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Abstract

We derive an identity connecting any two Horadam sequences having the same re-
currence relation but whose initial terms may be different. Binomial and ordinary
summation identities arising from the identity are developed.

1 Introduction
This paper is concerned with establishing an identity connecting any two Horadam se-
quences, (Gn)n∈Z and (Hn)n∈Z, having the same recurrence relation but whose initial terms
may be different. Thus, for n ≥ 2 and with p and q arbitrary fixed non-zero complex
constants, we define

Gn = pGn−1 + qGn−2 , (1.1)

where the initial terms G0 and G1 are given arbitrary integers, not both zero; and

Hn = pHn−1 + qHn−2 , (1.2)

with initial terms H0 and H1 given arbitrary integers, not both zero.

Extension of the definition of Gn and Hn to negative subscripts is provided by writing the
recurrence relation as

G−n = (G−n+2 − pG−n+1)/q (1.3)

and
H−n = (H−n+2 − pH−n+1)/q . (1.4)

In section 2, we will derive an identity connecting (Gn) and (Hn), for arbitrary integers.
We will illustrate the results by deriving identities for six well-known Horadam sequences,
namely, Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal and Jacobsthal-Lucas sequences.
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1.1 Notation and definitions

The Fibonacci numbers, Fn, and the Lucas numbers, Ln, are defined, for n ∈ Z, as usual,
through the recurrence relations Fn = Fn−1 + Fn−2 (n ≥ 2), F0 = 0, F1 = 1 and Ln = Ln−1 + Ln−2

(n ≥ 2), L0 = 2, L1 = 1, with F−n = (−1)n−1Fn and L−n = (−1)nLn. Exhaustive dis-
cussion of the properties of Fibonacci and Lucas numbers can be found in Vajda [9] and
in Koshy [6]. Generalized Fibonacci numbers having the same recurrence as the Fibonacci
and Lucas numbers but with arbitrary initial values will be denoted Fn.

The Jacobsthal numbers, Jn, and the Jacobsthal-Lucas numbers, jn, are defined, for n ∈ Z,
through the recurrence relations Jn = Jn−1 + 2Jn−2 (n ≥ 2), J0 = 0, J1 = 1 and jn = jn−1 + 2jn−2

(n ≥ 2), j0 = 2, j1 = 1, with J−n = (−1)n−12−nJn and j−n = (−1)n2−njn. Horadam [5] and
Aydin [2] are good reference materials on the Jacobsthal and associated sequences. General-
ized Jacobsthal numbers having the same recurrence as the Jacobsthal and Jacbsthal-Lucas
numbers but with arbitrary initial values will be denoted Jn.

The Pell numbers, Pn, and Pell-Lucas numbers, Qn, are defined, for n ∈ Z, through the
recurrence relations Pn = 2Pn−1 + Pn−2 (n ≥ 2), P0 = 0, P1 = 1 and Qn = 2Qn−1 + Qn−2

(n ≥ 2), Q0 = 2, Q1 = 2, with P−n = (−1)n−1Pn and Q−n = (−1)nQn. Koshy [7],
Horadam [4] and Patel and Shrivastava [8] are useful source materials on Pell and Pell-
Lucas numbers. Generalized Pell numbers having the same recurrence as the Pell and
Pell-Lucas numbers but with arbitrary initial values will be denoted Pn.

For reference, the first few values of the six sequences are given below:

n: −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
Fn: 5 −3 2 −1 1 0 1 1 2 3 5 8 13 21
Ln: −11 7 −4 3 −1 2 1 3 4 7 11 18 29 47
Pn: 29 −12 5 −2 1 0 1 2 5 12 29 70 169 408
Qn: −82 34 −14 6 −2 2 2 6 14 34 82 198 478 1154
Jn: 11/32 −5/16 3/8 −1/4 1/2 0 1 1 3 5 11 21 43 85
jn: −31/32 17/16 −7/8 5/4 −1/2 2 1 5 7 17 31 65 127 257

2 Main results

2.1 Recurrence relations

Theorem 1. Let (Gn)n∈Z and (Hn)n∈Z be any two Horadam sequences having the same
recurrence relation. Then, the following identity holds for arbitrary integers n, m, a, b, c
and d:

(Gd−bGc−a −Gd−aGc−b)Hn+m

= (Gd−bGm−a −Gd−aGm−b)Hn+c

+ (Gc−aGm−b −Gc−bGm−a)Hn+d .

