these two quarks to the 0V =  level, because 16.36 /125.25 1/ 7.66= , one needs to 
extract a little more than 1/8 of the energy of a Higgs boson from the vacuum.  But from there, one 
still needs the energy of 247.92 /125.25 1.979=  Higgs bosons to scale the barrier and transition 
into an up or charm quark in the v


 well.  Even if the strange or down quark was to apply all of its 

rest energy to getting over the barrier, they would still need an assist from a total of three Higgs 
bosons to get over the top of the well barrier, because they start at about –16.36 GeV.  In all cases 
a bottom quark will release energy into the vacuum following the decay because it will end up 
with a lower mass, a strange quark will need to retain some energy if it is to become a more-
massive charm but release energy if it becomes a less-massive up, and a down quark will release 
energy if converted to an up but retain energy if converted to a charm. 

 
In the same way the top quark is unique insofar as it is a visitor in the v


 well, the bottom 

quark is also unique insofar that it hugs the vertical axis so closely that its ( )
5

5
/ 0V L =  energy in 

the Lagrangian potential is raised all the way up from –16.36 GeV to -2.468 GeV, as shown in 

Figure 9.  Additionally, the bottom quark itself has a mass of 2 0.04
0.034.18  GeVbm c +

−=  [35] which can 

be contributed to scale the barrier.  So it only needs the energy equivalent of two, not three Higgs 
bosons to help it over the barrier to become a charm or up quark.  Once the bottom quark does 
decay into a charm or an up quark, it relinquishes most of its energy back into the vacuum because 

b cm m>  and b um m≫ . 

 
So to summarize, it takes the energy from six Higgs bosons to facilitate a , ,u d s b→  or a 

, ,c d s b→  decay from the v v
 

→  well, it takes energy from three Higgs bosons to facilitate a 

,d u c→  or a ,s u c→  decay from v v
 

→ , and it takes energy from two Higgs bosons to 

facilitate a ,b u c→  decay from v v
 

→ .  And in all these cases, after the decay, some of the 

energy used to jump the barrier is either released back into the vacuum or retained by the quark, 
depending respectively on whether the quark has lost or gained rest mass during the decay.  Finally, 
t b↔  decays require no additional energy to jump the barrier because they both nest in v


.  

However, because the top quark rest energy is about 169 GeV larger than that of the bottom quark, 
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any b t→  transition will need to be facilitated by two Higgs bosons – not for a barrier jump, but 
simply for the extra rest energy.  However, this still takes less energy than the 247.92 GeV height 
of the well barrier, which again is why 0.999105 0.000032tbV ±=  is the closest to 1 of all the CKM 

matrix components, by a substantial margin. 
 
So, the picture we obtain for beta decay is that in the vicinity of a quark about to decay, 

some number of Higgs bosons – either two, three or six – spontaneously arise as fluctuations in 
the Fermi vacuum.  The quark about to decay draws the energy out of the rest masses of these 
Higgs bosons in order to jump the barrier and / or acquire the additional rest energy needed to 
change its identity into a different type of quark.  Then, once the decay is complete, the excess 
energy beyond what is needed for the new rest mass is released back into the vacuum.  
Additionally, given the structure of baryons with three quarks, and of mesons with quark-anti-
quark pairs, these numbers of Higgs bosons needed to power beta decays appear to be no 
coincidence.  Noting that Higgs bosons are their own antiparticles, if two Higgs bosons are needed 

to trigger a beta decay, these can each be supplied by a qq  fluctuation inside a hadron.  If three 

Higgs are needed, these can be supplied by each quark in a qqq baryon.  And if six Higgs are 

needed, each of the three quarks in a baryon can precipitate a qq  fluctuation to supply a pair of 

Higgs bosons.  The Higgs bosons therefore operate as the mechanism to transfer energy from the 
vacuum into both the rest energies of the fermions and the into barrier jump required for beta 
decays of the fermions in all but t b↔  decays. 
 

In addition to a v v
 

→  decay requiring facilitation by two or three Higgs bosons while 

v v
 

→  decays draw on six Higgs bosons, it is important to keep in mind that the v


 well bottoms 

out at a global minimum with a depth of about –498.46 GeV while the v


 well has only a local 

minimum with a depth of about – 16.36 GeV, as seen in Figure 8.  So, it is both easier to get from 
v v
 

→  than the other way around, and it is easier to stay in v


 after a v v
 

→  decay has 

occurred.  This suggests that isospin-up quarks are more energetically stable than isospin-down 
quarks.  Given that quarks are always confined in hadrons, and that baryons contain three quarks, 
this may be part of the explanation for why free neutrons with a mean lifetime of about fifteen 
minutes, decay into completely-stable free protons.  It is energetically favored to become an up 
and stay an up, than to become a down and stay a down. 
 
 Finally, ab initio, the Higgs field h itself represents quantum fluctuations in the Fermi 

vacuum in which the scalar field hφ  is recast as ( )1 1
12 2h h v hφ φ= = + .  But everything we just 

described about beta decay entails Higgs bosons spontaneously arising in the Fermi vacuum while 
drawing energy out of the vacuum for their rest energies, transferring these energies to a fermion 
so it can jump the barrier and / or have the energy needed for its new masses in its new identity, 
and the fermion finally releasing and depositing any excess energy back into the vacuum.  But 
these ongoing draws and deposits of energy from and back into the vacuum energy bank are simply 
quantum fluctuations by another name.  Consequently, every time there is a beta decay event, it is 
accompanied by quantum fluctuations in which there is a quick withdrawal of energy from the 
vacuum, followed by a quick redeposit of energy into the vacuum, in the energy magnitudes set 
by the depth of the two wells, the height of the well barrier, and the rest mass of the Higgs boson. 
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Finally, experimentally, it would be highly desirable to closely observe various beta decay 

transitions associated with all nine components of the CKM matrix, in both directions, with a sharp 
focus on energy fluctuations in the vacuum.  For v v

 
→  decays, it may be possible to detect a 

smaller energy withdrawal followed by larger redeposit.  For v v
 

→  decays, it may be possible 

to detect a larger withdrawal followed by a smaller redeposit.  And for the uniquely-situated b t↔  
transitions that do not require jumping the well barrier and have the closest-to1 

0.999105 0.000032tbV ±= , b t→  is simply a withdrawal and t b→  is simply a deposit.  So for 

b t↔  decays, which involve smaller energies than all other decays because the requisite energies 
are determined solely by the mass difference between these two quarks and their heights in the v


 

well and not by the larger magnitude of the well barrier height, it may be possible to detect smaller 
energy fluctuations than in any other type of beta decay event, as well as only a withdrawal or only 
a deposit of energy, rather than a withdrawal / deposit succession. 
 

15.  Theory of Fermion Rest Masses and Mixing: Electron, Mu and Tau 

Charged Leptons 
 

Having studied the quark masses and their mixing and beta decay mechanisms in relation 
to Higgs fields and bosons, we now turn to the leptons.  Just like quarks, it is well known that 
leptons also mix generations during beta decays, utilizing the Pontecorvo–Maki–Nakagawa–
Sakata (PMNS) matrix which has an identical mathematical structure to the CKM quark mixing 
matrix.  The existence of a PMNS matrix with non-zero off-diagonal elements provides the central 
empirical indication that neutrinos are not massless as was considered possible a generation ago, 
but have an extremely small rest energy on the order of a fraction of a single electron volt (eV).  
This is also borne out by cosmological observations of a slight but definite time delay between the 
arrivals of photons and neutrinos from supernova events following a transit times of more than 
100,000 years, such as described in [43].  However, direct observations as to what the masses of 
these neutrinos actually are, or at least as to the mass ratios of the various neutrino types (electron, 
mu or tau partner), are still wanting as of the present day.  What has been established directly, are 
upper limits on these neutrino masses, on the order of less than a single electron volt.  By way of 
comparison, the electron, which is the lightest charged lepton, has a rest energy of just over half a 
million electron volts (MeV).  In the discussion following, we shall utilize the PMNS matrix and 
related leptonic mixing angles laid out in the most recent NuFIT data at [44]. 

 
Because the leptons are known to parallel the quarks insofar as they are both elementary 

fermions and have identical weak isospin structures, we shall begin by seeing whether the results 
for sections 12 through 14 for the quarks can be carried over in identical form to the leptons, with 
the only difference being the numeric values of the various mixing angles and fermion masses.  
However, now that everything that was developed for quarks will be replicated for leptons, let us 
make some notational choices which will help avoid confusion as between quark parameters and 
similar lepton parameters.  First, starting at (12.8), we began to utilize three quark mass mixing 
angles denoted 21θ , 32θ , 31θ  which were later connected at (12.12) and (13.6) to the three real 

CKM quark mixing angles denoted 12Cθ , 23Cθ  and 23Cθ .  Here, for leptons, we shall postulate three 

analogous mass mixing angles denoted 21ϑ , 32ϑ  and 31ϑ , and will seek out a connection to the three 



Jay R. Yablon, September 4, 2018 

88 
 

real PMNS angles which we shall denote by 12Pθ , 23Pθ  and 23Pθ .  Second, for the quarks, we found 

as crystallized at (13.10) that there are two minima for the vacuum which play a central role, 
namely, the well-known vev 246.2 GeV2v v


= ≅  established by the Fermi constant and a second 

6.05 GeVv


≅ .  Importantly, each was shown to relate by 2 2 21

2 u c tv m c m c m c


= + +  and 

2 2 21

2 d s bv m c m c m c


= + +  to a sum of quark masses.  For leptons, for notational distinctness, we 

shall use u rather than v to denote any similar vacuums.  Now we begin the calculations. 
 

As at (12.7) we postulate a 3x3 charged lepton mass matrix 2
eM cµτ  with all energy 

concentrated in 1

2
u


 for the upper-left component, with u


 denoting a vev for isospin-down 

leptons, that is, the electron and the mu and tau leptons.  At the moment, the magnitude of u


 is 

yet to be determined.  Then, as at (12.8) we perform a bi-unitary transformation 
2 2 † 2

e e eM c M c U M c Uµτ µτ µτ′→ =  on 2
eM cµτ  using both the type I “downward cascade” 

parameterization and the type II “distribution” parameterization.  As a result, we arrive at relations 
analogous to those contained in (12.8): 

 
2 21

322

2 2 21
21 322

2 2 21
21 322

c

c s

s s

I

I I

e I I

m c u

m c u
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=

=

=

, (15.1a) 
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s
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II
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τ
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=

=

=

. (15.1b) 

 
These sines and cosines are associated with the leptonic mass mixing angles 21ϑ , 32ϑ  and 31ϑ  

 
 Next, we define a relation amongst each of the lepton masses lm , associated dimensionless 

couplings lG  and the vev u


 in the customary form as follows: 

 
2 1

2l lm c G u


≡ . (15.2) 

 
Using these in (15.1) then yields: 
 

2
32

2 2
32 21

2 2
32 21

c

s c

s s

I

I I

e I I

G

G

G

τ

µ



 

 

=

=

=

, (15.3a) 
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2 2
32 31

2
32

2 2
32 31

c c

s

c s

II II

II

e II II

G

G

G

τ

µ

 



 

=

=

=

. (15.3b) 

 

From either (15.3a) or (15.3b), we use the trigonometric identity 2 2 1c s+ =   to find that: 
 

1eG G Gτ µ+ + = . (15.4) 

 
Then, using (15.2) in (15.4) we find that: 
 

2 2 21

2
1883.029 0.120 MeVeu m c m c m cτ µ

= + + = ± . (15.5) 

 
These are identical in form with analogous relations (13.10) earlier found for the quarks.  The 
numeric value of this vev is computed to three decimals using empirical data from [36], namely: 
 

2

2 2

0.5109989461

105.

