International Journal of Mechanical Engineering and Technology (IJMET)

Volume 9, Issue 2, February 2018, pp. 398–408, Article ID: IJMET_09_02_041 Available online at http://www.iaeme.com/IJMET/issues.asp?JType=IJMET&VType=9&IType=2 ISSN Print: 0976-6340 and ISSN Online: 0976-6359

© IAEME Publication **Scopus** Indexed

SOME RESULTS ON SINGLE VALUED NEUTROSOPHIC BI-MAGIC GRAPHS

V. Krishnaraj

Assistant Professor, Department of Mathematics, Sona College of Technology, Salem, Tamil Nadu, India

R. Vikramaprasad

Assistant Professor, Department of Mathematics, Government Arts College, Salem, Tamil Nadu, India

ABSTRACT

In this paper, we introduce the concepts of Bi-Magic labeling in single valued *neutrosophic graphs. We investigate some properties of single valued neutrosophic bimagic labeling on path, cycle and star graphs.*

AMS Classification: 03E72; 05C99

Key words: single valued neutrosophic bi-magic labeling; path; cycle; star graphs.

Cite this Article: V. Krishnaraj and R. Vikramaprasad, Some Results on Single Valued Neutrosophic Bi-Magic Graphs, *International Journal of Mechanical Engineering and Technology* 9(2), 2018, pp. 398–408. http://www.iaeme.com/IJMET/issues.asp?JType=IJMET&VType=9&IType=2

1. INTRODUCTION

Euler[6] introduced the concept of a graphs in 1736. Zadah[11] introduced the concept of fuzzy set in 1965. It is a mathematical structure to demonstrate the observable fact of uncertainty in real life problems. Rosenfeld [9] introduced the concept of fuzzy graph in 1975. Intuitionistic fuzzy set is an extension of fuzzy zet it was introduced by Atanassov [2]. In 1994, Sovan and Atanassov [3] introduced the concept of intutionistic fuzzy graph. Smarandache [10] introduced the concept of neutrosophic sets. Kotzig and Rosa [7] defined a magic labeling to be a total labeling in which the labels are the integers from 1 to $|V| + |E|$. The sum of labels on an edge and its two endpoints is constant. A. Nagoor Gani, Muhammad Akram and D. Subahashini [8] introduced the concept of fuzzy magic labeling graphs. In this paper, we introduce the concepts of Bi-Magic labeling in single valued neutrosophic graphs. We investigate some properties of single valued neutrosophic bi-magic labeling on path, cycle and star graphs.

2. PRELIMINARIES

Definition 2.1 [1] A Single Valued Neutrosophic (SVN) Graph with underlying set V is defined to be a pair $G = (A, B)$ where

1. The function $T_A: V \to [0,1], I_A: V \to [0,1], F_A: V \to [0,1]$ denote the degree of truthmembership, degree of indeterminacy-membership and falsity-membership of the element $v_i \in V$, respectively, and $0 \leq T_A(v_i) + I_A(v_i) + F_A(v_i) \leq 3$ for all $v_i \in V$.

2. The functions $T_B: E \subseteq V \times V \to [0,1], I_B: E \subseteq V \times V \to [0,1], F_B: E \subseteq V \times V \to [0,1]$ are defined by $T_B(v_i, v_i) \leq min[T_A(v_i), T_A(v_i)]$, $I_B(v_i, v_i) \leq min[I_A(v_i), I_A(v_i)]$ and

 $F_B(v_i, v_j) \leq max |F_A(v_i), F_A(v_j)|.$

Definition 2.2 A Path P_n in a SVN graph is a sequence of distinct vertices v_1, v_2, \ldots, v_n such that $0 < T_B(v_i, v_{i+1}), I_B(v_i, v_{i+1}), F_B(v_i, v_{i+1}) \leq 1$; $1 \leq i \leq n-1$; $n-1$ is called the length of the path P_n . A path P_n is called Cycle if $v_1 = v_n$ for $n \ge 3$.

Definition 2.3 A Star in a SVN graph consists of two vertex sets U and V with $|U| = 1$ and $|V| = n$ such that $0 < T_B(u, v_i)$, $I_B(u, v_i)$, $F_B(u, v_i) \leq 1$; $1 \leq i \leq n$.

