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ABSTRACT – Two seminal ideas are considered in this paper. One of them was 

introduced by Tryon [Nature 246, 396(1973)], dealing with the possibility of the 

universe being created from nothing. The other one was proposed by Thompson [J. 

Phys. A9, L25(1976)], in order to study the critical behavior of a cooperative system. 

Both ideas are implemented conjointly with the use of linear and quadratic confining 

potentials as a means to make estimates of the quark condensate of the QCD. In 

accomplishing this task, the MIT bag model by Chodos et al. [Phys. Rev. D9, 

3471(1974)] is also taken in account. 

 

 

1 – Introduction 

 

   QCD (Quantum Chromodynamics) is the most fundamental theory of the 

strong interactions, where quarks endowed with color-charges interact 

through the exchange of gluons. This non-abelian theory exhibits an SU(3) 

internal symmetry [1,2]. 

   The QCD Lagrangian can be written in the form [3] 

 

                    LQCD = Σj Ψj (iγμ D
μ
 + mj ) Ψj - ¼ Gμυ

a
 G

μυ
a ,                       (1A) 

 

where 

 

   D
μ
 = ∂

μ
 + ½ ig λa A

μ
a ,          G

μυ
a = ∂

μ
 A

υ
a - ∂

υ
 A

μ
a – g fabc A

μ
b A

υ
c .     (1B) 

 

In (1), mj and Ψj are the mass and the fermionic field of the quark of flavor 

j, A is the gluonic field, μ and υ are space-times indexes and a, b, c are 

color indexes. 

   At high energies, due to the asymptotic freedom behavior of the strong 

coupling constant, perturbation theory is a convenient tool to deal with in 
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QCD calculations. However its infrared sector deserves other techniques of 

calculations. 

The aim of this work is evaluate alternatives ways of estimating the quark 

condensate and relating them to different potentials leading to quark 

confinement. 

 

2 – Quark Condensate from Thompson’s Approach 

 

   Thompson [4] has proposed heuristic approach as a means to evaluate the 

critical exponent of a Φ
4
-theory [5], which belongs to the same universality 

class of the Ising Model. 

   According one of the Thompson’s prescriptions, when the lagrangian of 

the Φ
4
-theory is integrated in a certain “coherence volume”, in a four-

volume (V4) for instance, each term of this action is separately of the order 

of the unity.  

   Let us apply Thompson’s recipe to the “kinetic” contribution of the 

fermionic field Ψ of the QCD lagrangian. We write (here we will take this 

prescription in a more restrictive form) 

 

                                    │∫ (Ψj iγμ ∂
μ
 Ψj) dV4 │ = 1.                                     (2) 

 

In analyzing (2) we take in account that in the MIT bag model [6,7,8], 

quarks are confined inside a bag, subjected to the influence of the vacuum 

pressure at its boundary. Therefore based in (2) we have 

 

                                       │< Ψ Ψ >│L
- 1

 V4 = 1.                                         (3) 

 

We have extracted from the integral in (2) the average value of the quark 

condensate, and next we pass to the analysis of the L and V4 terms which 

appear in (3).  

   Let us pay attention on the MIT bag model of the nucleon: three quarks 

with the flavors up (u) or down (d), namely uud representing the proton and 

ddu for the neutron, acquire their constituent masses from the QCD 

dynamics. We notice that the bare masses of these up and down quarks are 

only a few MeVs in magnitude, as compare with their constituent mass of 

the order of hundred of MeVs. An analogy can be established [9] with 
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the process of crystal growing from water solutions, for instance. We put 

crystals seeds in contact with its saturated water solution and wait for the 

growing of monocrystals. Here the chromodynamical vacuum stems for the 

solution, and seeds are represented by the bare masses of the up and down 

quarks. The completion of the process is reached, when each of the 

constituent quarks acquires approximately one third of the nucleon mass. It 

seems that a length which characterizes this process can be defined as the 

“Compton” wavelength of a particle of mass 

 

                                                    mq = M ∕ 3,                                            (4A) 

 

where mq and M are respectively the quark constituent and the nucleon 

masses. Thus we have 

 

                 L = ħ ∕ (mqc)               and                V4 = L
4
.                           (4B) 

 

Inserting the information given by (4) in (3), we get by taking ħ = c = 1, 

 

                            < Ψ Ψ > = - L
- 3

 = - mq
3
 = - M

 3
 ∕ 27.                               (5) 

 

The minus signal we adopted in (5) will be understood in the next section. 