0.0000000031 MeV;

0.0000024 MeV; 0.16583745 1776.86 MeV2

em c

m c m cµ τ

= ±

= ± = ±
. (15.6) 

 
 Next, we restructure (15.3) to isolate sines and cosines, then use (15.4) to obtain: 
 

2
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c

c
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G
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 Finally, we use (15.9) in (15.7) and combine with (15.4) and (15.5) to obtain: 
 

( )

2 2
2

32 2 2 2 1
2

2 2 2

2
21 2 2 22 2 2 2 1

2

2 2
2 2
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2
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c
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 Proceeding from here, we use the mass data in (15.6) and the sum in (15.5) together with 

the relations for 2
32cI

, 2
21cI

, 2
31cII

 and 2
32sII

 to calculate that: 

 

32

32
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31

0.23974 0.00001 rad 13.73605 0.00045

0.23915 0.00001 rad 13.70231 0.00045
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I

II

I
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ϑ
ϑ
ϑ
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=
=

=
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= ± ±= °

. (15.9) 

 
Then we are ready to compare this to the empirical data for the PMNS mixing angles.   
 

The data in [44] lays out a best fit at both a 1σ  and 3σ  range.  These spreads will become 
important momentarily.  Therefore, without having more specific data we also estimate the 2σ  
spread by taking the average of the 1σ  and 3σ  spreads.  We then show the central observed value 
followed by successive ranges also shown for each of 1σ , the estimated 2σ  as just mentioned, 
and 3σ , respectively.  Presented in this way, the four PMNS parameters, in degrees, are: 
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Based on what we saw for the quarks, it is 21 3.97816Iϑ


= °  and 31 0.97155IIϑ


= °  for which we 

would anticipate a match.  But comparing with (15.5) there is nothing close.  So at least one of the 
suppositions we used to obtain a correct data match for the quarks, does not apply to the leptons. 
 
 Taking a close look at final term in each of the six relations (15.8) and referring to (15.5), 
we see that each numerator contains a specific lepton mass, while each denominator contains the 

sum 2 2 21

2
1883.029 0.120 MeVeu m c m c m cτ µ

= + + = ± .  Because u


 is what we are postulating 

is a vev for the charged, isospin-down leptons, and because the angles deduced in (15.9) do not 
come anywhere near the empirical data in (15.10), we conclude that this postulate – although its 
analogue worked for the quarks – is incorrect for leptons.  In other words, we conclude based on 
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the failure to obtain an empirical match that u


 as specified in (15.5) is in fact not the correct vev 

to be using when it comes to the charged leptons.  So if u


 is not the correct vev, the question now 

becomes, what is the correct vev?  More precisely there are two questions:  First, denoting an 

energy difference by δ


, is there some other vev denoted u

′  and defined such that: 

 
2 2 21 1

2 2
1883.029 0.120 MeV MeVeu u m c m c m cτ µδ δ δ

   
′ ≡ + = + + + +±= , (15.11) 

  
which does allow at least one of 21Iϑ


 or 31IIϑ


 to fit the empirical data in (15.10), and even better, 

which allows both of these to fit the data?  Second, if there does exist some 1

2
u

′  which fits the 

data, this would initially be an independent, unexplained energy number not based solely on the 

separately-known data 2 2 2
em c m c m cτ µ+ + , but rather on 2 2 2

em c m c m cτ µ δ


+ + + .  Therefore, can 

this new 1

2
u

′  be connected to other known data of independent origins, for example, the Fermi 

vev once again, so that we will not have added any new unexplained data? 
 
 Because the angles of interest are 21Iϑ


 and 31IIϑ


, let us use these angles as shown in 

(15.8), but base them on u

′  defined in (15.11) rather than on u


, by defining two new angles 

21Iϑ


′  and 31IIϑ


′  according to: 
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. (15.12) 

 
Then, we simply use the known mass data in (15.5) and (15.6), and sample various values for δ


 

using a spreadsheet or the like, until the values deduced for 21Iϑ


 or 31IIϑ


 appear to bear a 

statistically-meaningful relation to the empirical data in (15.10). 
 
 Because error-bars are important in this calculation, let’s us briefly comment on how we 

will approach these.  The u


 in (15.12) is related to the sum of the three charged lepton masses.  

Because the error spread for each of the masses is independent of the other two, there are 3x3x3=27 

different ways of calculating u


 for each individual lepton being high, medium or low on its error 

spread.  But the muon mass is known about 50,000 times as precisely as the tau mass, and the 
electron mass is known just shy of 40 million times as tightly as the tau mass.  Therefore, to keep 
maters simple, we regard the electron and muon masses to be precisely at the center of their error 
spreads, and use the V0.12 Me±  spread in the tau mass as the basis for calculating the spread in 

u


.  This is why there is a 0.120 MeV±  spread shown in (15.11), and also in (15.5), with one 

decimal place added. 
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 Working from (15.12) and sampling various δ


, we find that when we set 

39.642 MeVδ


=  thus 1

2
1922.671 0.120 MeVu


±′ = , we are able to obtain 

31 8.5490 0.0003IIϑ


±′ = ° , with a center conforming precisely with the center of the empirical 

0.15 0.295 0.44
0.15 0.3 0.13 458.549Pθ + + +

− − −= °  in (15.10).  Simultaneously, with this same 39.642 MeVδ


=  we are 

able to obtain 21 31.65230 0Iϑ


′ ±= ° .  The empirical data in (15.10) tells us that 

0.78 1.605 2.43
0.76 1.48 212 .233.62Pθ + + +

− − −= ° .  Given that the 3σ  error permits an angle as low as 12 31.42Pθ = ° , we 

conclude that 39.642 MeVδ


=  matches 13Pθ  right at the center, and comes in at about 2.8σ  on 

the low end of 12Pθ .  This is very important, because this means that in fact we are able to 

simultaneously match 31 13II Pϑ θ


′ ↔  and 21 12I Pϑ θ


′ ↔  within 3σ  error bars for both items of data, 

and more closely if we move 31IIϑ


′  upward somewhat from its center value. 

 

 For a second sample, we find that when we set 46.199 MeVδ


=  thus 

1

2
1929.229 0.120 MeVu


±′ = , we are able to obtain 21 33.62 0Iϑ


= ±′ ° , conforming precisely 

with the center of the empirical 0.78 1.605 2.43
0.76 1.48 212 .233.62Pθ + + +

− − −= °  in (15.10).  Simultaneously, with this 

same 46.199 MeVδ


=  we obtain 31 9.2096 0.0003IIϑ


±′ = ° .  The 3σ  data puts the 

corresponding angle at 13 8.989Pθ = °  on the high side, so this value for δ


 puts us above 3σ  data.  

But now we have a basis for interpolating between these two samples. 

 

 Because the first δ


 sample gave us the center of 13Pθ  but produced a low value for 12Pθ , 

while the second sample gave us the center of 12Pθ  but produced a high value for 13Pθ , it appears 

as if the actual 12Pθ  is below the center and the actual 13Pθ  is above the center of what is shown 

in (15.10).  So, for a third sample we take the following approach:  Find a δ


 which places the 

12Pθ  match below center and simultaneously places the 13Pθ  match above center by exactly the 

same statistical spread.  That is, find some δ  for which ( ) ( )13 12P Px xσ θ σ θ=  above and below 

respectively, with 3xσ σ<  and preferably with 2xσ σ< . 

 

 In accordance with this prescription, it turns out that when we set 42.018 MeVδ


=  thus 

1

2
1925.047 0.120 MeVu


±′ = , we simultaneously obtain 31 8.7945 0.0003IIϑ


±′ = °  versus the 

empirical 0.15 0.295 0.44
0.15 0.3 0.13 458.549Pθ + + +

− − −= ° , and 21 32.39 0Iϑ


= ±′ °  versus the empirical 

0.78 1.605 2.43
0.76 1.48 212 .233.62Pθ + + +

− − −= ° .  Estimating linearly between center values and 3σ  values, we find 

that 31IIϑ


′  is about  1.67σ  above the 13Pθ  center and 21Iϑ


′  is about 1.67σ  below the 12Pθ  center.  

Accordingly, regard this threading of the needle whereby for a lepton vev of  
1

2
1925.047 0.120 MeVu


±′ =  (15.12) is able to simultaneously connect both 13Pθ  and 12Pθ  within 
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about 1.67σ  of their respective experimental centers, as a physically meaningful relation.  

Consequently, based on this connection to the experimental date, we now establish:  

 
2 2 21 1

2 2
1925.047 0.120 MeVeu u m c m c m cτ µδ δ

   
′ = + + + ≡ ±= + . (15.13) 

 
as the vev which governs lepton masses and weak interaction beta decay mixing.  Moreover, we 

also now use 31 8.795IIϑ


′ = °  and 21 32.39Iϑ


′ = °  to establish both a connection with, and new 

center value for, the lepton mixing angles.  We represent this, with the empirical sigma spreads 
left untouched except as they are adjusted from these new centers, as: 
 

0.096 0.050 0.1
13 31

12

95
0.396 0.546 0.696

2.01 2.83 3.66
0.42 7 0.2 0.1 5 97

8.795

32.39

P II

P I

θ ϑ

θ ϑ

− + +
− − −

+ + +
+ − −





′≡

′≡

°=

= °
. (15.14) 

 
This is another way of showing that each of these is about 1.67σ  away from their previous centers, 
with the former moved up thus leaving a larger downside range, and the latter moved down thus 
leaving a larger upside range. 
 
 With these results, we answer the first of the two questions posed at (15.11):  Yes, the vev 
in (15.3) does allow both of 21Iϑ


 and 31IIϑ


 to fit the empirical data in (15.10), within about 1.67σ  

for each, as precisely shown in (15.14).  But now we have a seemingly-disconnected vev in (15.13), 
and this brings us to the second question whether this can be connected to other known data of 
independent origins.  Because 1

2
1925.047 0.120 MeVu


±′ ≡  in (15.13) no longer is set by 

2 2 2
em c m c m cτ µ+ +  since it differs from this by 42.018 MeVδ


= , the most obvious energy of 

comparison for (15.13) is the Fermi vev 246.2196508 0.00006 G V33 ev v


= ±=  given in (13.10).  