3. SINGLE VALUED NEUTROSOPHIC BI-MAGIC LABELING GRAPHS

Definition 3.1 A SVN graph is said to be a single valued neutrosophic bi-magic graph if $\widetilde{Bm}_T(G) = T_A(u) + T_B(u, v) + T_A(v), \widetilde{Bm}_I(G) = I_A(u) + I_B(u, v) + I_A(v)$ and $\widetilde{Bm}_F(G) =$ $F_A(u) + F_B(u, v) + F_A(v)$ has two different neutrosophic magic values $\widetilde{Bm}_1(G)$, $\widetilde{Bm}_2(G)$ for all $u, v \in V$. Where $\widetilde{Bm}_1(G) = (\widetilde{Bm}_{T_1}(G), \widetilde{Bm}_{I_1}(G), \widetilde{Bm}_{F_1}(G))$ and $\widetilde{Bm}_2(G) = (\widetilde{Bm}_{T_2}(G), \widetilde{Bm}_{T_2}(G), \widetilde{Bm}_{F_2}(G)).$ Bi-magic labeling of SVN graph G is \widetilde{Bm}_0 $(Bm_1(G), Bm_2(G)).$

Example 3.1 Consider a SVN graph G=(A,B) such that $V = \{v_1, v_2, v_3, v_4\}$ and

 $E = \{ (v_1, v_2), (v_2, v_3), (v_3, v_4), (v_4, v_1), (v_1, v_3), (v_2, v_4) \}.$

The Bi-magic values of a graph G are $\widetilde{Bm}_1(G) = (0.23, 0.023, 0.0023)$ and $\widetilde{Bm}_2(G) =$ $(0.18, 0.018, 0.0018).$

Hence G is a SVN Bi-Magic labeling graph.

SVN Bi-Magic graph G

Theorem 3.1 For all $n \ge 3$, the path P_n is a single valued neutrosophic bi-magic labeling graph.

Proof. Let P_n be any path with $n \ge 3$. Then $v_1, v_2, v_3, \ldots, v_n$ and $v_1v_2, v_2v_3, \ldots, v_{n-1}v_n$ are vertices and edges of P_n . Let $l = min\{x : n < 3(10)^x, x = 0, 1, 2, ...\}$, $\varepsilon_1 = 10^{-(l+1)}$, $10^{-(l+2)}$ and $\varepsilon_3 = 10^{-(l+3)}$ where ε_1 , ε_2 and ε_3 are the set of truth, indeterminacy and falsity membership degree in single valued neutrosophic labeling.

The single valued neutrosophic vertex and edge labeling is defined as follows: Case - (1) When n is odd,

$$
T_A(v_{2k}) = (2n - k)\varepsilon_1; 1 \le k \le \frac{n-1}{2},
$$

\n
$$
I_A(v_{2k}) = (2n - k)\varepsilon_2; 1 \le k \le \frac{n-1}{2},
$$

\n
$$
F_A(v_{2k}) = (2n - k)\varepsilon_3; 1 \le k \le \frac{n-1}{2}.
$$

\n
$$
T_A(v_{2k-1}) = \min\{T_A(v_{2i})|1 \le i \le \frac{n-1}{2}\} - k\varepsilon_1; 1 \le k \le \frac{n+1}{2},
$$

\n
$$
I_A(v_{2k-1}) = \min\{I_A(v_{2i})|1 \le i \le \frac{n-1}{2}\} - k\varepsilon_2; 1 \le k \le \frac{n+1}{2},
$$

\n
$$
F_A(v_{2k-1}) = \min\{F_A(v_{2i})|1 \le i \le \frac{n-1}{2}\} - k\varepsilon_3; 1 \le k \le \frac{n+1}{2},
$$

\n
$$
T_B(v_k, v_{k+1}) = (\frac{n-1}{2} + k)\varepsilon_1; 1 \le k \le \frac{n-1}{2},
$$

\n
$$
I_B(v_k, v_{k+1}) = (\frac{n-1}{2} + k)\varepsilon_2; 1 \le k \le \frac{n-1}{2},
$$

\n
$$
F_B(v_k, v_{k+1}) = (k - \frac{n-1}{2})\varepsilon_1; \frac{n+1}{2} \le k \le n-1,
$$

\n
$$
I_B(v_k, v_{k+1}) = (k - \frac{n-1}{2})\varepsilon_2; \frac{n+1}{2} \le k \le n-1,
$$

\n
$$
F_B(v_k, v_{k+1}) = (k - \frac{n-1}{2})\varepsilon_3; \frac{n+1}{2} \le k \le n-1,
$$

\n
$$
F_B(v_k, v_{k+1}) = (k - \frac{n-1}{2})\varepsilon_3; \frac{n+1}{2} \le k \le n-1.
$$