In particular, we have

(Gd−bGc−a −Gd−aGc−b)Gn+m

= (Gd−bGm−a −Gd−aGm−b)Gn+c

+ (Gc−aGm−b −Gc−bGm−a)Gn+d ,

(2.1)

for any Horadam sequence, (Gn)n∈Z.
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Proof. Since both sequences (Gn) and (Hn) have the same recurrence relation we choose a
basis set in one and express the other in this basis. We write

Hn+m = λ1Gm−a + λ2Gm−b , (2.2)

where a, b, n and m are arbitrary integers and the coefficients λ1 and λ2 are to be deter-
mined. Setting m = c and m = d, in turn, produces two simultaneous equations:

Hn+c = λ1Gc−a + λ2Gc−b, Hn+d = λ1Gd−a + λ2Gd−b .

The identity of Theorem 1 is established by solving these equations for λ1 and λ2 and
substituting the solutions into identity (2.2).

Corollary 2. The following identity holds for integers a, b, n and m:

(Ga−bGb−a −G2
0 )Hn+m

= (Gb−aGm−b −G0Gm−a)Hn+a

+ (Ga−bGm−a −G0Gm−b)Hn+b .

In particular,

(Ga−bGb−a −G2
0 )Gn+m

= (Gb−aGm−b −G0Gm−a)Gn+a

+ (Ga−bGm−a −G0Gm−b)Gn+b .

(2.3)

2.2 Summation identities

2.2.1 Summation identities not involving binomial coefficients

Lemma 1 ([1, Lemma 1]). Let {Xn} and {Yn} be any two sequences such that Xn and Yn,
n ∈ Z, are connected by a three-term recurrence relation Xn = f1Xn−a + f2Yn−b, where f1

and f2 are arbitrary non-vanishing complex functions, not dependent on r, and a and b are
integers. Then,

f2

k∑
j=0

Yn−ka−b+aj

f1
j

=
Xn

f1
k
− f1Xn−(k+1)a ,

for k a non-negative integer.

Lemma 2 ([1, Lemma 2]). Let {Xn} be any arbitrary sequence, where Xn, n ∈ Z, satisfies
a three-term recurrence relation Xn = f1Xn−a + f2Xn−b, where f1 and f2 are arbitrary
non-vanishing complex functions, not dependent on r, and a and b are integers. Then, the
following identities hold for integer k:

f2

k∑
j=0

Xn−ka−b+aj

f j
1

=
Xn

fk
1

− f1Xn−(k+1)a , (2.4)

f1

k∑
j=0

Xn−kb−a+bj

f j
2

=
Xn

fk
2

− f2Xn−(k+1)b (2.5)

and
k∑

j=0

Xn−(a−b)k+b+(a−b)j

(−f1/f2)j
=

f2Xn

(−f1/f2)k
+ f1Xn−(k+1)(a−b) . (2.6)
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In order to state the next two theorems in a compact form, we introduce the following
notation:

fG(u, v; s, t) = Gu−sGv−t −Gu−tGv−s ,

with the following symmetry properties:

fG(u, v; t, s) = −fG(u, v; s, t) , fG(v, u; s, t) = −fG(u, v; s, t) ,

fG(v, u; t, s) = fG(u, v; s, t) ,

and
fG(u, u; s, t) = 0 , fG(u, v; s, s) = 0 .

In this notation, the identity of Theorem 1 becomes

fG(d, c; b, a)Hn+m = fG(d,m; b, a)Hn+c + fG(c, m; a, b)Hn+d . (2.7)

The results in the next theorem follow from direct substitutions from identity (2.7) into
Lemma 2.