So, we simply calculate the ratio of these, and find that: 
 

1

2
127.9032 0 0/ . 080v u

 
±′ = . (15.15) 

 

This numerical result is extremely pregnant, because it is well known that “at 2 2
WQ M≈   the value 

[of the electromagnetic running coupling α ] is ~1/128,” see note † in PDG’s [21].  The closeness 

of (15.15) to this other empirical data raises the question whether  ( )2 2 41

2 Wu v Q M cα
 
′ = =  may 

be another relationship of genuine physical meaning.  So, let us review the evidence in support: 
 
 First, the angles (15.14) originating in (15.10) are distinctively related to weak interaction 
beta decays between the electron and the mu and tau leptons, and their respective neutrino partners, 
and the mixing (so-called neutrino oscillations) which crosses from one generation into another.  
Second, while electroweak interactions are mediated by both neutral-current Z bosons and charged 

W ±  bosons, it is the latter, with a rest energy of ( )2 80.379 12  GeVWM c =  (again see [21]), which 

is the sole mediator of these weak interaction beta decays.  Third, the e, µ  and τ  leptons are the 

quintessential units of charge for the which interaction strength is set by 
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( ) ( )2 1/137.035999139 310Qα = =  in the low energy (fine structure constant) limit, and in 

general by the running ( )2Qα .  Fourth, because the e, µ  and τ  leptons and the W ±  boson both 

carry electric charge, ( )2Qα  is in fact distinctly relevant to the strength of the electromagnetic 

interaction which occurs during the beta decay.  Fifth, given that these beta decays are all mediated 

by a W ±  which has a rest energy 2
WM c , the pertinent energy scale at the decay event is not 2 0Q =  

but rather 2 2 4
WQ M c= , and so the pertinent electromagnetic coupling is ( )2 4 ~ 1/128WM cα .  

Consequently, the unanticipated appearance of the number 127.9032 in (15.15) does not look to 
be a simple coincidental appearance of some other number that happens to be close to 128.  Rather, 
this supports the conclusion that this is in fact, yet another physically-meaningful connection. 
 
 Therefore, we now connect these two numbers, and conclude that the vev which is pertinent 
to leptons is in fact given by: 
 

( )21925.047 0.120 MeV
127.9032 0.008

1 1

02
Wu v M vα

  
′ ≡±=

±
= . (15.16) 

 

In the process, we tighten our knowledge of ( )2
WMα  to ( ) ( )2 127.90321/ 0.0080WMα ±= .  This 

result has the extremely beneficial consequence of being able to express δ


 directly from the sum 

2 2 2
em c m c m cτ µ+ +  and Fermi vev and ( )2

WMα .  Referring to terms of (15.11), this means that: 

 

( )2 2 2 2 2 2 21

2
42.018 MeVe W eu m c m c m c M v m c m c m cτ µ τ µδ α

  
′= − − − = − − − = . (15.17) 

 
Here, δ


 no longer needs to be expressed as the energy difference which allows each of 21Iϑ


 and 

31IIϑ


 to fit the PMNS data in (15.10).  Rather, to answer the second question posed at (5.11):  No, 

this vev difference δ


 does not add any new unexplained data, because it is entirely specified by 

the other known data in (15.17), namely, the charged lepton mass sum em m mτ µ+ + , the Fermi 

vev, and the running ( )2
WMα  which is the strength of the electromagnetic interaction at the 

lepton-to-W ±  beta decay event (Feynman diagram vertex).  It is also helpful to write this as: 
 

( )2 2 2 2
e Wm c m c m c M vτ µ α δ

 
+ + = − , (15.18) 

 
wherein the mass sum em m mτ µ+ +  is seen to be a function of the independently-known 

parameters ( )2
WMα  and v


, but also of  δ


 about which we do not yet have independent 

knowledge.   As we shall see in the next section, δ


 is in fact directly driven by the neutrino masses 

and – of all things – the Newton gravitational constant. 
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 Recalling the importance of the square roots of the various rest energies and vev energies 
reviewed in Figures 3 through 5, we see that (15.17) lends itself to a geometric representation in 

the manner of Figure 5, with ( )2 2 2 21

2 W eu M v m c m c m cτ µα δ
  
′ = = + + +  on the 

hypotenuse, and with δ


 and 2 2 21

2 eu m c m c m cτ µ
= + +  on each of the legs.  Because 

2 /ek e cα = ℏ  where ek  is Coulomb’s constant and e is the charge strength of a single charge 

quantum (such as a charged lepton and such as the W ±  bosons which mediate the beta decay, 

( ) ( )2 2/W e WM Mk c eα = ℏ  is a direct measure of the electric charge strength at the beta decay 

vertex.  Based on the numeric values from (15.13), (15.17) and (15.5), the small angle which we 
refer to as the charged lepton rotation angle and denote as lθ , has a value of 8.496lθ = ° .  This 

may be illustrated as shown below:  

 
Figure 10: Projection of the Lepton vev onto the Lepton Mass Sum  

 

Viewed in this light, the energy difference taken in its square root form δ


 rotates the 

2 2 21

2 eu m c m c m cτ µ
= + +  vector which is purely a function of the charged lepton masses, 

through an angle 8.496θ


= ° , into 2 2 21

2 eu m c m c m cτ µ δ
 
′ = + + +  which is a function of the 

charged lepton masses as well as δ


.  While it also happens that ( )21

2 Wu M vα
 
′ =  from (15.16), 

again, it will be important to acquire independent knowledge about δ


. 

 
It is also very helpful to obtain mass relationships analogous to (12.14) and (13.14) which 

directly relate the charge lepton masses particularly to the two angles in (15.14).  Solving the 
simultaneous equations which are (15.12), then using (15.14), for the tau and mu leptons we obtain: 

 
2 2 2 2

2 213 12 13 12
2 2 2 2

13 12 13 12

cos sin sin cos1 1
;

1 cos cos 1 cos cos2 2
P P P P

P P P P

m c u m c uτ µ
θ θ θ θ

θ θ θ θ 
′ ′= =

− −
. (15.19a) 

 
But because of the rotation (15.17) illustrated in Figure 10, the electron mass is not a direct function 
of thee angles.  For this mass, we need to use (15.3) and (15.2), then use (15.19a), to deduce: 
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2 2 2 2 2
31 21

2 2 2 2
2 213 12 13 12

31 212 2 2 2
13 12 13 12

tan tan

cos sin sin cos1 1
tan tan

1 cos cos 1 cos cos2 2

e II I

P P P P
II I

P P P P

m c m c m c

u u

τ µϑ ϑ

θ θ θ θϑ ϑ
θ θ θ θ

 

   

= =

′ ′= =
− −

. (15.19b) 

 
 Finally, let’s take stock of all the reparameterizations we have found to this point.  
Following (14.3) we noted that we had reparameterized the six quark masses as 

( )31 23, , , ,u c t C Cm m m F v θ θ=  and ( )21, , , ,d s b d h Cm m m F m m θ=  with v v


= , leaving only dm  

unconnected to some other known observed empirical energy or mixing angle.  But at (13.7) we 

also made use of the relation ( ) ( )1.5
3 / 2πd u em m m− =  separately discovered by the author in 2013 

[40], [41].  So, having reparameterized the up mass in ( )31 23, , , ,u c t C Cm m m F v θ θ= , and knowing 

the electron mass, this 2013 relation allows us to reparameterize ( )d em F m= , that is, to 

reparameterize the down mass as a function of the electron mass.  Therefore, we effectively used  

( )31 23 21, , , , , , , , , ,u c t d s b C C C h em m m m m m F v m mθ θ θ=  to reparameterize all six quark masses.  But 

one of these parameters, em , is effectively “kicked down the road” to our study of the charged 

leptons, which is now just completed.  So, let us see what we now know about the electron mass. 
 

From what we learned in (15.16) and (15.19) the mu and tau masses 

( )( )2
13 12, , , ,P P Wm m F M vµ τ θ θ α=  with v being the same Fermi vev used as a parameter in the 

quark relations.  But from (15.18), the mass sum 2 2 2
em c m c m cτ µ+ +  is not yet expressed in terms 

of other independently-known parameters, because δ


 is not yet independently-understood.  We 

only understand δ


 in terms of its having been determined by fitting two of the PMNS angles to 

the three known charge lepton masses.  So all told, we now have: 
 

{ } ( )( )2
31 23 21 13 12, , , , , , , , , , , , , , , ,t c u b s d e h C C C P P W em m m m m m m m m F v m M mµ τ θ θ θ θ θ α= , (15.20) 

 
 in which the set of nine elementary fermion masses exclusive of neutrinos which we will next 

examine, are functions of eight independently-known ( )2
31 23 21 13 12, , , , , , ,h C C C P P Wv m Mθ θ θ θ θ α  

energies, angles, and couplings, plus – once again – the electron mass.  So, we have taken nine 
seemingly-independent masses, and boiled them down to only one seemingly-independent mass, 
namely, that of the electron.  But once again, em  is the outstanding parameter.  This of course begs 

the question: how does one finally reparameterize the electron mass?  As we shall now see, 
reparametrizing the electron mass is “kicked down the road” yet again.  Last time it was kicked 
from quarks to charged leptons.  Now it is kicked yet again from the charged leptons to the 
neutrinos. 
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16.  Theory of Fermion Rest Masses and Mixing: Prediction of the Neutrino 

Mass Sum and of the Individual Neutrino Masses 
 
 The neutrinos are unique among the elementary fermions.  Not only was it believed for a 
long time that these were massless fermions – which was disproved by neutrino oscillations which 
we are in the midst of studying here – but there remains debate to this day as to their fundamental 
character, that is, whether they are Dirac fermions in the same way as all other fermions, or have 
distinct Majorana properties which render them of a fundamentally different character.  From a 
practical standpoint, there is one very striking difference which affects how we approach the 
question of neutrino masses: while upper limits have been established for the neutrino masses, we 
have no empirical data available which tells us what the precise neutrino masses actually are.  So, 
whereas our approach with the quarks and the charged leptons has been to start with their known 
masses and connect this to the CKM and PMNS parameters and other known data, our approach 
with neutrinos must necessarily be inverted: we must start with other data, and use this to infer and 
predict the neutrino masses.  Moreover, as noted on page 11 of PDG’s [45], “determining, or 
obtaining significant constraints on, the absolute scale of neutrino masses” remains a very 
significant research problem at the present time.”  But as noted in [46], “somewhere between 10 
MeV and 2eV is our playground.”  And on page 12 of PDG’s 2018 review [45], it is reported that 
the sum of the neutrino masses is 0.170 eVj jmΣ <  at a 95% confidence level. 

 
 Starting with (15.20) which shows the parameters we have utilized so far, let’s simply take 
inventory of the masses we are looking to ascertain and the parameters still available for doing so.  
As with the quarks and charged leptons, the neutrinos come in three generations, and so their 
masses represent three different energy numbers to be reparameterized.  There are three PMNS 
angles, but two of these – 13Pθ  and 12Pθ  – were already used at (15.14) to parametrize the charged 

lepton masses.  So, we have one angle left – 1.9
2

3.1 4.
3

3
3.9 5.4 6.947.2Pθ + + +

− − −= °  from (15.10) – to utilize for 

the neutrino masses. Given this, we will need to identify two more parameters from which to 
uniquely deduce the neutrino masses. 
 