For each edge (v_k, v_{k+1}) the SVN bi-magic labeling are,

$$
\widetilde{Bm}_{T_1}(P_n) = T_A(v_k) + T_B(v_k, v_{k+1}) + T_A(v_{k+1}), 1 \le k \le \frac{n-1}{2},
$$

$$
\widetilde{Bm}_{T_1}(P_n) = (4n-1)\varepsilon_1.
$$

$$
\widetilde{Bm}_{T_2}(P_n) = T_A(v_k) + T_B(v_k, v_{k+1}) + T_A(v_{k+1}), \frac{n+1}{2} \le k \le n-1
$$

$$
\widetilde{Bm}_{T_2}(P_n) = (3n)\varepsilon_1.
$$

Similarly we can find,

$$
\widetilde{Bm}_{l_1}(P_n) = (4n - 1)\varepsilon_2, \ \widetilde{Bm}_{l_2}(P_n) = (3n)\varepsilon_2.
$$

$$
\widetilde{Bm}_{F_1}(P_n) = (4n - 1)\varepsilon_3, \ \widetilde{Bm}_{F_2}(P_n) = (3n)\varepsilon_3.
$$

400

Hence single valued neutrosophic bi-magic labeling of a even length path P_n are

 $\textit{http://www.iaeme.com/IMET/index.asp}$

editor@iaeme.com

$$
\widetilde{Bm}_1(P_n) = (\widetilde{Bm}_{T_1}(P_n), \widetilde{Bm}_{I_1}(P_n), \widetilde{Bm}_{F_1}(P_n))
$$
 and

$$
\widetilde{Bm}_2(P_n) = (\widetilde{Bm}_{T_2}(P_n), \widetilde{Bm}_{I_2}(P_n), \widetilde{Bm}_{F_2}(P_n)).
$$

Case - (2) When n is even,

$$
T_A(v_{2k}) = (2n - k)\varepsilon_1; 1 \le k \le \frac{n}{2},
$$

\n
$$
I_A(v_{2k}) = (2n - k)\varepsilon_2; 1 \le k \le \frac{n}{2},
$$

\n
$$
F_A(v_{2k}) = (2n - k)\varepsilon_3; 1 \le k \le \frac{n}{2}.
$$

\n
$$
T_A(v_{2k-1}) = \min\{T_A(v_{2i})|1 \le i \le \frac{n}{2}\} - k\varepsilon_1; 1 \le k \le \frac{n}{2},
$$

\n
$$
I_A(v_{2k-1}) = \min\{I_A(v_{2i})|1 \le i \le \frac{n}{2}\} - k\varepsilon_2; 1 \le k \le \frac{n}{2},
$$

\n
$$
F_A(v_{2k-1}) = \min\{F_A(v_{2i})|1 \le i \le \frac{n}{2}\} - k\varepsilon_3; 1 \le k \le \frac{n}{2}.
$$

\n
$$
T_B(v_k, v_{k+1}) = (\frac{n-2}{2} + k)\varepsilon_1; 1 \le k \le \frac{n}{2},
$$

\n
$$
I_B(v_k, v_{k+1}) = (\frac{n-2}{2} + k)\varepsilon_2; 1 \le k \le \frac{n}{2},
$$

\n
$$
F_B(v_k, v_{k+1}) = (\frac{n-2}{2} + k)\varepsilon_3; 1 \le k \le \frac{n}{2}.
$$

\n
$$
T_B(v_k, v_{k+1}) = (k - \frac{n}{2})\varepsilon_1; \frac{n}{2} + 1 \le k \le n - 1,
$$

\n
$$
I_B(v_k, v_{k+1}) = (k - \frac{n}{2})\varepsilon_2; \frac{n}{2} + 1 \le k \le n - 1,
$$

\n
$$
F_B(v_k, v_{k+1}) = (k - \frac{n}{2})\varepsilon_3; \frac{n}{2} + 1 \le k \le n - 1.
$$

For each edge (v_k, v_{k+1}) the SVN bi-magic labeling are,

$$
\widetilde{Bm}_{T_1}(P_n) = T_A(v_k) + T_B(v_k, v_{k+1}) + T_A(v_{k+1}), 1 \le k \le \frac{n}{2},
$$

$$
\widetilde{Bm}_{T_1}(P_n) = (4n - 2)\varepsilon_1.
$$

$$
\widetilde{Bm}_{T_2}(P_n) = T_A(v_k) + T_B(v_k, v_{k+1}) + T_A(v_{k+1}), \frac{n}{2} + 1 \le k \le n - 1,
$$

$$
\widetilde{Bm}_{T_2}(P_n) = (3n - 1)\varepsilon_1.
$$

Similarly we can find,

$$
\widetilde{Bm}_{I_1}(P_n) = (4n-2)\varepsilon_2, \widetilde{Bm}_{I_2}(P_n) = (3n-1)\varepsilon_2.
$$

$$
\widetilde{Bm}_{F_1}(P_n) = (4n-2)\varepsilon_3, \widetilde{Bm}_{F_2}(P_n) = (3n-1)\varepsilon_3.
$$