 

3 – The Newtonian-like Approach 

 

   Let us consider two particles of mass mq separated by a distance L, and 

interacting “gravitationally” with a coupling Gs. The potential energy 

associated to this attractive interaction reads 

 

                                          Ug = - Gs mq
2
 ∕ L.                                               (6) 

 

Now, we define a very special system of units, such that besides ħ = c = 1, 

we also will take Gs = 1. In this new system of units we have 

 

                                      Usg = - mq
3
 ≡ < Ψ Ψ >.                                          (7) 
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   Alternatively, we may consider 

 

                                        Ug, new = - Gs mq
2
 ∕ R.                                           (8) 

 

In (8), R is the nucleon radius as estimated by X. Ji [10] using the MIT bag 

model. As quoted in [10], it is given by 

 

                                                 R = 4 ∕ M.                                                   (9) 

 

Putting (4) into (8), we obtain in the new units 

 

                               Usg, new = - (¾) mq
3
 = - M

 3
 ∕ 36 .                                 (10) 

 

4 – The Tryon Idea 

 

   In a paper entitled: “Is the universe a vacuum fluctuation?”, E. P. Tryon 

[11] proposes that the creation of a certain amount of mass-energy plus  the 

potential energy of this mass interacting with the rest of the universe sums 

up to zero. We can put relation (10) of this paper in a Tryon-like form. We 

have 

 

                                          mq
3
 + < Ψ Ψ > = 0.                                          (11) 

 

In (11) we identify < Ψ Ψ > as the potential energy in the new system of 

units (Gs = ħ =c = 1) and, mq
3
 as the mass-energy or kinetic energy, also 

expressed in this new system of units. We rewrite (11) in the form 

 

                                               Ks + Usg = 0.                                               (12) 

 

   At the same token, we can also write 

 

                                           Ks, new + Usg, new = 0.                                        (13) 
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Relation (13) implies 

 

                                  Ksg, new = (¾) mq
3
 =  M

 3
 ∕ 36 .                                  (14) 

 

 

5 – The Linear Confining Potential 

 

      In the case of confining potentials it is possible to write an action 

describing the behavior of the fermionic field Ψ, namely 

 

                             A = ∫ [( Ψ i ∂ ∕ ∂r ) Ψ + P(r) ΨΨ] dV4 .                        (15) 

 

Now consider the case of the linear confining potential, given by 

 

                                               P(r) = σ r,                                                   (16) 

 

where σ is the string constant . 

   Applying Thompson’s recipe [11] to the action (15), remember: “The 

absolute value of each term of the action A is separately equal to the unity”, 

we have 

 

             │∫ [( Ψ i ∂ ∕ ∂r ) Ψ] dV4│ = │∫ (σ r ΨΨ ) dV4 │= 1.                    (17) 

 

Assuming that the equality between integrals, corresponds to the equality 

between integrands, leads to the differential equation 

 

                                      i (dΨ ∕ dr) = ± σ r Ψ.                                            (18) 

 

Performing the integration of (18), we get 

 

                                     Ψ = Ψ0 exp( ± ½ i σ r
 2
 ).                                      (19) 

 



 

6 
 

Now, let us impose a boundary condition on the Ψ-function. We write 

 

                 ± ½ i σ rn
 2
 = ± i 2π n,         with        n = 1,2,3,...                    (20) 

Relation (20) yields 

 

        rn = 2 (πn ∕ σ)
1 ∕ 2

,         and         pn = 1 ∕ rn = ½ [σ ∕ (πn)]
 1 ∕ 2

.             (21) 

 

WE notice that p1 corresponds to the maximum value of the momentum, 

and we are interested in evaluate the value of a certain volume in the 

momentum space, namely 

 

                                             Vp1 = 2 (4 ∕ 3) π p1
3
.                                      (22) 

 

The factor 2 in (21) stems for the degree of degenerescence of the spin-½ 

fermionic field Ψ.  

