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1 Abstract

In this paper, the power series is looked at from a different perspective.The
Summation of na """ is evaluated using a new method.An assumption is made
that the power —bn is multiplied by x where = 1;then the series is integrated
m times in order to cancel the term n™ out leaving the term a~°".By simply
taking the derivative of the result m-times, an expression to evaluate the series
arises ,which include only a constant term and the m** order derivative of the
summation of a simple geometric series. Further applications of the method are
used to evaluate the series with the cosine, sine, hyperbolic sine, and hyperbolic
cosine. Finally, the method is used to further simplify some of the hardest forms
of series to deal with: the series n™sinh(ny), and n"*cosh” (ny) and n"sin" (ny).

2 Introduction

In Boltzman-Gibbs distribution of energy, the probability as a function of tem-

Sy kT

perature is given by the relation T Yet, this formula and many others
R

(like the quantum system of Oscillators [2]) are evaluated using computers and
software programs due to the difficulty in evaluating the series ), zpe—n/T
using a manual technique, especially for numerous number of particles. Addi-
tionally, no general formula was introduced to reduce this type of series when
x, is raised to the power of m, where m can be any integer number. The pur-
pose of this paper is to introduce a method to evaluate the general form of this
type of power series. This is achieved by integrating and then differentiating
the series m-times with respect to an implemented variable, which is set =1.
Finally, the method is applied in more complex forms that contain hyperbolic
and trigonometric functions to the power of v.

3 Derivation of the method

It is too difficult to deal with sums in general, especially when they contain
power terms. Therefore, a shortcut was formulated to be used as a method of
expanding a certain form of power series.

Theorem(Th1): Suppose there is a finite sum Zﬁzo na~"" where (m € N,n
and a € R,b#0)

Then, this sum can be expressed as : *

-1 )m am 1-— a—b(k+1)z
dzm® 1—aq b

(

(where: m € Nyn and a € R,b# 0,2 = 1.)
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Proof: The power of a can be multiply by x where = 1. Then the sum
becomes:

S = Z nmafhnw (2)

n=0

Integrating S with respect to x,using geometric series law,

k
_ -1 m—1_—bnzx
/Sdm— bhla?;n a (3)
Then, by integrating S (m times), the m*” integral of S becomes:
1 k
..... mo_ — m —bnz 4
[ [ [ st X )

—bnz

. k . . .
Now, by solving >."_,a using geometric series law,

k —b(k+1)z

Z a—bnz — (%) (5)

n=0

th

From equations (4), (5), it is concluded that the m*” integral of

1 1— a—b(k+1)z
S = m 6
(blna) ( 1—aq b= (©)
Now, by applying the fundamental theorem of calculus, it is found that:
k _ _
S = Z nMat" = am ( —1 )Hl(l —a b(k+1)x) =( -1 )m am (1 —a b(k+1)x)
dz™ “blna 1—aq~be blna’ dxm® 1—a b=

n=0

(7)
Similarly, an expression for the positive power of a can be derived :

1 . am 1 - ab(k+1)x
§=( ) dxm* 1 —qab*

Further simplification can be achieved in the case that the series is evaluated be-
tween zero and infinity, where m is a natural number bigger than zero, provided
that it converges.To determine when S converges, the series S = Zi:o n™at"is
evaluated between zero and infinity.By testing convergence of the function by

(8)
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D’Alembert test, lim,, oo Sg%(:)l)) has to be found. By solving the limit,
1)™ g b(n+1) , 1 —b(n+1) 14 Lym
tim (DT gy (o T gy (R
n— 60 nm.q—bn n= o0 n a—bn no 6o ab
(9)



And thus, three cases are to be considered.The first case is when a—® = 1, then

b =0, and the sum turns into S = Zﬁ:o n™ .Now, applying the integral test of
convergence,

m+1 1

- ——= = (10)

_m+1:

C
lim (/ n™dn) = lim ( ¢
c—oo” g c—ooom + 1
Thus, the series diverges if a~® = 1.The second case is when a~° > 1; the series
automatically fails D’Alembert test, and consequently, it diverges.The third case

is when a~? < 1; it passes D’Alembert test because limn_,oo(sgz:)l)) < 1, and

S0, the series converges.

From the previous examination, it is concluded that the series converges if and
only if a=® < 1 and m > 0.

Applying the theorem(Thl) and (7) then taking the limit at infinity, the series
can be written as:

-1 am 1-— a*b(l’v’ﬁ*l)ﬂ: -1 am 1
) dz™® 1—a b ~ blna’ dam ( 1- a*’”’)

(11)
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4 The Applications of the method

It is possible to apply the method in evaluating sums further complicated func-
tions : sinh and cosh functions [4.1], sin and cos functions [4.2], hyperbolic sine
and cosine Raised to the power of v [4.3], and finally sine and cosine functions
raised to the power of v [4.4].