 One of these two more parameters must determine the energy scale for the neutrino masses, 
that is, it must independently yield an energy close to, but somewhat less than, .2 eV.  So let’s start 
here.  One of the striking features of what we do know about neutrino masses, is that these masses 
are so immensely-small in comparison with other fermion masses.  With the lightest non-neutrino 
fermion – the electron – having a mass of just over half a million eV, the largest possible mass for 
a neutrino is over a million times smaller than the electron mass.  And this ratio is even larger 
relative to other fermions.  For the GeV scale fermions, this ratio is 109 or larger.  As stated also 
on page 12 of [45], “it is natural to suppose that the remarkable smallness of neutrino masses is 
related to the existence of a new fundamental mass scale in particle physics, and thus to new 
physics beyond that predicted by the Standard Model.”  Indeed, the only natural energy ratios 
which come to mind as able to produce a mass scale this small, involve the Fermi vev 

246.2196508 0.000063 eV3 Gv v


±= =  relative to 2 191.220 910 1 0  GeVPM c = × , which is the 

Planck energy.  The former of course is a proxy for the Fermi constant FG , and the latter for the 

Newton gravitational constant G. 
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 In this regard, when we look at (15.20) and take inventory of parameters, we see of course 
that the Fermi v is one of the parameters already used, which means that FG  has already been 

used.  But the Newton constant G and its associated Planck energy 2
PM c  with the Planck mass 

defined by 2
PGM c≡ ℏ  is not yet used.  Given the need for a very small energy ratio to bridge the 

chasm from other fermion masses to neutrino masses, we proceed from the viewpoint that the 

dimensionless ratio 2 172.018194 10/ Pv M c −×=  may provide the basis for supplying the requisite 

very small energy ratio.  And in view of the important role that square roots of energy numbers 
appear to play in connecting masses to mixing angles and other parameters – for example, see the 
Pythagorean axes in Figures 3, 4, 5 and 10 and all the prior equations which contain energy square 

roots – we also consider using the ratio 2 094.492431 10/ Pv M c −= × .  Then, we need a baseline 

energy against which to apply this ratio. 
 

 Now, the energy parameter 42.018 MeVδ


=  deduced in (15.17) to fit the charged lepton 

masses to two of the PMNS mixing angles is brand new.  Aside from its origin as a necessity to fit 
this empirical data, we still have no independent knowledge about its direct physical meaning, 
which is also why the electron rest mass it still in need of independent reparameterization.  In 
contrast, all the parameters in (15.20) do have separate status as physical quantities with well-
understood, independent meaning.  So, supposing that δ


 is, perhaps, the baseline energy against 

which to use 2 094.492431 10/ Pv M c −= × , we simply do the exploratory calculation: 

 

2

0942.018 MeV 4.492431 10 0.189 eV
P

v

M c
δ


−= × × = . (16.1) 

 
This is a bullseye!  Not only is this number at the right order of magnitude to describe the neutrino 
masses based on the knowledge we have to date of these masses, but within the correct order of 
magnitude, it is at the correct ~2 eV upper limit which empirical data has placed on the sum the 
neutrino masses.  It seems highly unlikely that arriving at 0.189 eV from across nine orders of 
magnitude when our target energy is .2 eV is merely a coincidence.  As a result, we conclude that 
this is no coincidence, and regard this as a relation of true physical meaning.  So now, we need to 
make a formal assignment of the result in (16.1) to the neutrino masses. 
 
 In (12.3), (13.10) and (15.15), the vevs in relation the respective mass sums are 

( )2 2 22 u c tv m c m c m c


= + + , ( )2 2 22 d s bv m c m c m c


= + +    and ( )2 2 22 eu m c m c m cτ µ
= + + .  

So, for the neutrino sum we likewise define ( ) 22 em m cmu ν νµ ντ
+ +≡ .  The question now is 

whether the numeric result 0.189 eV in (16.1) should be assigned to this new u


 or to the mass 

sum ( ) 2
em m m cν νµ ντ+ + .  That is, where do we use the  2  factor?  Given that for the neutrinos, 

( ) 2 0.170 eVj j em m m m cν νµ ντΣ = + + <  with a 95% confidence level, this empirical data suggests 

that the appropriate assignment should be to the neutrino vev, namely:  
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( ) 2 22 0.189 / eVe Pm m m vu c M cν νµ ντ δ


+ + =≡ = , (16.2a) 

 
which means that for the mass sum we have: 
 

( ) 21 21

2 2
0.133 eV/ 0.170 eVe Pm m m vc M cu ν νµ ντ δ

 
+ + <≡ ≡ = , (16.2b) 

 

clearly fitting the empirical data [45].  Were we to assign ( ) 2 0.189 eVe cm m mν νµ ντ+ + =  we 

would be well outside the 95% zone.  Moreover, we will momentarily see this is theoretically 

consistent with the quark assignments in Figure 10 and the 2  appearance in the Higgs mass 

( ) 21

2
2 /hm v v c

 
+= .  It is also helpful to write (16.2b) and (16.2a) in terms of δ


 as: 

 

( )2 222 42.018 M/ eV/P e PM c v m m m c Mu c vν νµ ντδ


== + + = . (16.2c) 

 
The above (16.2b) is a theoretical prediction about the true sum of the physical neutrino 

rest masses, and a definition of a vev u


 for the neutrinos which parallels the previous (12.3), 

(13.10) and (15.5) for quarks and the charged leptons.  And, with (16.2c), we now have an 

independent understanding of ( )2 22 /P eM c v m m m cν νµ ντδ


+ += , and see that this is a function 

of the neutrino masses and the Newton gravitational constant in 2
PGM c≡ ℏ .  Indeed, with (16.2c) 

we update Figure 10 to display this new understanding, as seen below: 
 

 
Figure 11:  Charged Lepton and Amplified Neutrino Masses, and Rotation of the Charge 

Lepton Mass Space Vector 

 
 Above, we see the isospin-down and isospin-up leptons on orthogonal axes, labelled as 

such with   and  .  Except for the “neutrino mass amplifier” factor 2 /PM c v , and the 

hypotenuse aligned toward isospin-down rather than up, this is identical in form to Figure 5 for 

quarks.  This includes the 2  appearing as a multiplying factor for the isospin-up mass sum and 
not the isospin down mass sum, which shows theoretical consistency in addition to empirical 
confidence in the use of this factor in (16.2).  Note also that the hypotenuse mirrors the Higgs mass 

relation ( ) 21

2
2 /hm v v c

 
+=  (14.3) as well, up to the neutrino mass amplifier.  We see that the 
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relation  in (15.11) – which does not have an analogue for quarks – effectively 

causes a rotation of the horizontal vector 1

2
u


 for isospin-down charged leptons, toward the 

vertical vector u


 for isospin-up neutrinos, with amplification. 

 

 At this point, having a predicted value ( ) 2 0.133 eVe cm m mν νµ ντ+ + =  for the sum of the 

neutrino rest masses, we follow the approach previously used for quark and charged lepton masses.  
Just as at before we postulate that all of the rest mass for the neutrinos starts off on the tau neutrino, 
and then is subjected to a bi-unitary transformation leading to relations which mirror (15.1).  
However, because (15.9) did not match (15.10) we were required to rotate the vev via 

1 1

2 2
u u δ
  
′ ≡ +  in (15.11) which led to what is now Figure 11 above.  Given that this is what 

allowed us to fit 12Pθ  and 13Pθ  at (15.14), but that 23Pθ  has yet to be fitted, we must consider that 

the same type of rotation is also required for neutrinos, i.e., that we need to first postulate an extra 
energy δ


 associated with neutrinos, and use these in a relation analogous to (15.11), namely: 

 
2 2 21 1

2 2
0.133 eV eVeu u m c m c m cντ νµ νδ δ δ

   
′ ≡ + = + + + = + . (16.3) 

 
 Of course, for the quarks and the charged leptons we knew the empirical masses in advance.  
For the neutrinos we do not have that luxury.  Our goal here is to predict the individual neutrino 
masses.  The relations to do so turn out to be analogous to (15.19a) for the mass mixing angles, 
but now contain the two angles 21Iϑ


′ , 31IIϑ


′  in the form: 

 
2 2

31 212

2 2
31 21

2 2
31 212

2 2
3

2 2 2

1 21

cos sin1

1 cos cos2

sin cos1

0.133 eV

1 cos cos2

II I

II I

II I

II I

e

m c u

m c u

m m mc c c

ντ

νµ

ν ντ νµ

ϑ ϑ
δ

ϑ ϑ

ϑ ϑ
δ

ϑ ϑ

 
 

 

 
 

 

′ ′ = +  ′ ′− 

′ ′ = +  ′ ′− 

= − −

, (16.4) 

 
with the electron neutrino mass obtained via (16.2b).  We have seen this basic form before not 
only in (15.19a), but also in (12.14) and (13.14).  Now, we need to connect one of these angles to 

1.9
2

3.1 4.
3

3
3.9 5.4 6.947.2Pθ + + +

− − −= ° , while the other angle is a “leftover” in the manner of 31IIθ


 in (13.6).  This 

raises the question what to associate with the leftover angle, and also how to ascertain δ


, because 

without both angles as well as a value for the new δ


, we cannot predict the neutrino masses. 

 
 The question of the leftover angle returns us to the discussion at (15.20) regarding 
reparameterization, and requires us to make an educated guess about a suitable parameter for the 

leftover angle.  We first note the relation (15.16) in which ( )2
WM vα


 became a key number.  The 

parameter ( )2
WMα , in particular, is a quintessential electroweak number, because it tells us the 

1 1

2 2
u u δ
  
′ ≡ +
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value of the electromagnetic running coupling at 2 2 4
WQ M c=  which is the rest energy of the weak 

vector boson responsible for all beta-decays.  The fact that we have a leftover angle tells us that 
the suitable parameter should also be an angle.  Combining these two pieces of information leads 
us to look for an angle that in some way is electroweak in nature, and that we have not otherwise 
used already.  And the most apparent and obvious candidate for this is the Weinberg electroweak 
mixing angle which relates the two boson masses via cos /W W ZM Mθ =  and relates the 

electromagnetic and weak charges via sin /W We gθ = .   

 
So, we now take an educated guess, and make the hypothesis that the leftover angle in 

(174) is to be associated with Wθ .  Empirically, we will use 2sin 0.2223 0.0021Wθ ±=  from 

CODATA’s [47].  Finally, irrespective of the value of δ


, because 28.13 0.14Wθ ±= °  is smaller 

than 1.9
2

3.1 4.
3

3
3.9 5.4 6.947.2Pθ + + +

− − −= ° , and noting that the denominators are the same in each of (16.4), it is 

clear that associating the smaller angle with 31IIϑ


′  will produce a larger mass for the tau neutrino 

versus the mu neutrino, and that vice versa will give the muon neutrino a larger mass.  Finally, 
therefore, we impose the requirement of “normal ordering” so that the tau neutrino has the largest 
mass of all.  So, in accordance with all of the foregoing, we now make the assignments: 
 

31

21 2
1.9 3.1 4.3
3.9 4 .93 5. 6

28.13 0.14

47.2

II W

I P

ϑ θ

ϑ θ




+ + +
− − −

± °′ = =

′ = = °
 (16.5) 

 
And with this, subject to also setting δ


 which we shall review momentarily, we can use (16.4) to 

predict the neutrino masses.  For 23Pθ  we will employ the entire 3σ  spread.  