Hence single valued neutrosophic bi-magic labeling of a odd length path P_n are

$$
\widetilde{Bm}_1(P_n)=(\widetilde{Bm}_{T_1}(P_n),\widetilde{Bm}_{I_1}(P_n),\widetilde{Bm}_{F_1}(P_n))
$$

and
$$
\widetilde{Bm}_2(P_n) = (\widetilde{Bm}_{T_2}(P_n), \widetilde{Bm}_{I_2}(P_n), \widetilde{Bm}_{F_2}(P_n)).
$$

Example 3.2 Consider a SVN Path graph P_5 such that $V = \{v_1, v_2, v_3, v_4, v_5\}$ and

$$
E = \{ (v_1, v_2), (v_2, v_3), (v_3, v_4), (v_4, v_5) \}
$$

$$
\widetilde{Bm}_1(P_5) = (0.19, 0.019, 0.0019) \text{ and } \widetilde{Bm}_2(P_5) = (0.15, 0.015, 0.0015).
$$

Hence P_5 is a SVN Bi-Magic graph.

$$
\underbrace{v_1 \quad (0.03,003,0003)}_{(.07,0007,00007)} \quad \underbrace{v_2 \quad (0.04,004,0004)}_{(.09,009,0009)} \quad \underbrace{v_3 \quad (0.1,001,0001)}_{(.06,006,0006)} \quad \underbrace{v_4 \quad (0.2,002,0002)}_{(.08,008,0008)} \quad \underbrace{v_5 \quad (0.07,007,0007)}_{(.05,005,0005)}
$$

SVN Bi-Magic labeling of P_5

Example 3.3 Consider a SVN Path graph P_8 such that $V = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8\}$ and $E = \{ (v_1, v_2), (v_2, v_3), (v_3, v_4), (v_4, v_5), (v_5, v_6), (v_6, v_7), (v_7, v_8) \}.$

$$
\begin{array}{cccccccccc} .04,.004,.0004) & (.05,.005,.0005) & (.06,.006,.0006) & (.07,.007,.0007) & (.01,.001,.0001) & (.02,.002,.0002) & (.03,.003,.0003) \\ \hline \bullet_{v_1} & \bullet_{v_2} & \bullet_{v_3} & . & . & . & . & . \\ (11,011,.0011) & (.15,.015,.0015) & (.10,.010,.0010) & (.14,.014,.0014) & (.09,.009,.0009 & (.13,.013,.0013)) & (.08,.008,.0008) & (.12,.012,.0012) \\ \end{array}
$$

SVN Bi-Magic graph P_8

$$
\widetilde{Bm}_1(P_8) = (0.30, 0.030, 0.0030) \text{ and } \widetilde{Bm}_2(P_8) = (0.23, 0.023, 0.0023).
$$

Hence P_8 is a SVN Bi-Magic graph.

Theorem 3.2 For all $n \ge 3$, the cycle C_n is a single valued neutrosophic bi-magic labeling graph.

Proof. Let C_n be any cycle with $n \ge 3$. Then $v_1, v_2, v_3, \ldots, v_n$ and $v_1v_2, v_2v_3, \ldots, v_nv_1$ are vertices and edges of C_n . Let $l = min\{x : n < 3(10)^x, x = 0, 1, 2, ...\}$, $\varepsilon_1 = 10^{-(l+1)}$, $10^{-(l+2)}$ and $\varepsilon_3 = 10^{-(l+3)}$ where ε_1 , ε_2 and ε_3 are the set of truth, indeterminacy and falsity membership degree in single valued neutrosophic labeling.

The single valued neutrosophic vertex and edge labeling is defined as follows: Case - (1) When n is odd,

$$
T_A(v_{2k}) = (2n - k + 1)\varepsilon_1; 1 \le k \le \frac{n - 1}{2},
$$

\n
$$
I_A(v_{2k}) = (2n - k + 1)\varepsilon_2; 1 \le k \le \frac{n - 1}{2},
$$

\n
$$
F_A(v_{2k}) = (2n - k + 1)\varepsilon_3; 1 \le k \le \frac{n - 1}{2}.
$$

\n
$$
T_A(v_{2k-1}) = \min\{v_{2i} | 1 \le i \le \frac{n - 1}{2}\} - k\varepsilon_1,
$$

\n
$$
I_A(v_{2k-1}) = \min\{v_{2i} | 1 \le i \le \frac{n - 1}{2}\} - k\varepsilon_2,
$$

$$
F_A(v_{2k-1}) = min\{v_{2i} | 1 \le i \le \frac{n-1}{2}\} - k\varepsilon_3.
$$