Theorem 3. The following identities hold for arbitrary integers a, b, c, d and m for which
fG(d,m; b, a) 6= 0 and fG(c, m; b, a) 6= 0:

fG(c, m; a, b)
k∑

j=0

(
fG(d, c; b, a)

fG(d,m; b, a)

)j

Hn−(m−c)k−(m−d)+(m−c)j

=
fG(d, c; b, a)k+1

fG(d,m; b, a)k
Hn − fG(d,m; b, a)Hn−(m−c)(k+1) ,

(2.8)

fG(d,m; b, a)
k∑

j=0

(
fG(d, c; b, a)

fG(c, m; a, b)

)j

Hn−(m−d)k−(m−c)+(m−d)j

=
fG(d, c; b, a)k+1

fG(c, m; a, b)k
Hn − fG(c, m; a, b)Hn−(m−d)(k+1)

(2.9)

and

fG(d, c; b, a)
k∑

j=0

(
−fG(d,m; b, a)

fG(c, m; a, b)

)j

Hn−(c−d)k+(m−c)+(c−d)j

= (−1)k fG(d,m; b, a)k+1

fG(c, m; a, b)k
Hn + fG(c, m; a, b)Hn−(c−d)(k+1) .

(2.10)

2.2.2 Binomial summation identities

Lemma 3 ([1, Lemma 3]). Let {Xn} be any arbitrary sequence. Let Xn, n ∈ Z, satisfy a
three-term recurrence relation Xn = f1Xn−a + f2Xn−b, where f1 and f2 are non-vanishing
complex functions, not dependent on n, and a and b are integers. Then,

k∑
j=0

(
k

j

) (
f1

f2

)j

Xn−bk+(b−a)j =
Xn

fk
2

, (2.11)
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k∑
j=0

(
k

j

)
Xn+(a−b)k+bj

(−f2)j
=

(
−f1

f2

)k

Xn (2.12)

and
k∑

j=0

(
k

j

)
Xn+(b−a)k+aj

(−f1)j
=

(
−f2

f1

)k

Xn , (2.13)

for k a non-negative integer.

Substituting from identity (2.7) into Lemma 3, we have the results stated in the next
theorem.

Theorem 4. The following identities hold for positive integer k and arbitrary integers a,
b, c, d and m for which fG(d,m; b, a) 6= 0 and fG(c, m; b, a) 6= 0:

k∑
j=0

(
k

j

) (
fG(d,m; b, a)

fG(c, m; a, b)

)j

Hn−(m−d)k+(c−d)j =

(
fG(d, c; b, a)

fG(c, m; a, b)

)k

Hn , (2.14)

k∑
j=0

(
k

j

) (
− fG(d, c; b, a)

fG(c, m; a, b)

)j

Hn−(c−d)k+(m−d)j =

(
−fG(d,m; b, a)

fG(c, m; a, b)

)k

Hn (2.15)

and

k∑
j=0

(
k

j

) (
− fG(d, c; b, a)

fG(d,m; b, a)

)j

Hn+(c−d)k+(m−c)j =

(
−fG(c, m; a, b)

fG(d,m; b, a)

)k

Hn . (2.16)

3 Application

3.1 Identities involving generalized Fibonacci numbers

In Corollary 2, let (Gn) ≡ (Fn) be the Fibonacci sequence and let (Hn) ≡ (Fn) be the
generalized Fibonacci sequence. Then, the identity of Corollary 2 reduces to

Fa−bFn+m = Fm−bFn+a − (−1)a−bFm−aFn+b . (3.1)

The presumably new identity (3.1) subsumes most known three term recurrence relations
involving Fibonacci numbers, Lucas numbers and the generalized Fibonacci numbers. We
will give a couple of examples to illustrate this point.