 
 To keep things simple, before we take on how to determine δ


, let use first set 0δ


=  just 

to gain a sense for the masses that come from (16.4).  Using (16.5) in (16.4) we obtain: 
 

( )
( )
( )

0.003
0.007

0.005
0.010

2 0.001
0.002

2

2

0.087  eV

0.021  eV

0.025  

0

eV

0

0e

m c

m c

cm

ντ

νµ

ν

δ

δ

δ

+
−

−
+





+
−

= =

= =

= =

, (16.6) 

 

Note the reverse order of error bars for the mu neutrino, because 2 2 20.133 eVec cm cm mν ντ νµ= − −  

imposes an overall constraint which makes the mu smaller when the tau is larger and vice versa. 
 

 If we postulate that 2 0em cν >  is to be a nonzero, positive mass, thereby ruling out negative 

mass, we can also put an upper bound on δ


 by calculating the value of δ


 which will cause 
2 0em cν =  at the bottom of its error bar.  Then, a similar calculation shows that for 0.027 eVδ


=  

thus 1 1

2 2
0.160 eVu u δ

  
′ = + = , we obtain:  
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( )
( )
( )

0.004
0.009

0.006
0.012

2 0.002
0

2

.00

2

3

0.027 eV 0.105  eV

0.027 eV 0.026  eV

0.027 eV 0.003  eVe

m c

m c

m c

ντ

νµ

ν

δ

δ

δ

+
−

−
+



+



−=

= =

= =

=

, (16.7) 

 
So, from (16.6) and (16.17), we can already constrain the three masses such that: 
 

2

2

2

0.079 eV 0.109 eV

0.017 eV 0.038 eV

0 eV 0.026 eVe

m c

m c

cm

ντ

νµ

ν

≤ ≤

≤ ≤

< ≤

, (16.8) 

 
 Having established these boundaries for the neutrino masses, we now turn to the question 
of how we might constrain δ


.  One’s first though might be to look for yet one final independent 

parameter.  But as it turns out, it is Figure 11, when compared with its quark relative Figure 5, 
which points toward a trigonometric condition that will fix the value of δ


.  Specifically, in Figure 

5, the   vector containing the (square root) isospin-up quark masses and vevs is orthogonal to the 

  vector with the isospin-down quark masses and vevs.  Likewise, in Figure 11, notwithstanding 

the amplifier factor 2 /PM c v , the   vector is orthogonal to the   vector.  From this we may 

discern the general rule that vectors which contain   vevs are orthogonal to those which contain 

  vevs.  But Figure 11 rotates the u


 vector into a u

′  vector which was unnecessary for quark 

masses, and it is δ


 which is responsible for the rotation.  This was needed to fit the quark mass 

data to two of the three real PMNS angles within under 2σ .  And at the moment, we are 
considering how to determine δ


 which is responsible for a similar rotation of u


 to u


′  in (16.3), 

and which is presumably required to connect the neutrino masses to the third PMNS angle and the 
weak mixing angle..   
 
 Given that u


 is orthogonal to u


, it appears safe to impose the constraint that u


′  must 

also be orthogonal to u

′ .  In other words, the vevs 1 1

2 2
u u δ
  
′ ≡ +  defined in (15.11) to fit the 

charged lepton masses to two of the PMNS angles, and 1 1

2 2
u u δ
  
′ ≡ +  similarly defined in 

(16.3) to analogously fit the neutrino masses to the remaining PMNS angle and the weak mixing 
angle, must be orthogonal to one another, as are u


 and u


 to one another.  And with this single 

constraint, by geometric construction we can fix the value of δ


 and therefore make an exact 

prediction for the three neutrino masses, within the experimental errors in the input parameters.  
Let us now review in detail, how this is done.   
 
 Although Figure 11 is similar to Figure 5 in many ways, it differs in one important respect, 

namely, that it contains the 2 /PM c v  amplifier for the neutrino masses, which amplifier brings 

about the angle 8.496θ


= ° .  Now, let us draw a similar figure, but without the amplifier.  Rather, 
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in Figure 12 below, on the horizontal axis we show 1

2
/u c


 based on (15.5) for the charged 

leptons, and on the vertical axis we show /u c


 based on (16.2a) for the neutrinos.   It will be 

appreciated that this now identical to Figure 5, including all appearances of the 2  factor, merely 
with a direct replacement of isospin-up quarks by isospin-up leptons and of isospin-down quarks 
by isospin-down leptons.  (This is another confirmation of the use of this factor starting at (16.2a).)  

Likewise – which was not required in Figure 5 – in Figure 12a we also show the rotated 1

2
/u c


′  

of (15.11) and the rotated /u c

′  of (16.3), taking care to make sure not only that 1

2
/u c


 and 

/u c


 are orthogonal, and also that 1

2
/u c


′  and /u c


′  are orthogonal, which is the 

constraint we introduced in the previous paragraph.  Because the mass sum for isospin-up quarks 
is much larger than for down quarks, while this is definitively reversed for leptons, the only 

difference between Figure 12 and Figure 5 is one of form:  In Figure 5 the   masses are on the 

horizontal axis while in Figure 12 the   masses are on the horizontal axis.   
 

Because the ratio 1883.029 MeV / 0.1 99889 1eV 15.4=  is extremely large, the 

horizontal leg and 1

2
/u c


′ of the triangle in Figure 12 would extend to the right for almost a mile 

if drawn to their ends and to scale, based on the 0.189 eV  leg being drawn at about a half an inch 

in height.  At the end of the triangle about a mile to the right of the page, the height is / cδ


.  

Also, there is a hypotenuse of length 1

2
/ cu u

 
+  formed from vertical and horizontal legs.  But 

this is indiscernible from 1

2
/u c


 because the hypotenuse has 99ta 81n 1 41/ 5.θ = , that is, an 

angle 2.060 0 63' 64 "θ = ° .  This effectively makes ~ 0u


 when calculating the hypotenuse. 

   

 
Figure 12a: The Lepton Rest Mass Space 

 
 What most interests us in Figure 12a it the tiny triangle enclosed in the circle, which is 
magnified in Figure 12b below.  In particular, by trigonometric construction, based on the 

foregoing requirement to keep 1

2
/u c


′  and /u c


′  orthogonal, also using the formal similarity 

of the triangles in Figure 12a, we can immediately read off from Figure 12b that: 
 

( )2tan 8.496 2 2
u u

δ δ
 

 

° = =  . (16.9) 
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The unknown that we wish to find is δ


, so we rewrite this and use (16.2b) to calculate: 

 

 ( ) ( )2 21

2
0.133 eV 0.00296tan 8.496 tan 8. 8 eV496uδ

 
° =×= ° =  . (16.10) 

 
We then use the above and (16.3) to calculate: 
 

2 2 21 1

2 2
0.136 eVeu u m c m c m cντ νµ νδ δ

   
′ ≡ + = + + + = . (16.11) 

 

 
Figure 12b:  Magnified view of Key Trigonometric Relations in Figure 2a 

 
Now, with (16.10) in hand, we again use (16.4) to obtain the neutrino mass predictions: 

 

( )
( )
( )

0.004
0.008

0.005
0.010

2 0.001
0. 0

2

0 2

2

0.002968 eV 0.089  eV

0.002968 eV 0.022  eV

0.002968 eV 0.022  eVe

m c

m

m c

c

ντ

νµ

ν

δ

δ

δ

+
−

+

−

−

+





=

=

=

=

=

=

, (16.12a) 

 
We may also write these as in (16.8), together with the mass sum (16.2b), as such: 
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2

2

2 2

2

2

0.081 eV 0.092 eV

0.017 eV 0.032 eV

0.020 eV 0.024 eV

0.133 eV

e

e

m c

m c

m

m c m c m c

c

ντ

νµ

ν

ντ νµ ν+ =

≤

+

≤

≤ ≤

< ≤
, (16.12b) 

 
The broad ranges above are mainly an outgrowth of using the 3σ  data 2340.3 51.5Pθ° ≤ ≤ ° .  We 

observe that the tau neutrino in all cases is heavier than the electron and muon neutrinos.  But 
normal ordering between the electron and the muon occurs only with a smaller 23Pθ .  So, if one 

gives weight to the hypothesis that neutrinos should exhibit a normal mass ordering, this would 
mean that the actual 23Pθ  is toward the low end of the 23Pθ  range.  For example, with 23Pθ  at 2σ  

below its center, i.e., with 23 41.8Pθ = ° , the masses have the normally-ordered 2σ−  values 

 

( ) ( ) ( )2 2
23 23

2
2341.8 41.0.083 eV; 0.029 eV; 0.08 41.  8 21 eVP P e Pm c m c m cντ νµ νθ θ θ= ° = = ° = = =° . (16.13) 

 
In general, note that all three masses are relatively close to one another in comparison to the mass 
patterns for quarks and charged leptons. 
 

Now, it is often stated that neutrino oscillations are the most direct evidence we have that 
neutrinos are not massless.  In view of the foregoing, this statement can be refined in a more precise 
way:  Suppose that neutrinos were massless.  Then, in view of the foregoing, what would be 

different?  First, from (16.2c), we would have ( ) 22 0/2 e Pm m m Mc c vν νµ ντδ


+= =+ .  This 

means that (15.11) would become 1 1

2 2
u u
 
′ ≡ .  And this would mean, combining (15.9), (15.10) 

and (15.14), that the PMNS mixing angles would be centered at 13 31 31 0.97155P II IIθ ϑ ϑ
 

′= = = °  

and 12 21 21 3.97816P I Iθ ϑ ϑ
 

′= = = ° , rather than the observed 13 8.795Pθ = °  and 12 32.39Pθ = ° .   

 
So, if the neutrinos were massless, there would still be generation-changing beta-decays 

for leptons, but the angles would be much smaller.  In short, the neutrinos having mass turns a 
0.97155°  angle into 8.795° , and turns a 3.97816°  angle into 32.39° .  So, a more accurate 
statement is that the very liberal mixing of generations during leptonic beta decay versus the 
relatively homogeneous mixing for quark generations, is the most direct evidence we have for 
neutrinos having mass.  But even if neutrinos were massless, there would still be some mixing, but 
the mixing angles would be much smaller.  Another way to state this is that the failure of (15.9) to 

match (15.10) – which required introducing the extra energy δ


 in (15.11) – was in fact evidence 

that neutrinos have mass.  If they were massless, no calculation would have been needed beyond 
(15.9), because (15.10) would have been different and would have matched (15.9). 
 
