S- Anti Fuzzy M-Semigroup

Farhan Dakhil Shyaa

Department of Mathematics University of Al-Qadsiyah, College of Education, Al-Qadsiyah, Iraq Farhan.Shyaa@qu.edu.iq, <u>farhan_math1@yahoo.co.uk</u>

Received:- 13/1/2017

Accepted:-12/3/2017

Abstract

In this paper , we define the concept of a smarandache anti fuzzy M-semigroup (S-Anti Fuzzy M-Semigroup) and some elementary properties about this concept are discussed.

Key words: Fuzzy sets, semigroup, M-semigroup

Physical Classification QA 150-272.5

Introduction

In 1965 Zadeh introduced the concept of fuzzy set[1], in 1971 Rosenfeld formulated the term of fuzzy subgroup[2]. In 1994 W.X.Gu, S.Y.Li and D.G.Chen studied fuzzy groups and gave some new concepts as M- fuzzy groups [3]. In 2002 W.B.Vasantha introduced the concepts of smarandache semigroups[4]. Smarandache fuzzy semigroups are studied in 2003 by W.B.Vasantha[5]. In 2011 H.R.Yassein and M.O.Karim introduced the concept of a smarandache M – semigroup (S-M-semigroup) and studied some basic properties [6].

In this paper, the concept of Smarandache antifuzzy M semigroup are given and its some elementary properties are discussed

1- Preliminaries

Definition (1.1): Let G be a group. A fuzzy subset μ of a group G is called anti fuzzy subgroup of the group G if:

1- $\mu(xy) \le \max{\{\mu(x), \mu(y)\}}$ for every x, $y \in G$.

2. $\mu(x) = \mu(x^{-1})$ for every $x \in G$. [7]

Definition (1.2): A semigroup H with operators is an algebraic system consisting of a semigroup H, set M, and a function defined in the product M×H and having values in H such that, if ma denotes the element in H determined by the element a in H and the element m in M, then m(ab)=(ma)(mb), $a,b \in H$ and $m \in M$ then H is M – semigroup [3].

We shall usually use the phrase "G is an M-group" to a group with operators.

Definition (1.3): If μ is a fuzzy set of G and $t \in [0,1]$ then $\mu_t = \{ x \in G \mid \mu(x) \le t \}$ is called a t-level set μ [6].

Definition (1.4): Let G and G['] both be M – groups, f be a homomorphism from G onto G['], if f(mx)=mf(x) for every $m \in M$, $x \in X$, then f is called a M – homomorphism [5].

Definition (1.5): Let S be a semigroup, S is said to be a smarandache semigroup (S - semigroup) if S has a proper subset P such that P is a group under the operation of G [5].

Definition (1.6): Let G be any group. A mapping μ : G \rightarrow [0, 1] is a fuzzy group if (1) μ (xy) \geq min { μ (x) , μ (y)} (2) μ (x-1) = μ (x) for all x, y \in G[1].

Definition (1.7): Let H be M- semigroup . H is said to be a smarandache M – semigroup (S-M-semigroup) if H has a proper subset K such that K is M- group under the operation of H [6].

this S- fuzzy semigroup is denoted by $\mu_p: P \rightarrow [0,1]$ is fuzzy group .

Definition(1.8) : A group with operators is an algebraic system consisting of a group G, set M and a function defined in the product $M \times G$ and having value in G such that, if ma denotes the elements in G determined by the element m of M, then m(ab)=(ma)(mb) hold for all a,b in G, m in M [3].

Definition (1.9):Let H be a S - M –semigroup. A fuzzy subset $\mu : H \rightarrow [0,1]$ is said be smarandache fuzzy M-semigroup if μ restricted to at least one subset K of H which is subgroup is fuzzy subgroup[2].

Definition (1.10): Let S and S' be any two Ssemigroups . A map φ from S to S' is said to be S- semigroup homomorphism if φ restricted to a subgroup A \subset S \rightarrow A' \subset S' is a group homomorphism [2].

Definition (1.11): Let H and K be any two S-M- semigroup . A map φ from H to K['] is said to be S-M- semigroup homomorphism if φ restricted to a M- subgroup A \subset H \rightarrow A['] \subset K['] is M- homomorphism [6].

