A PROOF TO BENDORD'S LAW

JEOZADAQUE MARCOS

Abstract. Since the first digit phenomena was discovered by [\[2\]](#page-3-0) and discovered again many years after [\[1\]](#page-3-1), its still like an empirical law, but [\[3\]](#page-3-2) got a mathematical proof. We show in this paper another proof of Benford's Law. The idea starts with the problem of to find the first digit of a power. Then we deduced a function to calculate the first digit of any power a^j called L_f function. The theorem [1.2](#page-0-0) its a consequence of the periodicity of the L_f function.

1. INTRODUCTION

Definition 1.1. We define the constant σ_a as

 $\sigma_a = \log_a 10$

For example, $\sigma_2 = \log_2 10 = 3.3219280$. By the way, we have:

 $a^{\sigma_a}=10$

Theorem 1.2. The first digit of a^n is $\lfloor a^{n \bmod \sigma_a} \rfloor$

2. Proof of theorem [1.2](#page-0-0)

To proof the theorem [1.2](#page-0-0) we start with the number of digits problem of any integer number N , after we construct a function to find the first digit of the power a^n . Finally, the periodic property of L_f function on lemma [2.2](#page-1-0) completes this proof.

To find the number of digits of any natural number N we use:

$$
1 + |\log N|
$$

Then the first digit of N will be:

$$
\left\lfloor \frac{N}{10^{\lfloor \log N \rfloor}} \right\rfloor
$$

Doing N a power of base a and expoent j, $(N = a^j)$:

$$
\left\lfloor \frac{a^j}{10^{\lfloor \log a^j \rfloor}} \right\rfloor
$$

Date: August 26, 2018.

Key words and phrases. Benfords Law, Uniform Distribution, Sequences.

2 JEOZADAQUE MARCOS

Now, using the change of base property in the logarithm $\log a^j$ to the base a:

$$
\log a^j = \frac{\log_a a^j}{\log_a 10} = \frac{j}{\log_a 10}
$$

By the definition [1.1](#page-0-1) : $\sigma_a = \log_a 10$ and $10 = a^{\sigma_a}$, i.e., $10^{\Upsilon} = (a^{\sigma})^{\Upsilon}$. Thus,

$$
\left\lfloor \frac{a^j}{10^{\lfloor \log a^j \rfloor}} \right\rfloor = \left\lfloor \frac{a^j}{10^{\lfloor \frac{j}{\sigma} \rfloor}} \right\rfloor = \left\lfloor \frac{a^j}{a^{\sigma \lfloor \frac{j}{\sigma} \rfloor}} \right\rfloor = \left\lfloor a^{j - \sigma \lfloor \frac{j}{\sigma} \rfloor} \right\rfloor = \left\lfloor a^{j - \sigma \Upsilon} \right\rfloor
$$

Where, $\Upsilon = [j/\sigma]$. So the first digit of a^j is given by the function $L_f(j)$ (Last is first):

$$
L_f(j) = \lfloor a^{j - \sigma \Upsilon} \rfloor \tag{2.1}
$$

Lemma 2.1. Let the notation $\sigma_a = \log_a 10$, then the first digit of a^j , $j \in \mathbb{N}$ and $a \in \mathbb{R}$, is obtained by the L_f function:

$$
L_f(j) = \left\lfloor a^{j-\sigma \left\lfloor \frac{j}{\sigma} \right\rfloor} \right\rfloor \tag{2.2}
$$

Lemma 2.2. The L_f function is periodic in its domain, with domain equal σ :

$$
L_f(j+\sigma) = L_f(j) \tag{2.3}
$$

Proof. Replace $j = j + \sigma$ in [2.2](#page-1-0)

$$
\begin{aligned}\n\left\lfloor a^{j-\sigma\left\lfloor \frac{j}{\sigma} \right\rfloor} \right\rfloor &= \left\lfloor a^{(j+\sigma)-\sigma\left\lfloor \frac{j+\sigma}{\sigma} \right\rfloor} \right\rfloor \\
&= \left\lfloor a^{(j+\sigma)-\sigma\left\lfloor \frac{j}{\sigma} + 1 \right\rfloor} \right\rfloor \\
&= \left\lfloor a^{(j+\sigma)-\sigma\left\lfloor \frac{j}{\sigma} \right\rfloor - \sigma} \right\rfloor \\
&= \left\lfloor a^{j-\sigma\left\lfloor \frac{j}{\sigma} \right\rfloor} \right\rfloor \\
&= \left\lfloor a^{j-\sigma\Upsilon} \right\rfloor\n\end{aligned}
$$

 \Box

Remark 2.3. For all expoent n (such $n > \sigma$) the first digit of a^n is given by the L_f function. But, using [2.2](#page-1-0) the first digit can be obtained from the remaind division of n by σ . It's complete the proof of [1.2.](#page-0-0)

3. The conection between the L function and The Benford's Law

Theorem 3.1. Let the set $A = \{a^1, a^2, ..., a^k\}$ with $a, k \in \mathbb{N}$. Let $d \in \mathbb{N}$ $(1 \leq d \leq 9)$. The density, ρ_d , of numbers of elements in A such the first digit n is

$$
\rho_d = \left\lfloor k \log \left(1 + \frac{1}{d} \right) \right\rfloor
$$

 $\forall a \in \mathbb{R}$. In another words, the set A has a Benford's distribuition.

To proof theorem [3.1](#page-2-0) we show the general graph of the $L_f(x)$, if we prove that the distribution on interval $[0, \sigma]$ is a Benford's distribution then will be valid across the domain of L_f , since the function is periodic.

FIGURE 1. The L_f graph function

Proof. First let the inequality

$$
d \le a^x < d + 1 \tag{3.1}
$$

 $d = 1, 2, \ldots, 9$. Solving we find an interval to values of x such satisfies the inequality. The lenght of this interval is the same at Δd_i on L_f graph. Applying the logarithm on both sides of the inequality:

$$
x = \log_a (d+1) - \log_a (d) = \log_a \left(1 + \frac{1}{d}\right)
$$

$$
\Delta d_i = \log_a \left(1 + \frac{1}{d}\right)
$$
3.2

Then, the distribution $p(d_i)$ of the elements in A with first digit d_i is given:

$$
p(d_i) = \frac{\Delta d_i}{\sigma_a} \tag{3.3}
$$

Replace $\sigma_a = \log_a 10$ we find:

$$
p(d_i) = \frac{\log_a \left(1 + \frac{1}{d_i}\right)}{\log_a 10} = \log \left(1 + \frac{1}{d_i}\right)
$$
 3.4

The result implies that the distribution is invariant of the base. So, for all exponential phenomena has a Bendord's distribution and we showed that the L_f function is behind the first digit phenomenon.

REFERENCES

F. Benford, The law of anomalous numbers, Proc. Amer. Philosophical Soc. 78 (1938), no. 4, 551-572 S. Newcomb, Note on the frequency of use of the different digits in natural numbers, Amer. J. Math.

4 (1881), no. 1-4, 39-40. T. P. Hill, A Statiscal Derivation of Significant-Digit Law, Statistical Science, (1995), vol. 10,4,

354-363. G.H. Hardy, J.E. Littlewood, Some problems of "partitio numerorum"; III: On the expression of a

number as a sum of primes, Acta Math. 44 (1923), 1–70.

UFMT - Universidade Federal do Mato Grosso, IEng, Cuiaba-MT

E-mail address: jeozadaque@bk.ru