 Stepping back to take the broad view, it will be seen that at this point we have added three 
more parameters to those reviewed at (15.20), namely 23Pθ , Wθ , and the Planck mass PM  which 

we characterize in terms of the Newton gravitational coupling G.  At Figure 11, when we used G 
to obtain the vertical leg with δ


, we implicitly reparameterized the electron mass, because 
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20.133 eV /em m cmµ τ+ + =  thus em  could now be deduced from the triangles in Figure 11 

assuming that one knows the neutrino mass sum em m mν νµ ντ+ +  related to δ


 by (16.2b).  So now, 

it is the 20.133 eV / c  neutrino mass sum number which needs to be reparameterized, because it is 

a function of the electron rest mass via (16.2b).  Then, given 20.133 eV /em m cmµ τ+ + = , and 

also using 23Pθ , Wθ , we reparameterize two more neutrino masses, but only know these to the 

extent we know the new energy surplus δ


 introduced as a new parameter at (16.3).  It is by finally 

imposing the requirement in Figures 12 that 1

2
/u c


′  and /u c


′  must be orthogonal, that we 

are able to deduce δ


 via (16.9) and (16.10), and thus the individual neutrino masses. 

 
 Supplementing (15.20) with all of the above, and using FG  and G as proxies for the Fermi 

vev and the Planck mass, the complete reparameterization of all twelve fermion masses is: 
 

{ }
( )( )2

31 23 21 13 12 23

, , , , , , , , , , ,

, , , , , , , , , , ,

t c u b s d e e

F h C C C P P P W W e

m m m m m m m m m m m m

F G G m M m m m

µ τ ντ νµ ν

ντ νµ νθ θ θ θ θ θ θ α= + +
, (16.14) 

 
So finally, there is only one parameter that is kicked down the road, and that is the neutrino mass 

sum 20.133 eV /em m cmµ τ+ + = .  It is not that we do not know the value of this parameter, 

because now we do.  It is that this parameter is only known because of our knowledge, among 
other things, of the electron rest mass.  So the final “kick down the road” of the open 
parameterization lands in this neutrino mass sum. 
 

17.  Prediction of a Second Leptonic Higgs Boson, and its Mass 
 
 Back at (4.3) we showed how the mass of the Higgs boson can be described within 

experimental errors by ( )2 1

2
/ 2hm c v v

 
+≡   in relation to the Fermi vev v v


=  and the sum of 

isospin-down quark masses 2 2 21

2 d s bv m c m c m c


= + +  from (13.10).  And in Figure 5, it was 

shown how 1

2
/ 2 hv v c m

 
+ =  actually specifies the hypotenuse of the orthogonal mass 

spaces for v


 and v


.  Although we cannot see the analogous hypotenuse 1

2
/ cu u

 
+  in Figure 

12a because its angle with the horizontal triangle leg is a just over a scant 2” as noted, the parallels 
formulated throughout between the quark and lepton masses spaces is highly suggestive that there 
exists a second Higgs boson denoted h2 associated with leptons, having a mass defined by the 
analogous form: 
 

2 2
2

1
1

941.515 0.060
2

 V
2 2

Meh

u
u

u
m c 



 ±=
+

≡ ≅ , (17.1) 
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where we have used (15.5) to supply the empirical data.  This differs from the proton and neutron 
masses 938.272081 0.000006 MeVPM ±=  and 939.565413 0.000006 MeVNM ±=  [48] by only 

a few MeV, in the former case by 3.243 MeV, and in the latter by 1.950 MeV. 
 
 In general, there are three types of predictions that can be made for empirical data.  First, 
there is retrodiction, in which empirical data which is already known is explained in relation to 
other known data.  This reduces the number of independent data numbers in our physical theories, 
and is often accompanied by better theoretical understanding of the observed physics.  This is 
exemplified here generally, by (16.14).  Second, there is tuning prediction, in which a prediction 
is made about how the experimental error bars for already-known data will be affected as it 
becomes possible to obtain tighter measurements of this data, owing to better experiments and / or 
better theory.  This is exemplified here by (13.11) and (13.12) for tighter top and strange quark 
masses, (14.3) for a tighter Higgs mass, and (15.14) for re-centered 12Pθ  and 13Pθ  values.  Third, 

there is outright prediction, in which data which is known to exist but has not yet been successfully 
measured is predicted, or in which some data which is not even known to exist is predicted to exist, 
along with a prediction as to how it will be measured.  This is most important, because absent 
theoretical information telling us where to target our detection efforts, experiments to detect such 
data are often carried out “scattershot” over a broad range of possible values. 
 
 Here, (16.12) and (17.1) contain outright predictions of four mass values which at present 
are not known.  In (16.12) we are now told exactly the energies at which to look for the three 
neutrino masses and their mass sum.  And in (17.1) we are told not only that a new Higgs boson 
exists, but we are told that to find it, one should be looking in the zone of energies just a few MeV 
higher than the protos and neutron rest energies.  Experimental efforts to pinpoint neutrino masses 

can now be carried out focused on confirming the mass sum 2 2 2 0.133 eVem c m c m cντ νµ ν+ + = , and 

focused on finding the separate neutrino masses in (16.12), see also (16.13).  And of course, finding 

a second Higgs boson at 2
2 941.515 0.060 MeVhm c ±= , just above the proton and neutron rest 

energies, would be entirely new, because the very existence of such a new particle – much less its 
mass value – is entirely unanticipated based on present knowledge. 
 

18.  The Two-Minimum, Two Maximum Lagrangian Potential for Leptons, 

and the Role of the Second Higgs Boson and its Mass in Weak Beta-Decay 
 
To be added – developed to parallel section 14 

 

19.  Why Hermann Weyl’s U(1) Gauge Theory of Electromagnetism is a 

Direct Consequence of Dirac-Kaluza-Klein Theory, so that Massive Vector 

Bosons Acquire their Mass Just as they do in the Standard Model 
 
To be added 
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20.  How the Dirac-Kaluza-Klein Metric Tensor Resolves the Challenges faced 

by Kaluza-Klein Theory without Diminishing the Kaluza “Miracle,” and 

Grounds the Now-Timelike Fifth Dimension in Manifestly-Observed Physical 

Reality 
 
 Now let’s review the physics implications of everything that has been developed here so 
far.  As has been previously pointed out, in the circumstance where all electrodynamic interactions 

are turned off by setting  and what is now , then (3.13) reduces when  to 

 with .  And we saw at (6.3) that this result does not 

change at all, even when  and .  But in the same situation the usual Kaluza-Klein 

metric tensor (1.1) reduces to  with a determinant .  This 

of course means the Kaluza-Klein metric tensor is not-invertible and therefore becomes singular 
when electrodynamic interactions are turned off.  Again, this may be seen directly from the fact 

that when we set  and , in (1.1) we get .  This 

degeneracy leads to a number of interrelated ills which have hobbled Kaluza-Klein as a viable 
theory of the natural world for a year shy of a century. 
 

First, the scalar field  carries a much heavier burden than it should, because Kaluza-Klein 

theory relies upon this field being non-zero to ensure that the five-dimensional spacetime geometry 
is non-singular.  This imposes constraints upon  which would not exist if it was not doing “double 

duty” as both a scalar field and as a structural element required to maintain the non-degeneracy of 
Minkowski spacetime extended to five dimensions.   

 
Second, this makes it next-to-impossible to account for the fifth dimension in the observed 

physical world.  After all, the space and time of real physical experience have a flat spacetime 

signature  which is structurally sound even in the absence of any fields 

whatsoever.  But what is one to make of a signature which, when  and , is given 

by  with ?  How is one to explain the physicality of a 

 in the Minkowski signature which is based upon a field, rather than being either a timelike 

+1 or a spacelike –1 Pythagorean metric component?  The Minkowski signature defines the flat 
tangent spacetime at each event, absent curvature.  How can a tangent space which by definition 
should not be curved, be dependent upon a field  which if it has even the slightest modicum of 

energy will cause curvature?  This is an internal logical contradiction of the Kaluza-Klein metric 
tensor (1.1) that had persisted for a full century, and it leads to such hard-to-justify oddities as a 

fifth dimensional metric component  and determinant  which dilates or 

contracts (hence the sometime-used name “dilaton”) in accordance with the behavior of . 

 
Third, the DKK metric tensor (3.13) is obtained by requiring that it be possible to 

deconstruct the Kaluza-Klein metric tensor into a set of Dirac matrices obeying (3.1), with the 
symmetry of full five-dimensional general covariance.  What we have found is that it is not 

0jAγ = 0µΦ = gµν µνη=

( ) ( )diag 1, 1, 1, 1, 1GΜΝ = + − − − + 1GΜΝ = −
0jAγ ≠ 0µΦ ≠

( ) ( )diag 1, 1, 1, 1,0GΜΝ = + − − − 0GΜΝ =

0jAγ = 0φ = 55 2 01/G g A Aα β
αβ φ+ == + ∞

φ

φ

( ) ( )diag 1, 1, 1, 1µνη = + − − −

gµν µνη= 0kAγ =

( ) ( )2diag 1, 1, 1, 1,η φΜΝ = + − − − 2η φΜΝ = −
2

55G φ=

φ

2
55G φ= 2η φΜΝ = −

2φ
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possible to have 5-dimensional general covariance if  and  as in (1.1).  

Rather, general 5-dimensional covariance requires that  and  in (3.13).  

Further, even to have spacetime covariance in four dimensions alone, we are required to gauge the 
electromagnetic potential to that of the photon.  Without these changes to the metric tensor 
components, it is simply not possible to make Kaluza-Klein theory compatible with Dirac theory 
and to have 5-dimensional general covariance.  This means that there is no consistent way of using 
the usual (1.1) to account for the fermions which are at the heart of observed matter in the material 
universe.  Such an omission – even without any of its other known ills – most-assuredly renders 
the KK metric (1.1) “unphysical.”   

 
Finally, there is the century-old demand which remains unmet to this date: “show me the 

fifth dimension!”  There is no observational evidence at all to support the fifth dimension, at least 
in the form specified by (1.1), or in the efforts undertaken to date to remedy these problems. 
 

But the metric tensors (3.13) and (4.22) lead to a whole other picture.  First, by definition, 
a 5-covariant Dirac equation (5.6) can be formed, so there is no problem of incompatibility with 
Dirac theory.  Thus, all aspects of fermion physics may be fully accounted for.  Second, it should 

be obvious to anyone familiar with the  and  that one may easily use an 

anticommutator  to form a five-dimensional Minkowski tensor with 

, which has a Minkowski signature with two timelike and three 

spacelike dimensions.  But it is not at all obvious how one might proceed to regard  as the 

generator of a truly-physical fifth dimension which is on an absolute par with the generators  of 

the four truly-physical dimensions which are time and space.  This is true, notwithstanding the 
clear observational evidence that  has a multitude of observable physical impacts.  The reality 

of  is most notable in the elementary fermions that contain the factor  for right- and 

left-chirality; in the one particle and interaction namely neutrinos acting weakly that are always 

left-chiral; and in the many observed pseudo-scalar mesons ( ) and pseudo-vector mesons 

(  and ) laid out in [49], all of which require the use of  to underpin their 

theoretical origins.  So  is real and physical, as would therefore be any fifth dimension which 

can be properly-connected with . 