\n
$$
T_B(v_k, v_{k+1}) = \left(\frac{n-1}{2} + k\right)\varepsilon_1; 1 \le k \le \frac{n+1}{2},
$$

\n
$$
I_B(v_k, v_{k+1}) = \left(\frac{n-1}{2} + k\right)\varepsilon_2; 1 \le k \le \frac{n+1}{2},
$$

\n
$$
F_B(v_k, v_{k+1}) = \left(\frac{n-1}{2} + k\right)\varepsilon_3; 1 \le k \le \frac{n+1}{2}.
$$

\n
$$
T_B(v_k, v_{k+1}) = (k - \frac{n+1}{2})\varepsilon_1; \frac{n+3}{2} \le k \le n-1,
$$

\n
$$
I_B(v_k, v_{k+1}) = (k - \frac{n+1}{2})\varepsilon_2; \frac{n+3}{2} \le k \le n-1,
$$

\n
$$
F_B(v_k, v_{k+1}) = (k - \frac{n+1}{2})\varepsilon_3; \frac{n+3}{2} \le k \le n-1.
$$

For each edge (v_k, v_{k+1}) the SVN bi-magic labeling are,

$$
\widetilde{Bm}_{T_1}(C_n) = T_A(v_k) + T_B(v_k, v_{k+1}) + T_A(v_{k+1}), 1 \le k \le \frac{n+1}{2},
$$

$$
\widetilde{Bm}_{T_1}(C_n) = (4n+1)\varepsilon_1.
$$

$$
\widetilde{Bm}_{T_2}(C_n) = T_A(v_k) + T_B(v_k, v_{k+1}) + T_A(v_{k+1}), \frac{n+3}{2} \le k \le n-1,
$$

$$
\widetilde{Bm}_{T_2}(C_n) = (3n+1)\varepsilon_1.
$$

Similarly we can find,

$$
\widetilde{Bm}_{I_1}(C_n) = (4n+1)\varepsilon_2, \widetilde{Bm}_{I_2}(C_n) = (3n+1)\varepsilon_2.
$$

$$
\widetilde{Bm}_{F_1}(C_n) = (4n+1)\varepsilon_3, \widetilde{Bm}_{F_2}(C_n) = (3n+1)\varepsilon_3.
$$

Hence single valued neutrosophic bi-magic labeling of a odd cycle C_n are

$$
\widetilde{Bm}_1(C_n) = (\widetilde{Bm}_{T_1}(C_n), \widetilde{Bm}_{I_1}(C_n), \widetilde{Bm}_{F_1}(C_n))
$$

and
$$
\widetilde{Bm}_2(C_n) = (\widetilde{Bm}_{T_2}(C_n), \widetilde{Bm}_{I_2}(C_n), \widetilde{Bm}_{F_2}(C_n)).
$$

Case - (2) When n is even,

$$
T_A(v_{2k-1}) = (2n - k + 1)\varepsilon_1; 1 \le k \le \frac{n}{2},
$$

\n
$$
I_A(v_{2k-1}) = (2n - k + 1)\varepsilon_2; 1 \le k \le \frac{n}{2},
$$

\n
$$
F_A(v_{2k-1}) = (2n - k + 1)\varepsilon_3; 1 \le k \le \frac{n}{2}.
$$

\n
$$
T_A(v_{2k}) = \min\{v_{2i-1} | 1 \le i \le \frac{n}{2}\} - k\varepsilon_1,
$$

V. Krishnaraj and R. Vikramaprasad

$$
I_A(v_{2k}) = min\{v_{2i-1} | 1 \le i \le \frac{n}{2}\} - k\varepsilon_2,
$$

\n
$$
F_A(v_{2k}) = min\{v_{2i-1} | 1 \le i \le \frac{n}{2}\} - k\varepsilon_3.
$$

\n
$$
T_B(v_1, v_n) = \varepsilon_1,
$$

\n
$$
I_B(v_1, v_n) = \varepsilon_2,
$$

\n
$$
F_B(v_1, v_n) = \varepsilon_3.
$$

\n
$$
T_B(v_k, v_{k+1}) = (\frac{n}{2} + k)\varepsilon_1; 1 \le k \le \frac{n}{2},
$$

\n
$$
I_B(v_k, v_{k+1}) = (\frac{n}{2} + k)\varepsilon_2; 1 \le k \le \frac{n}{2},
$$

\n
$$
F_B(v_k, v_{k+1}) = (\frac{n}{2} + k)\varepsilon_3; 1 \le k \le \frac{n}{2}.
$$