Inserting the value of p1, the value of p for n = 1obtained from (21) into 

(22), we get 

 

                                         Vp1 = [1 ∕ (3√π)] σ
 3 ∕ 2

.                                      (23) 

 

The value of σ can be obtained from the paper dealing with quark 

confinement [12], and by considering the strong coupling (αs) value of 4 ∕ 9, 

as estimated in [9]. We have from reference [12] 

 

                               σ = mq
2
 ∕ αs = 9 mq

2
 ∕ 4 = M

 2
 ∕ 4.                                (24) 

 

Putting the value of σ estimated in (24) into (23), we finally obtain 

 

                              Vp1 = M
 3
 ∕ (24√π) ≈ M

 3
 ∕ 42.5.                                   (25) 

 

Now we are led to interpret Vp1 as the “kinetic energy” in the new system 

of units (Gs = ħ = c = 1) and making use of Tryon’s idea we can write 

 



 

7 
 

                               Ks + Usg = Vp1 + < Ψ Ψ > = 0.                                   (26) 

 

Relations (24) and (25) permit us estimate the value of the quark 

condensate in a linear confining potential (LCP) as 

                                  < Ψ Ψ >LCP = - M
 3
 ∕ (24√π) .                                   (27) 

 

 

6 – The Quadratic Confining Potential 

 

   For the quadratic confining potential, being k the spring constant, we can 

write 

 

                                               P(r) = ½ k r
 2
.                                              (28) 

 

Working in an analogous way we have done in the previous section, we get 

 

                                    Ψ = Ψ0 exp(± i k r
 3
 ∕ 6).                                       (29) 

 

The requirement on boundary conditions implies 

 

                      ± i k rn
 3
 ∕ 6  = ± i 2πn,            n = 1, 2, 3, …                       (30) 

 

Pursuing further we obtain 

 

                   r1
3
 = 12π ∕ k                and              p1

3
 = k ∕ (12π).                  (31) 

 

The volume in the momenta space, in the case of the quadratic potential, 

will be given by 

 

                                Vp1 = (8π ∕ 3) p1
3
 = 8 k ∕ 36 .                                      (32) 
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Now let us estimate the spring constant k. We assume the mass of the 

nucleon is given by the energy of the ground state of a four-dimensional 

harmonic oscillator (by taking space and time et equal footing) and write 

 

                 4(½ ħω) = Mc
2
,        or       2ω = M,         (ħ = c = 1).             (33) 

 

We consider μ = M ∕ 2, the reduced mass of the self-interacting hadron 

(nucleon), which leads to 

 

                                            ω = (2k ∕ M)
 1 ∕ 2

 .                                            (34) 

 

Combining relations (33) and (34), we get 

 

                                             k = M
 3
 ∕ 8 .                                                   (35) 

 

Finally inserting (35) into (32), we obtain 

 

                                           Vp1 = M
 3
 ∕ 36 .                                               (36) 

 

Again, we make use of the Tryon idea [11], and we get for the quadratic 

confining potential (QCP), the volume in the space of momenta 

 

                                      Vp1 + < Ψ Ψ >QCP = 0.                                         (37) 

 

From (36) and (37) we get 

 

                                  < Ψ Ψ >QCP  =  - M
 3
 ∕ 36 .                                        (38) 

 

We notice that Ks,new (please see (14)) as estimated in section 4, agrees with 

the Tryon idea in the QCP case. 

 

 

7 – Comparison with other results of the literature 
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    As a means to make comparison of the present estimates of the quark 

condensate with other results of the literature, let us put numbers in the 

expressions here obtained. We have 

 

                    < Ψ Ψ >Thompson = - M
 3
 ∕ 27 = - (313 MeV)

 3
.                        (39) 

                       < Ψ Ψ >QCP  =  - M
 3
 ∕ 36 = - (284 MeV)

 3
.                         (40) 

 

                   < Ψ Ψ >LCP  =  - M
 3
 ∕ (24√π)  = - (269 MeV)

 3
.                      (41) 

 

Meanwhile, other results of the literature are for instance quoted in table 2 

of a paper by Mota et al. [13] and go from: - (265 MeV)
 3
 to - (313 MeV)

 3
. 

We also may compare with the experimental result of reference [14], 

namely [- (296 ± 25) MeV]
 3
. On exhibiting the numbers from relations 

(39) to (41), we have taken M = 939 MeV. 
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