4.1 Application of the method in series that include hy-
perbolic Sine and Cosine

enY _e—nY

First, let us examine the sinh function. Substituting sinh(ny) = “—=— in
the general form of the series,(where n € N,y € R), it becomes:

k k k k k
1 1
E n™.sinh(ny) = 5( E n™.e™" — E n™.e ™) = 5( E n'm.e™T — E n™.e”™%)(wherex = 1,y # 0)
n=0 n=0 n=0 n=0 n=0
(12)

By applying (Thl) and equation (8), putting a = e, the following expression is
obtained :

k ;
1 1 am 1— y(k+1)x -1 dam 1— —y(k+1)x
Zn"”.sinh(ny) — 7((7)771, — € - _ 7)m — € —
frd 2y’ dx 1—ev y dx 1—e v
(13)
Simplifying the expression leads to
11 dm 1 — ey(k+)z dm 1 — e vkt
an.sinh(ny) =—(=)™( e Ty (g i T
o 2y’ “da™m 1 —e¥® dem> 1 —e¥®
(14)



when putting y = 0, the series vanishes: Zi:o n'™.sinh(ny) = Zﬁ:o nm.0=0

Second, cosh function is examined. Putting cosh function as % in the
general form of the series,(where n € N,y € R), it turns into

k
Z n™. cosh(ny) Z n'.e" + Z n'™.e ™) Z n'™.e"r 4 Z n'™.e”"")(wherex = 1,y # 0)

n=0 n=0 n=0 n=0 n=0
(15)
Now, method(Th1) and equation (8) are applied, putting a = e :
k :
11, d* 1— eyt ~1,,, d* 1 — e yk+Dz
m h — —((Z\ym _\m
;n cosh(ny) 2((y) dx™ 1— ey y ) dx™ 1—e e
(16)
Simplifying the expression leads to
' . 11 . am 1 _ey(k7+1)a: . am 1 _e—y(k7+1)w
2 ncoshlny) = 5 ()" G () + V" g )
n=0
(17)

whken putting y = 0, the series turns into: Zﬁ:o n™. cosh(ny) = Zﬁ:o n
> o™ is evaluated using formula for Bernoulli numbers by using only
the recurrence relation. For reference , the relationis ) ;_, = m+1 D ke (m}jl)Bkan—k’ where

Zk =0 k+1 Zr— - ) (r)[5]

4.2 Application of the method in series with trigonometric
Sine and Cosine using complex analysis

The definition cos(x) = Re(e™®) and sin(x) = Im(e™®) is used to convert the
series containing Sine and Cosine into a series containing (n™e™) analogously
to what was done in [3.2].

First, let us study the cosine function cos(ny) can be written as the real part of
e and equally as the real part of the whole series, (where n € N,y € R).

k
Z n'™. cos(ny) = Re( Z n™.e"Y) = Re( Z n™.e"Y?)(where,z = 1,y # 0)
n=0 n=0 n=0
(18)
By applying equation (8),putting a = e,the series is written as
k .
1 am 1 — ezy(k-l—l)z
/m" R - - - 19
3o con(ry) = Rel ()" g (e (19)



Also, if y = 0,co08(0) = 1, and thus, the series turns intozﬁ=O n"™, which is

evaluated using formula for Bernoulli numbers by using only the recur-
rence relation.

Second, going through the Sine function, sin(ny) is,by definition, written as
the imaginary part of e/”¥. Since the imaginary part of sin(ny) is the same as
taking the imaginary part of the whole series,(where n € N,y € R); the series
can be written as

k k k
Z n'™.sin(ny) = Im(z n™.e"m) = Im(z n™.e""*)(where,x = 1,y # 0)
n=0

n=0 n=0

(20)
Now, equation (8) is applied putting a = e:
k .
1 am 1-— P/zy(k:-kl)ac
moo; — _—_\m I
E n'™. sin(ny) = Im((iy) e G e (21)

n=0

Also, it is obvious that if y = 0,sin(0) = 0, and thus, the series vanishes.

4.3 Application of the method in Hyperbolic Sine and Co-
sine functions raised to the power of v

In this section, the same series is evaluated, but this time sinh and cosh func-
tions are raised to the power of v (where v € N)

First, let us consider the sinh function.Putting sinh”(y) = (%)”, a binomial

expansion can be performed.