\n
$$
T_B(v_k, v_{k+1}) = (k + 1 - \frac{n}{2})\varepsilon_1; \frac{n+2}{2} \le k \le n - 1,
$$

\n
$$
I_B(v_k, v_{k+1}) = (k + 1 - \frac{n}{2})\varepsilon_2; \frac{n+2}{2} \le k \le n - 1,
$$

\n
$$
F_B(v_k, v_{k+1}) = (k + 1 - \frac{n}{2})\varepsilon_3; \frac{n+2}{2} \le k \le n - 1.
$$

For each edge (v_k, v_{k+1}) the SVN bi-magic labeling are,

$$
\widetilde{Bm}_{T_1}(C_n) = T_A(v_k) + T_B(v_k, v_{k+1}) + T_A(v_{k+1}), 1 \le k \le \frac{n}{2},
$$

$$
\widetilde{Bm}_{T_1}(C_n) = (4n+1)\varepsilon_1.
$$

$$
\widetilde{Bm}_{T_2}(C_n) = T_A(v_k) + T_B(v_k, v_{k+1}) + T_A(v_{k+1}), \frac{n+2}{2} \le k \le n-1,
$$

$$
\widetilde{Bm}_{T_2}(C_n) = (3n+2)\varepsilon_1.
$$

Similarly we can find,

$$
\widetilde{Bm}_{I_1}(C_n) = (4n+1)\varepsilon_2, \widetilde{Bm}_{I_2}(C_n) = (3n+2)\varepsilon_2.
$$

$$
\widetilde{Bm}_{F_1}(C_n) = (4n+1)\varepsilon_3, \widetilde{Bm}_{F_2}(C_n) = (3n+2)\varepsilon_3.
$$

Hence single valued neutrosophic bi-magic labeling of a even cycle C_n are

$$
\widetilde{Bm}_1(C_n) = (\widetilde{Bm}_{T_1}(C_n), \widetilde{Bm}_{I_1}(C_n), \widetilde{Bm}_{F_1}(C_n))
$$

and
$$
\widetilde{Bm}_2(C_n) = (\widetilde{Bm}_{T_2}(C_n), \widetilde{Bm}_{I_2}(C_n), \widetilde{Bm}_{F_2}(C_n)).
$$

Example 3.4 Consider a SVN cycle C_8 such that $V = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8\}$ and

$$
E = \{ (v_1, v_2), (v_2, v_3), (v_3, v_4), (v_4, v_5), (v_5, v_6), (v_6, v_7), (v_7, v_8), (v_8, v_1) \}
$$

404

 $\hbox{\tt http://www.iaeme.com/IMET/index.asp}$

editor@iaeme.com

 $\widetilde{Bm}_1(\mathcal{C}_8) = (0.33, 0.033, 0.0033)$ and $\widetilde{Bm}_2(\mathcal{C}_8) = (0.26, 0.026, 0.0026)$.

Hence C_8 is a SVN Bi-Magic graph.

SVN Bi-Magic cycle graph C_8

Theorem 3.3 For any $n \ge 2$, Star graph $S_{1,n}$ is a single valued neutrosophic bi-magic graph. *Proof.* Let $S_{1,n}$ be a star graph with $u, v_1, v_2, v_3, \ldots, v_n$ as vertices and $uv_1, uv_2, uv_3, \ldots, uv_n$ as edges. Let $x, x = 0, 1, 2, \ldots$, $\varepsilon_1 = 10^{-(l+1)}$, $\varepsilon_2 = 10^{-(l+2)}$ and $\varepsilon_3 = 10^{-(l+3)}$ where ε_1 , ε_2 and ε_3 are the set of truth, indeterminacy and falsity membership degree in single valued neutrosophic labeling. The single valued neutrosophic vertex and edge labeling is defined as follows: Case - (1) When n is odd, $T_A(u) = (2n + 1)\varepsilon_1,$ $I(u) = (2n + 1)c$

$$
I_A(u) = (2n + 1)\varepsilon_2,
$$

\n
$$
F_A(u) = (2n + 1)\varepsilon_3.
$$

\n
$$
T_A(v_k) = T_A(u) - k\varepsilon_1; 1 \le k \le n,
$$

\n
$$
I_A(v_k) = I_A(u) - k\varepsilon_2; 1 \le k \le n,
$$

\n
$$
F_A(v_k) = F_A(u) - k\varepsilon_3; 1 \le k \le n.
$$

\n
$$
T_B(u, v_k) = \left(\frac{n+1}{2} + k - 1\right)\varepsilon_1; 1 \le k \le \frac{n+1}{2},
$$

\n
$$
I_B(u, v_k) = \left(\frac{n+1}{2} + k - 1\right)\varepsilon_2; 1 \le k \le \frac{n+1}{2},
$$