Definition (1.12): Let f be a function from a set X to a set Y while μ is fuzzy set of X then the image $f(\mu)$ of μ is the fuzzy set $f(\mu):Y \rightarrow [0,1]$ defined by : [7]

$$f(\mu(y)) = \begin{cases} \sup \mu(x) & \text{if } f^{-1}(y) \neq \phi \\ x \in f^{-1}(y) \\ 0 & \text{if } f^{-1}(y) = \phi \end{cases}$$

Definition (1.13): Let f be a function from a set X to a set Y while μ is fuzzy set of Y then the inverse image $f^{-1}(\mu)$ of μ under f is the fuzzy set $f^{-1}(\mu): X \rightarrow [0,1]$ defined by $f^{-1}(\mu)(x) = \mu(f(x))[7]$.

2-The Main Results

In this section we shall define Smarandache anti fuzzy M-semigroup and give some its results.

Definition (2.1): Let G be M – group and μ be anti fuzzy subgroup of G if $\mu(mx) \leq \mu(x)$ for every $x \in G$, $m \in M$, then μ is said to be anti fuzzy subgroup with operators of G, we use the pharse μ is an M – anti fuzzy subgroup of G instead of a fuzzy subgroup with operators of G. Vol.23 No. 2 Year 2018

Definition (2.2): Let S be an S-semigroup. A fuzzy subset $\mu : S \rightarrow [0,1]$ is said to be Smarandache anti fuzzy semigroup (S- anti fuzzy semigroup) if μ restricted to at least one subset P of S which is a subgroup is anti fuzzy subgroup.

that is for all $x,y\in P\subset S$, $\,\mu(xy^{\text{-}1})\,{\leq}\,max$ { $\mu(x)$, $\mu(y)$ } $\,$.

Definition (2.3): Let H be a S-M- semigroup. A fuzzy subset $\mu : H \rightarrow [0,1]$ is said to be Smarandache anti fuzzy M-semigroup if restricted to at least one subset K of H which is anti fuzzy M- subgroup

Proposition (2.4): If μ is S-anti fuzzy M-semigroup of S-M-semigroup then:

1) $\mu_{K}(m(xy)) \le \max \{ \mu_{K}(mx), \mu_{k}(my) \}$ 2) $\mu_{k}(mx^{-1}) \le \mu_{k}(x)$

For all $m \in M$, $x,y \in K$

Proof: μ is S-fuzzy M-semigroup

Then there exist subset K of H which is Msubgroup such μ restricted of K which is antifuzzy

i.e . $\mu_{\text{K}}\text{:}\text{K}\rightarrow[0,1]\,$, M- anti fuzzy subgroup

for all $x, y \in K$, $m \in M$, it is clear that

$$\begin{array}{rl} 1) \ \mu_{K}(m(xy)) \leq & \mu_{K}((mx)(my)) \\ & \leq & max \ \{ \ \mu_{K}(mx) \ , \ \mu_{k}(my) \ \} \\ 2) & \mu_{k}(mx^{-1}) = \mu_{k}(mx)^{-1} \end{array}$$

$$\leq \mu_{K}(mx)$$

Proposition (2.5): Let G be S- semigroup , μ fuzzy set of G. Then μ is an S- anti fuzzy M-semigroup of G if and only if $f \forall t \in [0,1]$, μ_t is an S-M- semigroup $\mu_t \neq \emptyset$.

Vol.23 No. 2

Year 2018

Proof: It is clear μ_t is semigroup of G while μ_t $\neq \emptyset$ holds.

for any $x \in \mu_t$, $m \in M$

 μ (mx) $\leq \mu$ (x) $\leq t$

hence mx in μ_t , hence μ_t is an M- semigroup of G .

Since μ S-anti fuzzy M- semigroup \exists K \subset G subgroup $\ni \mu_t : K \to [0,1]$

fuzzy M- subgroup.

 $\mu_{K_{t}} = \{ x \in K \mid \mu_{K}(x) \leq t \}.$

It is clear μ_{K_t} is group. Hence μ_t S-Msemigroup.