 
But the immediate problem as pointed out in toward the end of [11], is that because 

 in the Kaluza-Klein metric tensor (1.1), if we require electromagnetic energy densities to 

be positive, the fifth-dimension must have a spacelike signature.  And this directly contradicts 
making  the generator of the fifth dimension because  produces a timelike signature.  

So, as physically-real and pervasive as are the observable consequences of the  matrix, the 

Kaluza-Klein metric tensor (1.1) does not furnish a theoretical basis for associating  with a fifth 

dimension, at the very least because of this timelike-versus-spacelike contradiction.  This is yet 
another problem stemming from having  carry the burden of maintaining the fifth-dimensional 

signature and the fundamental Pythagorean character of the Minkowski tangent space. 

05 50 0G G= = 2
55G φ=

05 50G G φ= = 2
55 1G φ= +

µγ
5 0 1 32iγ γ γ γ γ≡ −

{ }1
2 ,η γ γΜΝ Μ Ν≡

( ) ( )diag 1, 1, 1, 1, 1ηΜΝ = + − − − +

5γ

µγ

5γ

5γ ( )1
52 1 γ±

0PCJ −+=
1PCJ ++= 1PCJ +−=

5γ

5γ

5γ

2
55G φ=

5γ 5 5 1γ γ =

5γ

5γ

φ
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So, to summarize, on the one hand, Kaluza-Klein theory has a fifth physical dimension on 

a par with space and time, but it has been impossible to connect that dimension with actual 
observations in the material, physical universe, or to make credible sense of the dilation and 
contraction of that dimension based on the behavior of a scalar field.  On the other hand, Dirac 
theory has an eminently-physical  with pervasive observational manifestations on an equal 

footing with , but it has been impossible to connect this  with a true physical fifth dimension 

(or at least, with the Kaluza-Klein metric tensor (1.1) in five dimensions).  At minimum this is 
because the metric tensor signatures conflict.  Kaluza-Klein has a fifth-dimension unable to 
connect to physical reality, while Dirac theory has a physically-real  unable to connect to a fifth 

dimension.  And the origin of this disconnect on both hands, is that the Kaluza-Klein metric tensor 
(1.1) cannot be deconstructed into Dirac-type matrices while maintaining five-dimensional general 
covariance according to (3.1).  To maintain general covariance and achieve a Dirac-type square 
root operator deconstruction of the metric tensor, (1.1) must be replaced by (3.13) and (4.22). 
 

Once we use (3.13) and (4.22) all these problems evaporate.  Kaluza-Klein theory becomes 

fully capable of describing fermions as shown in (5.6).  With  the metric signature is 

decoupled from the energy requirements for , and with  from (6.3) the metric tensor 

determinant is entirely independent of both  and .  Most importantly, when  and 

 and , because , 

and because of this decoupling of  from the metric signature, we now have a timelike 

 which is directly generated by .  As a consequence, the fifth dimension of 

Kaluza-Klein theory which has heretofore been disconnected from physical reality, can now be 
identified with a true physical dimension that has  as its generator, just as  is the generator of 

a truly-physical time dimension and  are the generators of a truly-physical space dimensions.  

And again,  has a wealth of empirical evidence to support its reality. 

 

Further, with a tangent space  we now have two timelike 

and three spacelike dimensions, with matching tangent-space signatures between Dirac theory and 
the Dirac-Kaluza-Klein theory.  With the fifth-dimension now being timelike not spacelike, the 
notion of “curling up” the fifth dimension into a tiny “cylinder” comes off the table completely, 
while the Feynman-Wheeler concept of “many-fingered time” returns to the table, providing a 
possible avenue to study future probabilities which congeal into past certainties as the arrow of 
time progresses forward with entropic increases.  And because  is connected to a multitude of 

confirmed observational phenomena in the physical universe, the physical reality of the fifth 
dimension in the metric tensors (3.13) and (4.22) is now supported by every single observation 
ever made of the reality of  in particle physics, regardless of any other epistemological 

interpretations one may also arrive at for this fifth dimension. 
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Moreover, although the field equations obtained from (3.13) and (4.22) rather than (1.1) 

will change somewhat because now  and  and the gauge fields are fixed 

to the photon  with only two degrees of freedom, there is no reason to suspect that the 

many good benefits of Kaluza-Klein theory will be sacrificed because of these changes which 
eliminate the foregoing problems.  Indeed, we have already seen in sections 7 and 8 how the 
Lorentz force motion is faithfully reproduced.  Rather, we simply expect some extra terms (and so 
expect some additional phenomenology) to emerge in the equations of motion and the field 
equations because of these modifications.  But the Kaluza-Klein benefits having of Maxwell’s 
equations, the Lorentz Force motion and the Maxwell-stress energy embedded, should remain fully 
intact when using (3.13) and (4.22) in lieu of (1.1), as illustrated in sections 7 and 8. 

 
Finally, given all of the foregoing, beyond the manifold observed impacts of  in particle 

physics, there is every reason to believe that using the five-dimensional Einstein equation with the 
DKK metric tensors will fully enable us to understand this fifth dimension, at bottom, as a matter 
dimension, along the lines long-advocated by the 5D Space-Time-Matter Consortium [18].  This 
will be further examined in the final section to follow, and may thereby bring us ever-closer to 
uncovering the truly-geometrodynamic theoretical foundation at the heart of all of nature. 
 

21.  Conclusion – Pathways for Continued Exploration: The Einstein 

Equation, the “Matter Dimension,” Quantum Field Path Integration, 

Epistemology of a Second Time Dimension, and All-Interaction Unification 
 

 Starting at (7.6) we obtained the connection  in order to study the  term in the 

equation of motion (7.4), because this is the term which provides the Lorentz Force motion which 
becomes (7.29) once  is understood to be a luminous field with  as in (8.1).  The 

reason this was developed in detail here, is to demonstrate that the DKK metric tensors (3.13) and 
(4.22) in lieu of the usual (1.1) of Kaluza-Klein do not in any way forego the Kaluza miracle, at 
least as regards the Lorentz Force equation of electrodynamic motion.  But there are a number of 
further steps which can and should be taken to further develop the downstream implications of 
using the DKK metric tensors (3.13) and (4.22) in lieu of the usual (1.1) of Kaluza-Klein. 
 

First, it is necessary to calculate all of the other connections  using (7.3) and the metric 

tensors (3.13) and (4.22) similarly to what was done in section 7, then to fully develop the 
remaining terms in the equations of motion (7.2), (7.4) which have not yet been elaborated here, 
and also to obtain the five-dimensional Riemann and Ricci tensors, and the Ricci scalar: 
 

. (21.1) 

 
Once these are obtained, these may then be placed into a fifth-dimensional Einstein field equation: 
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 (21.2) 

 
with a suitably-dimensioned constant  related to the usual  to be discussed momentarily.  This 
provides the basis for studying the field dynamics and energy tensors of the DKK geometry. 
 

The development already presented here, should make plain that the Kaluza miracle will 
also be undiminished when the DKK metric tensors (3.13) and (4.22) are used in (21.2) in lieu of 

the usual Kaluza-Klein (1.1).  Because  which we write as  contains the 

electromagnetic field strength as first established at (7.13), we may be comfortable that the terms 
needed in the Maxwell tensor will be embedded in the (21.1) terms housed originally in 

.  Moreover, because the electromagnetic source current density 

, we may also be comfortable that Maxwell’s source equation will be embedded in 

the terms housed originally in .  Moreover, because  

which via (21.2) ensures a locally-conserved energy  is contracted from the second 

Bianchi identity , we may also be comfortable that Maxwell’s 

magnetic charge equation  will likewise be embedded.  In short, we 

may be comfortable based on what has already been developed here, that the Kaluza miracle will 
remain intact once field equations are calculated.  But we should expect some additional terms and 
information emerging from the field equation which do not appear when we use the usual (1.1). 
 

 Second, the Ricci scalar  is especially important because of the role it plays in the 
Einstein-Hilbert Action.  This action provides a very direct understanding of the view that the fifth 
dimension is a matter dimension [18], and because this action can be used to calculate five-
dimensional gravitational path integrals which may be of assistance in better understanding the 

nature of the second time dimension .  Let us briefly preview these development paths. 
 
 The Einstein-Hilbert action reviewed for example in [50], in four dimensions, is given by: 
 

 . (21.3) 

 

The derivation of the four-dimensional (21.2) from this is well-known, where .  So, in 

five dimensions, we immediately expect that (21.2) will emerge from extending (21.3) to: 
 

 , (21.4) 

 

using  from (21.1) and the G already obtained in (6.3), and where  contains 

some suitable length  to balance the extra space dimensionality in  versus .  In Kaluza-

Klein theory based on (1.1)  is normally the radius of the compactified fourth space dimension 
and is very small.  Here, because there is a second time dimension, this should become associated 
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with some equally-suitable period of time=length/c, but it may not necessarily be small if it is 
associated, for example, with the reduced wavelength  of the scalar deduced in (8.14), 
and if that wavelength is fairly large which is likely because these scalars  have not exactly 

overwhelmed the detectors in anybody’s particle accelerators or cosmological observatories.   
 

However, the energy tensor  in four dimensions is placed into the Einstein equation by 

hand.  This is why Einstein characterized the  side of his field equation as “marble” 

and the side as “wood.”  And this  is defined from the Lagrangian density of matter 
by: 
 

 . (21.5) 

 
Therefore, in the Five-Dimensional Space-Time-Matter view of [18], and referring to (21.4), the 

“wood” of  is discarded entirely, and rather, we associate 

 

 (21.6) 

 
with the matter Lagrangian density.  As a result, this is now also made of “marble.” 
 

Then (21.4) may be simplified to the 5-dimensional “vacuum” equation (see [51] at 428 
and 429): 
 

, (21.7) 

 
and the field equation (21.2) derived from varying (21.7) becomes the vacuum equation: 
 

. (21.8) 

 
And we anticipate that the variation itself will produce the usual relation: 
 

 (21.9) 

 
for the Ricci tensor, but now in five dimensions. 
 
 So, in view of (21.5) and (21.6), what we ordinarily think of as the energy tensor – which 
is now made of entirely geometric “marble,” – is contained in those components of (21.8) which, 

also in view of (21.9) and , and given the zero of the vacuum in (21.8), are in: 
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. (21.10) 

 
In four dimensions, the salient part of the above now becomes (note sign flip): 
 

. (21.11) 

 
We then look for geometrically-rooted energy tensors that emerge in (21.8) and (21.11) using 
(21.1) which contain field configurations which up to multiplicative coefficients, resemble the 
Maxwell tensor, the tensors for dust, perfect fluids, and the like, which is all part of the Kaluza 

miracle.  And because  is an energy-density, and because the integral of this over a three-

dimensional space volume is an energy which divided by  is a mass, from this view we see how 
the fifth dimension really is responsible for creating matter out of geometric “marble” rather than 
hand-introduced “wood.”   
 