\n
$$
F_B(u, v_k) = \left(\frac{n+1}{2} + k - 1\right)\varepsilon_3; 1 \le k \le \frac{n+1}{2}.
$$

\n
$$
T_B(u, v_k) = (k - \frac{n+1}{2})\varepsilon_1; \frac{n+3}{2} \le k \le n,
$$

$$
I_B(u, v_k) = (k - \frac{n+1}{2})\varepsilon_2; \frac{n+3}{2} \le k \le n,
$$

$$
F_B(u, v_k) = (k - \frac{n+1}{2})\varepsilon_3; \frac{n+3}{2} \le k \le n.
$$

For each edge (u, v_k) the SVN bi-magic labeling are,

$$
\widetilde{Bm}_{T_1}(S_{1,n}) = T_A(u) + T_B(u, v_k) + T_A(v_k), 1 \le k \le \frac{n+1}{2},
$$

$$
\widetilde{Bm}_{T_1}(S_{1,n}) = \left(\frac{9n+3}{2}\right)\varepsilon_1.
$$

$$
\widetilde{Bm}_{T_2}(S_{1,n}) = T_A(u) + T_B(u, v_k) + T_A(v_k), \frac{n+3}{2} \le k \le n,
$$

$$
\widetilde{Bm}_{T_2}(S_{1,n}) = \left(\frac{7n+3}{2}\right)\varepsilon_1.
$$

Similarly we can find,

$$
\widetilde{Bm}_{I_1}(S_{1,n}) = \left(\frac{9n+3}{2}\right)\varepsilon_2, \widetilde{Bm}_{I_2}(S_{1,n}) = \left(\frac{7n+3}{2}\right)\varepsilon_2.
$$

$$
\widetilde{Bm}_{F_1}(S_{1,n}) = \left(\frac{9n+3}{2}\right)\varepsilon_3, \widetilde{Bm}_{F_2}(S_{1,n}) = \left(\frac{7n+3}{2}\right)\varepsilon_3.
$$

Hence single valued neutrosophic bi-magic labeling of a star graph $S_{1,n}$ are

$$
\widetilde{Bm}_1(S_{1,n}) = (\widetilde{Bm}_{T_1}(S_{1,n}), \widetilde{Bm}_{I_1}(S_{1,n}), \widetilde{Bm}_{F_1}(S_{1,n})) \text{ and}
$$

$$
\widetilde{Bm}_2(S_{1,n}) = (\widetilde{Bm}_{T_2}(S_{1,n}), \widetilde{Bm}_{I_2}(S_{1,n}), \widetilde{Bm}_{F_2}(S_{1,n})).
$$

Case - (2) When n is even,

$$
T_A(u) = (2n + 1)\varepsilon_1,
$$

\n
$$
I_A(u) = (2n + 1)\varepsilon_2,
$$

\n
$$
F_A(u) = (2n + 1)\varepsilon_3.
$$

\n
$$
T_A(v_k) = T_A(u) - k\varepsilon_1; 1 \le k \le n,
$$

\n
$$
I_A(v_k) = I_A(u) - k\varepsilon_2; 1 \le k \le n,
$$

\n
$$
F_A(v_k) = F_A(u) - k\varepsilon_3; 1 \le k \le n.
$$

\n
$$
T_B(u, v_k) = (\frac{n}{2} + k)\varepsilon_1; 1 \le k \le \frac{n}{2},
$$

\n
$$
I_B(u, v_k) = (\frac{n}{2} + k)\varepsilon_2; 1 \le k \le \frac{n}{2},
$$

\n
$$
F_B(u, v_k) = (\frac{n}{2} + k)\varepsilon_3; 1 \le k \le \frac{n}{2}.
$$

\n
$$
T_B(u, v_k) = (k - \frac{n}{2})\varepsilon_1; \frac{n + 2}{2} \le k \le n,
$$

http://www.iaeme.com/IJMET/index.asp (406) editor@iaeme.com

$$
I_B(u, v_k) = (k - \frac{n}{2})\varepsilon_2; \frac{n+2}{2} \le k \le n,
$$

$$
F_B(u, v_k) = (k - \frac{n}{2})\varepsilon_3; \frac{n+2}{2} \le k \le n.
$$

For each edge (u, v_k) the SVN bi-magic labeling are,

$$
\widetilde{Bm}_{T_1}(S_{1,n}) = T_A(u) + T_B(u, v_k) + T_A(v_k), 1 \le k \le \frac{n}{2},
$$