Conversely, Since μ_t S-M- semigroup then there exists a proper subset K of G such that K is M-subgroup.

If there exists $x \in K$, $m \in M$ such that $\mu_{K}(mx)$ $> \mu_{\rm K}({\rm x})$.

let $t = \frac{1}{2} (\mu_K(mx) + \mu_K(x))$ then $\mu_K(x) < t < t$ $\mu_{K}(mx) \quad mx \notin \mu_{K_{+}}$ so here emerges a

contradiction .

 $\mu_K(mx) \leq \mu_K(x)$ always holds for any $x \in K$, $m \in$ Μ.

 μ_K is M- fuzzy subgroup hence μ is S –anti fuzzy M- subgroup.

Proposition (2.6): Let H and K both be S-Msemigroup and f as S-M- semigroup homomorphism from H onto K . if µ' is an Santi fuzzy M- semigroup

H' then $f^{1}(\mu')$ is an S-anti fuzzy Mof semigroup of H.

Proof:

Since f :H \rightarrow K is as S-M- semigroup homomorphism then f restricted to Msubgroup.

 $A \subset H \rightarrow B \subset K$ is M-homomorphism,

 $f^{-1}(\mu)_A : A \rightarrow [0,1]$ such that A M-subgroup,

For any $m \in M$, $x \in A$

 $f^{-1}(\mu)_{A}(mx) = \mu'_{A}(f(mx))$

 $\mu'_{A}(f(x))$

 $= f^{-1}(\mu')(x)$

<

 $= \mu'_A (m(f(x)))$

 $f^{1}(\mu')$ is S-anti fuzzy M- semigroup

Proposition (2.7): Let H and K both be S-Msemigroups and f as S-M- semigroup homomorphism from H onto K . if μ is an S-anti fuzzy M- semigroup of H then $f(\mu)$ is an S-anti fuzzy M-semigroup of K.

Proof:

Since $f : H \rightarrow K$ is as S-M- semigroup then f restricted to Mhomomorphism subgroup.

 $A \subset H \rightarrow B \subset K$ is M-homomorphism

 $f(\mu)_{B'}: B \rightarrow [0,1]$ such that B M-subgroup ,

For any $m \in M$, $y \in B$

 $f(\mu)(my) = \sup \mu(x)$, $x \in f^{-1}(my)$

 $= \{ \sup \mu(x) , f(x) = my \}$

 $\leq \sup \mu(mx'), f(mx') = mx$

, mx[′] ∈H

, mx[′] ∈H

 $\leq \sup \mu(x')$, f(x')=y, x'

 $= \sup \mu(x')$, mf(x')=my

 $\in H$

 $= f(\mu)(y)$

hence $f^{-1}(\mu')$ is S- anti fuzzy M- semigroup

References

[1] L.A. Zadeh"Fuzzy sets" INFORATIOAND CONTROL 8, 338--353 (1965).

[2] A. Rosenfeld Fuzzy groups, Journal of mathematical Analysis and Applications , 35, 512- 517, 1971.

[3] W.X.Gu, S.Y.Li and D.G.Chen, "Fuzzy Groups with Operators", Fuzzy sets and system, 66 (363-371), 1994.
[4] W.B.Vasantha, "Smarandache Semigroups", American research press, 2002.

[5]] W.B.Vasantha, "Smarandache Fuzzy Algebra", American research press, 2003.

[6] H.R.Yassein and M.O.Karim " On Smarandache M-Semigroup " Journal of AL_Qadisiya for pure science "vol.3, no.1, 71-76, 2011.

[7] K.A.Al-Shamari , "An Annalus Approach To Fuzzy Subgroup " , M.Sc. thesis , Saudui Arabia , 1998 .

 [8] R .Muthurage ," Anti Q-Fuzzy
 Group and Its Lower Level Subgroups" International journal of computer
 applications , Volume 3 , No.3 , 2010.

ضد شبه الزمرة -S-M الضبابية

فرحان داخل شياع

تاريخ القبول :-2017/3/12

تاريخ الاستلام: - 2017/1/13

المستخلص

في هذا البحث عرفنا البني الجبرية ضد شبه الزمرة -S-M الضبابية ودراسة بعض الخواص الأساسية لها .