Incidentally, identity (3.1) can also be written as

Fa−bFn+m = Fm−bFn+a − (−1)a−bFm−aFn+b . (3.2)

Setting a = 0, b = m− n in identity (3.1) gives

Fn−mFn+m = FnFn − (−1)n−mFmFm , (3.3)

which is a generalization of Catalan’s identity:

Fn−mFn+m = F 2
n + (−1)n+m+1F 2

m . (3.4)
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Setting b = −a in identity (3.1) gives

F2aFn+m = Fm+aFn+a − Fm−aFn−a , (3.5)

with the special case
Fn+m = Fm+1Fn+1 − Fm−1Fn−1 , (3.6)

which is a generalization of the following known identity (Halton [3, Identity (63)]):

Fn+m = Fm+1Fn+1 − Fm−1Fn−1 . (3.7)

Setting b = 2k, a = 1 and b = 2k, a = 0, in turn, in identity (3.1) produces

F2k−1Fn+m = Fm−2kFn+1 + Fm−1Fn+2k (3.8)

and
F2kFn+m = FmFn+2k − Fm−2kFn . (3.9)

Identity (3.9) is a generalization of the known identity (Vajda [9, Formula (8)]):

Fn+m = Fm−1Fn + FmFn+1 . (3.10)

Setting a = n and b = −m in (3.1) produces

F2mF2n = Fn+mFn+m − Fn−mFn−m . (3.11)

3.2 Identities involving generalized Pell numbers

Since P0 = 0 and Pb−a = (−1)a−b−1Pa−b for all a, b ∈ Z just like in the Fibonacci case; we
find that the Pell relations derived from the identity of Corollary 2, (with (Gn) ≡ (Pn),
the Pell sequence, and (Hn) ≡ (Pn), the generalized Pell sequence), are identical to those
derived in section 3.1. Thus, we have

Pa−bPn+m = Pm−bPn+a − (−1)a−bPm−aPn+b , (3.12)

and a couple of special instances:

Pn−mPn+m = PnPn − (−1)n−mPmPm , (3.13)

P2aPn+m = Pm+aPn+a − Pm−aPn−a , (3.14)
P2k−1Pn+m = Pm−2kPn+1 + Pm−1Pn+2k , (3.15)

P2kPn+m = PmPn+2k − Pm−2kPn (3.16)
and

P2mP2n = Pn+mPn+m − Pn−mPn−m . (3.17)
From identity (3.13), we see that Pell numbers also obey Catalan’s identity:

Pn−mPn+m = P 2
n + (−1)n+m+1P 2

m . (3.18)

We have the following particular cases of identity (3.14):

P2aPn+m = Pm+aPn+a − Pm−aPn−a (3.19)

and
P2aQn+m = Pm+aQn+a − Pm−aQn−a , (3.20)

with the special evaluations:

2Pn+m = Pm+1Pn+1 − Pm−1Pn−1 (3.21)

and
2Qn+m = Pm+1Qn+1 − Pm−1Qn−1 . (3.22)
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3.3 Identities involving generalized Jacobsthal numbers

With (Gn) ≡ (Jn), the Jacobsthal sequence, and (Hn) ≡ (Jn), the generalized Jacobsthal
sequence, the identity of Corollary 2 reduces to

Ja−bJn+m = Jm−bJn+a − (−1)a−b2a−bJm−aJn+b . (3.23)

Proceeding as in section 3.1, we have the following particular instances of identity (3.23):

Jn−mJn+m = JnJn − (−1)n−m2n−mJmJm , (3.24)

J2aJn+m = Jm+aJn+a − Jm−aJn−a , (3.25)

J2k−1Jn+m = Jm−2kJn+1 + Jm−1Jn+2k , (3.26)

J2kJn+m = JmJn+2k − Jm−2kJn (3.27)

and
J2mJ2n = Jn+mJn+m − Jn−mJn−m . (3.28)

Identity (3.24) is a generalization of

Jn−mJn+m = J2
n + (−1)n+m+12n−mJ2

m , (3.29)

which is the Jacobsthal version of Catalan’s identity.
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