In a similar regard, one of the most important outstanding problems in particle physics, is 
how to introduce fermion rest masses theoretically rather than by hand, and hopefully thereby 
explain why the fermions have the observed masses that they do.  Here, just as the five spacetime 
dimensions introduce a “marble” energy tensor (21.11), we may anticipate that when the five-
dimensional Dirac equation (5.6) is fully developed, there will appear amidst its Lagrangian 

density terms a fermion rest energy term  in which the  in (5.6) is occupied, not by a 
hand-added “wood” mass, but by some energy-dimensioned scalar number which emerges entirely 

from the five dimensional geometry.  In this event, just as we discarded  in (21.4) and replaced 

it with  at (21.6) to arrive at (21.7) and (21.8), we would discard the  in (5.6), 

change (5.6) to  without any hand-added “wood” mass, and in its place use the 

 emergent from the geometry in the  terms. 
 

 Third, the action , like any action, is directly used in the quantum 

field path integral, which using (21.7) is: 
 

 . (21.12) 

 
Here, the only field over which the integration needs to take place is , because this contains 

not only the usual , but also the photon  and the scalar .  But aside from the direct value 

of (21.12) in finally quantizing gravity, one of the deeply-interesting epistemological issues raised 
by path integration, relates to the meaning of the fifth time dimension – not only as the matter 
dimension just reviewed – but also as an actual second dimension of time.   
 

For example, Feynman’s original formulation of path integration considers the multiple 
paths that an individual field quantum might take to get from a source point A to a detection point 
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B, in a given time.  And starting with Feynman-Stueckelberg it became understood that negative 
energy particles traversing forward in time may be interpreted as positive energy antiparticles 

moving backward through time.  But with a second time dimension , the path integral must now 
take into account all of the possible paths through time that the particle may have taken, which are 
no longer just forward and backward, but also sideways through what is now a time plane.  Now, 

the time  that we actually observe may well become associated with the actual path taken 
through time from amidst multiple time travel possibilities each with their own probability 

amplitudes, and  may become associated with alternative paths not taken.  If one has a 
deterministic view of nature, then of course the only reality rests with events which did occur, 
while events which may have occurred but did not have no meaning.  But if one has a non-
deterministic view of nature, then having a second time dimension to account for all the paths 
through time which were not taken makes eminent sense, and certainly makes much more intuitive 
and experiential sense than curling up a space dimension into a tiny loop.  And if path integral 
calculations should end up providing a scientific foundation for the physical reality of time paths 
which could have occurred but never did, this could deeply affect human viewpoints of life and 
nature.  So, while the thoughts just stated are highly preliminary, one would anticipate that a 
detailed analysis of path integration when there is a second time dimension may help us gain 
further insight into the physical nature of the fifth dimension as a time dimension, in addition to 
how this dimension may be utilized to turn the energy tensor from “wood” into “marble.” 
 

Finally, Kaluza-Klein theory only unifies gravitation and electromagnetism.  As noted in 
the introduction, weak and strong interactions, and electroweak unification, were barely a glimmer 
a century ago when Kaluza first passed his new theory along to Einstein in 1919.  This raises the 
question whether Kaluza-Klein theory “repaired” to be compatible with Dirac theory using the 
DKK metric tensor (3.13) and its inverse (4.22) might also provide the foundation for all-
interaction unification to include the weak and strong interactions in addition to gravitation and 
electromagnetism. 
 

In ordinary four-dimensional gravitational theory, the metric tensor only contains 

gravitational fields . The addition of a Kaluza Klein fifth dimension adds a spin one vector 

gauge potential  as well as a spin 0 scaler  to the metric tensor as seen in (1.1).  The former 

becomes the luminous  of (2.11) and the latter becomes the luminous  of (8.14) for the 

DKK metric tensor (3.13) and inverse (4.22).   So, it may be thought that if adding an extra 
dimension can unify gravitation with electromagnetism, adding additional dimensions beyond the 
fifth might bring in the other interactions as well.  This has been one of the motivations for string 
theory in higher dimensions, which are then compactified down to the observed four space 
dimensions.  But these higher-dimensional theories invariably regard the extra dimensions to be 
spacelike dimensions curled up into tiny loops just like the spacelike fifth dimension in Kaluza 
Klein.  And as we have shown here, the spacelike character of this fifth dimension is needed to 
compensate for the singularity of the metric tensor when  which is one of the most serious 

KK problems repaired by DKK.  Specifically, when Kaluza-Klein is repaired by being made 
compatible with Dirac theory, the fifth dimension instead becomes a second timelike rather than a 
fourth spacelike dimension.  So, if the curled-up spacelike dimension is actually a flaw in the 
original Kaluza-Klein theory because it is based on a metric degeneracy which can be and is cured 
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by enforcing compatibility with Dirac theory over all five dimensions, it appears to make little 
sense to replicate this flaw into additional spacelike dimensions. 
 

Perhaps the more fruitful path is to recognize, as is well-established, that weak and strong 
interactions are very similar to electromagnetic interactions insofar as all three are all mediated by 
spin-1 bosons in contrast to gravitation which is mediated by spin-2 gravitons.  The only salient 
difference among the three spin-1 mediated interactions is that weak and strong interactions 
employ SU(2) and SU(3) Yang-Mills [52] internal symmetry gauge groups in which the gauge 
fields are non-commuting and may gain an extra degree of freedom and thus a rest mass by 
symmetry breaking, versus the commuting U(1) group of electromagnetism. Moreover, Yang-
Mills theories have been extraordinarily successful describing observed particle and interaction 
phenomenology.  So, it would appear more likely than not that once we have a U(1) gauge field 
with only the two photon degrees of freedom integrated into the metric tensor in five dimensions 
as is the case for the DKK metric tensors (3.13) and inverse (4.22), it is unnecessary to add any 
additional dimensions in order to pick up the phenomenology of weak and strong interactions.  
Rather, one simply generalizes abelian electromagnetic gauge theory to non-abelian Yang-Mills 
gauge theory in the usual way, all within the context of the DKK metric tensors (3.13) and inverse 
(4.22) and the geodesic equation of motion and Einstein equation machinery that goes along with 
them.  Then the trick is to pick the right gauge group, the right particle representations, and the 
right method of symmetry breaking. 
 

So from this line of approach, it seems as though one would first regard the U(1) gauge 

fields  which are already part of the five dimensional DKK metric tensor (3.13), as non-abelian 

SU(N) gauge fields  with internal symmetry established by the group generators 

which have a commutation relation  with group structure constants .  Prior 

to any symmetry breaking each gauge field would have only two degrees of freedom and so be 
massless and luminous just like the photon because this constraint naturally emerges from (2.10).  

Then, starting with the metric tensor (3.13), one would replace  everywhere 

this field appears (with  now understood to denote, not a photon, but another luminous field 

quantum), then re-symmetrize the metric tensor by replacing  because 

these fields are now non-commuting.  Then – at the risk of understating what is still a highly 
nontrivial problem – all we need do is discover the correct Yang-Mills GUT gauge group to use 

for these , discover what particles are associated with various representations of this group, 

discover the particular way or ways in which the symmetry of this GUT group is broken and at 

what energy stages including how to add an extra degree of freedom to some of these  or 

combinations of them to give them a mass such as is required for the weak W and Z bosons, 
discover the origin of the chiral asymmetries observed in nature such as those of the weak 
interactions, discover how the observed fermion phenomenology becomes replicated into three 
fermion generations, discover how to produce the observed  

phenomenology observed at low energies, and discover the emergence during symmetry breaking 
of the observed baryons and mesons of hadronic physics, including protons and neutrons with 
three confined quarks.  How do we do this? 
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 There have been many GUT theories proposed since 1954 when Yang-Mills theory was 
first developed, and the correct choice amongst these theories is still on open question.  As an 

example, in an earlier paper [53] the author did address these questions using a  GUT 

group in which the up and down quarks with three colors each and the electron and neutrino leptons 

form the 8 components of an octuplet  in the fundamental 

representation of SU(8), with  having the quark content of a neutron and  

the quark content of a proton.  Through three stages of symmetry breaking at the Planck energy, 
at a GUT energy, and at the Fermi vev energy, this was shown to settle into the observed 

 low-energy phenomenology including the condensing of the quark 

triplets into protons and neutrons, the replication of fermions into three generations, the chiral 
asymmetry of weak interactions, and the Cabibbo mixing of the left-chiral projections of those 
generations.  As precursor to this SU(8) GUT group, in [41] and [54], based on [40], it was shown 
that the nuclear binding energies of fifteen distinct nuclides, namely 2H, 3H, 3He, 4He, 6Li, 7Li, 
7Be, 8Be, 10B, 9Be, 10Be, 11B, 11C, 12C and 14N, are genomic “fingerprints” which can be used to 
establish “current quark” masses for the up and down quarks to better than 1 part in 105 and in 
some cases 106 for all fifteen nuclides, entirely independently of the renormalization scheme that 
one might otherwise use to characterize current quark masses.  This is because one does not need 
to probe the nucleus at all to ascertain quark masses, but merely needs to decode the mass defects, 
alternatively nuclide weights, which are well-known with great precision and are independent of 
observational methodology.  Then, in [7.6] of [55], the quark masses so-established by decoding 
the fingerprints of the light nucleon mass defects, in turn, were used to retrodict the observed 
masses of the proton and neutron as a function of only these up and down quark masses and the 
Fermi vev and a determinant of the CKM mixing matrix, within all experimental errors for all of 
these input and output parameters, based directly on the SU(8) GUT group and particle 
representation and symmetry breaking cascade of [53].  So if one were to utilize the author’s 

example of a GUT, the  in the DKK metric (3.13) would be regarded to have 

an SU(8) symmetry with the foregoing octuplet in its fundamental representation.  Then one would 
work through the same symmetry breaking cascade, but now also having available the equation of 
motion (7.2) and the Einstein equation (21.8) so that the motion for all interactions is strictly 
geodesic motion and the field dynamics and energy tensors are at bottom strictly geometrodynamic 
and fully gravitational. 
 
 In 2019, the scientific community will celebrate the centennial of Kaluza-Klein theory.  
Throughout this entire century, Kaluza-Klein theory has been hotly debated and has had its staunch 
supporters and its highly-critical detractors.  And both are entirely justified.  The miracle of 
geometrizing Maxwell’s electrodynamics and the Lorentz motion and the Maxwell stress-energy 
tensors in a theory which is unified with gravitation and turns Einstein’s “wood” tensor into the 
“marble” of geometry is tremendously attractive.  But a theory which is rooted in a degenerate 
metric tensor with a singular inverse and a scalar field which carries the entire new dimension on 
its shoulders and which contains an impossible-to-observe curled up fourth space dimension, not 
to mention a structural incompatibility with Dirac theory and thus no ability to account for fermion 
phenomenology, is deeply troubling.   
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By using Dirac theory itself to force five-dimensional general covariance upon Kaluza-
Klein theory and cure all of these troubles while retaining all the Kaluza miracles and naturally 
and covariantly breaking the symmetry of the gauge fields by removing two degrees of freedom 
and thereby turning classical fields into quantum fields, to uncover additional new knowledge 
about our physical universe in the process, and to possibly lay the foundation for all-interaction 
unification, we deeply honor the work and aspirations of our physicist forebears toward a unified 
geometrodynamic understanding of nature as the Kaluza-Klein centennial approaches. 
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