1w ey_eiyv ]"u - u (v Y\U—u [ ,—Y\u 1v - u (v y\v—2u
sinh’ () = (550 = (57 SR O ) = () SO (C) ()

u=0 u=0

(22)

Then, two cases arise : when v is odd and when v is even
If v is odd, then there is an even number of terms after expansion, and so there
is no single middle term.
1
sinh”(y) = (5)”((”00)(—1)0(6y)”_2(0) + (PO (=) (") D 23)
+(1}Cq,71)(—1)”_1(6/‘11)"_2(”_1) + (1)01))(_1)1)(ey)v—Q(a;))



Since *C,, =" C,_, whenever v > u, the 1°* term can be combined with the
last term, the second term can be combined with the (v — 1)t term, and so on.

1 (*Co) (" — e~¥) (ucl)(e('v—z)y _ 6—(7:—2);1;) — (“C%)(ey —eY)

sinh(y) = (5)" (R 2 foreE T
_ (%)v_l(ﬂco sinh(vy) —* C sinh((v — 2)y) + ..... + (_1)v;1 (wc%) sinh(y))
= ()Y (D C) sinh((v — 2)y)

i (24)

If v is even, there is an odd number of terms after the expansion; therefore,
there is a single middle term which can no be combined with a similar term.
From equation (22)

. v 1 Vv Y\ — v Y\v— v L Y\U— -1
sinh”(y) = (5)°[( Co)(—1)%(e")" 2O 4 ("Cr) (=)' (e¥)" 2 + . 4 ("Cy 1) (= 1) D (e)r 2 )
HECH (D)2 4 (O ) (- ED )P 2ED L (00 (<1) () ).

(25)

Since *C,, =¥ C,_,, whenever v > u, the 1°" term can be combined with the

last term, the second term can be combined with the (v — 1)** term and so on,
leaving the middle term.

. . v 2y —2y

v  /1yo—17"Co(e’Y+e~"Y) "Cl(e(v’z)y+e’<"’”y) w_q Clu_py(e™+e )

sinh”(y) = (3)" [ 5 - 5 o (-G G -
1

(~1E 521 = (371" o) coshio) + (-1 (Cr)eosh((v = 2)y) + . +
(1) E D () cosh(2)+(-DF 51 = (3 (S CC(-1)" cosh((o  20)) + (-1)F 2]

(26)

To summarize :

v

()P (5 (“Cu) (= 1)* cosh((v — 2u)y)) + (—1)F —52],if v is even

sinh(y) =
(L)L 2 (—1)("C,) sinh((v — 2u)y), if v is odd

(27)

Now, the series Z:zo n™ sinh”(ny) is evaluated using the previous results.
Since Y _ n™ sinh (ny) = (3)° Sk ™Y (—1)"Cy ()" 24), the se-

u=0



ries can be expanded as following(where x = 1) :

k k

k
Z nm sinh”(ny) — (%)1(2 Tlnl(IUC())(_1)0(6"1‘11:1:)1)72(0)) 4 (%)v(z ”m(vcl)(_l)l(enya:)vf2)

n=0 n=0 n=0

k

k
o (%)v(z nm(va_l)(_l)v—l(enyz)v—Q(v—l)) + (%)v(z nm(vcv)(_l)v(enyz)v—Q(iv))

n=0 n=0
(28)

First, if v is even, the method is applied on equation (26). Noticeably, the term

in which u = § violates the condition b # 0, and so the method is not applied

on it. Equation (8) is applied on all the terms, leaving the term where v = §
as it is.

nz:"m Sl () (%)v(vco)(_l)o(i)m%(%) + (%)v(vcl)(—l)l(ﬁ)m
+(;)”(”c;)(—1)5g”mﬂ;)”(”%ﬂ)(—” +1(y(v—2:l(§+1))mcldx% 1_16_1/(6;2(*2?1:)2;“)
S ML Y el

(29)
Simplifying the expression leads to
k dm 1 1— ey(v—2u)(k+1)z

$-1
mo s 1V 1 v (v w m
Z n'™ sinh (Ily) - dz™ [z_;(g) ( Gur)(_]-) (y(’U — 21L)) ( 1 — ev(v—2u)z

n=0

1 m 1— ey(v—2u)(k+1):c

)
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u=g 41 y(v — 2u) 1 — ey(v—2u)z
1 k
+(§)v(vc%)(_1)§ an
n=0
(30)

The term containing Zﬁ:o n™ can be evaluated using the Explicit formula
for Bernoulli numbers by using only the recurrence relation [5].