$$
\widetilde{Bm}_{T_1}(S_{1,n}) = \left(\frac{9n+4}{2}\right)\varepsilon_1.
$$

$$
\widetilde{Bm}_{T_2}(S_{1,n}) = T_A(u) + T_B(u, v_k) + T_A(v_k), \frac{n+2}{2} \le k \le n,
$$

$$
\widetilde{Bm}_{T_2}(S_{1,n}) = \left(\frac{7n+4}{2}\right)\varepsilon_1.
$$

Similarly we can find,

$$
\widetilde{Bm}_{I_1}(S_{1,n}) = \left(\frac{9n+4}{2}\right)\varepsilon_2, \widetilde{Bm}_{I_2}(S_{1,n}) = \left(\frac{7n+4}{2}\right)\varepsilon_2.
$$

$$
\widetilde{Bm}_{F_1}(S_{1,n}) = \left(\frac{9n+4}{2}\right)\varepsilon_3, \widetilde{Bm}_{F_2}(S_{1,n}) = \left(\frac{7n+4}{2}\right)\varepsilon_3.
$$

Hence single valued neutrosophic bi-magic labeling of a star graph $S_{1,n}$ are

$$
\widetilde{Bm}_1(S_{1,n}) = (\widetilde{Bm}_{T_1}(S_{1,n}), \widetilde{Bm}_{I_1}(S_{1,n}), \widetilde{Bm}_{F_1}(S_{1,n}))
$$
 and

$$
\widetilde{Bm}_2(S_{1,n}) = (\widetilde{Bm}_{T_2}(S_{1,n}), \widetilde{Bm}_{I_2}(S_{1,n}), \widetilde{Bm}_{F_2}(S_{1,n})).
$$

Example 3.5 Consider a SVN star $S_{1,9}$ such that $V = \{u, v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9\}$ and

- $E = \{(u, v_1), (u, v_2), (u, v_3), (u, v_4), (u, v_5), (u, v_6), (u, v_7), (u, v_8), (u, v_9)\}.$
	- $\widetilde{Bm}_1(S_{1,9}) = (0.42, 0.042, 0.0042)$ and $\widetilde{Bm}_2(S_{1,9}) = (0.33, 0.033, 0.0033)$.

Hence $S_{1,9}$ is a SVN Bi-Magic graph.

SVN Bi-Magic star graph $S_{1,9}$

4. CONCLUSIONS

In this paper, the concepts of Bi-Magic labeling on single valued neutrosophic path, cycle and star graphs have been discussed. In future we can extend this Bi-Magic labeling on some single valued neutrosophic special graphs.

REFERENCES

- [1] Akram. M and Shahzadi. G, Operations on single-valued neutrosophic graphs, Journal of Uncertain System, 11(2), (2017) 1–26.
- [2] Atanassov. K, Intuitionistic fuzzy sets, Fuzzy sets and Systems, 20, (1986) 87–96.
- [3] Atanassov K.T. and Shannon. A, A first step to a theory of Intuitionistic fuzzy graph, Proceedings of the first workshop on Fuzzy based Expert system, D. Lakav, ed.,Sofia Sept 28-30, (1994) 59–61.
- [4] Broumi, S., Talea, M., Bakali. A and Smarandache. F, Single Valued Neutrosophic Graphs: Degree, Order and Size, IEEE International Conference on Fuzzy Systems,(2016) 2444–2451.
- [5] Dhavaseelan, R., Vikramaprasad, R., and Krishnaraj. V, Certain types of neutrosophic graphs, International Journal of Mathematical Sciences and Applications, 5(2), (2015) 333–339.
- [6] Euler,L. Solutio Problematis and Geometriam Situs Pertinentis, Commentarii Academiae Scientarum Imperialis Petropolitanae, 8, (1736) 128–140.
- [7] Kotzig. A and Rosa. A, "Magic valuations of finite graphs," Canadian Mathematical Bulletin, vol. 13, (1970) 451–461.
- [8] Nagoor Gani. A, Muhammad Akram and Rajalaxmi. D (a) Subahashini, Novel Properties of Fuzzy Labeling Graphs, Hindawi Publishing Corporation Journal of Mathematics Volume 2014,Article ID 375135, 6 pages.
- [9] Rosenfeld. A, "Fuzzy graphs," in Fuzzy Sets and Their Applications, (L. A. Zadeh, K. S. Fu, and M. Shimura, Eds.,) pp. 77–95, Academic Press, New York, NY, USA, 1975.
- [10] Smarandache. F, Neutrosophy and Neutrosophic Logic, First International Conference on Neutrosophy, Neutrosophic Logic, Set, Probability and Statistics University of New Mexico, Gallup, NM 87301, USA (2002).
- [11] Zadeh. L.A, Fuzzy sets, Information Control 8 (1965) 338–353.