If v is odd, the number of terms is even; therefore, there is no middle term



to violate the condition b # 0

k
, 1, L, d™ 1—evltbe g 1
E)Wm sinh”(ny) = (i)b(vco)(—l)o(@)mdmim ez /T (i)v(vcl)(—l)l(m)m
n=
am 1-— ey(11—2)(k+1)r1: 1 e . 1 . ar 1-— ey(u—?ﬂ)(kﬂ-l)x
dz™ 1 — ey(v—2)z ) +ot (5) ( Cv)(_l) (y('u _ 21))) dx™ 1 — ey(v—2v)z
dam v 1 1 1— ey(v—2u)(k+1)x
= w[Z(i)v(vCu)(_l)u( (’U — 2U) )m 1 — ev(v—2u)z
u=0 Yy
(31)
putting v = 1, the expression reduces to equation (14)
k . ;
am 1 1 1 — ev(1=2(0))(k+1)z
m o : _ 1,1 _1\0 m
am 1 1 L 1 1— ey(1—2)(k+l)z
(= -1 m
4 ) O o ™ T e
O W L Tl
2y dx™ 1—ev® dx™ 1—ev®
(32)

Then, moving to cosh”(y),similar steps are done on the cosh function, but there
is no changing negative signs like the (—1)* and the (—1)% as in the sinh func-
tion.

(L) (SR () cosh((v — 2u)y)) + —22],if v is even
cosh”(y) = (33)
(3! E;&(”C’u) cosh((v — 2u)y), if v is odd

v
u=

Then, substituting cosh”(ny) as (3)"Y
tions: odd v and even v.

o(?C,)em v (=21 gives two condi-

If v is even:

k 31 -
am 1 1 1— ey(v 2u)(k+1)x
m v _ v v (v m
;“ cosh™(ny) = T2 [1;](2) ( C“)(y(v—zu)) S T T
v

1 e 1 o L= ey(v—2u)(k+1)z

+ Z (2) ( Cu)(y(v—Qu)) ( 1 _ey(v—Qu)I

u=g+1

1 k
+(5)°("Cy) Y™

n=0



If v is odd:

Zn cosh”(ny) dd’:;[Z(é)v(UCu)(’ - ! - )m(l_
=0

ey(va’u)(kJrl)w

1 — ey(v—2u)z
(35)

4.4 Application of the method in series with Trigonomet-
ric Sine and Cosine raised to the power of v.

By uﬁing the substitution cos(y) = cosh(iy) = %,Sin(y) = %f’”) =
ew_Qf “ and substituting in the results of (35), (34) and (33) , a reduction
formula for (cos’(y) and (sin”(y)) can be reached.

If v is an even number:

31 1 dm 1 — eww—2u)(k+1)w

k k
m U _ 1 v—1 v m v . m
"g)" cos”(ny) = (3) [;( GG @ Tz ) O ;” ]
(36)

If v is an odd number:

31 1 — ety(v—2u)(k+ 1)z

: | 1 a
Z n™ cos’ (ny) = (5)@_1[2(vC“)(m)mdwm( 1~ ow—2uys

n=0 u=0

(37)

The same pattern can be applied tozn oM™ sin”(ny) to obtain the formulas
for even and odd v

For an even v:

»_q . , .
) — z 3 v 1 e d7n 1-— ely(71—2u)(k+l)z N )
Zn 'sin (ny) = ( )‘ e 1)2[2( Cu)(m) Ld:tm( T )+ Cy Znn]
u=0 o
(38)

For an odd v:

k .
1 Y 1 dam 1— ezy(v—Zu)(k+1)z
m v _ (=1 1\% v _1)\u m
Z noosm (’I’ly) - (2) ( 1) 2 [Z( Cu)( 1) (zy(v — ZU)) dzm 1 — eiy(v—2u)z
n=0 u=0
(39)

5 Conclusion
A reduction method is introduced for a certain type of power series in this paper.

Additionally, it was used to obtain a general formula for this sequence with basic
hyperbolic and trigonometric functions. The method is seen to be exceedingly

10



useful when m is much smaller than k because taking the m** derivative will be

much easier than summing up so many terms. Moreover, it helps transforming
the series of hyperbolic and trigonometric functions raised to the power of v
from (k+1) terms to (v+1) terms. This transformation is very beneficial when
k is a large number compared to v. In the future, it is planned to design a
software in which the method is used. This software is expected to reduce the
execution time of the processors to compute the results of the sequence as it
will transform the summation process from summing numerous complex terms
Jike the hyperbolic and the trigonometric functions in the series into shorter
operations for the processors to perform -taking the derivative of a function. For
all these reasons, this method will be revolutionary in branches like statistical
physics.
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