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Abstract: Failure mode and effects analysis is an effective and powerful risk evaluation technique in
the field of risk management, and it has been extensively used in various industries for identifying
and decreasing known and potential failure modes in systems, processes, products, and services.
Traditionally, a risk priority number is applied to capture the ranking order of failure modes in failure
mode and effects analysis. However, this method has several drawbacks and deficiencies, which need
to be improved for enhancing its application capability. For instance, this method ignores the
consensus-reaching process and the correlations among the experts’ preferences. Therefore, the aim
of this study was to present a new risk priority method to determine the risk priority of failure modes
under an interval-valued Pythagorean fuzzy environment, which combines the extended Geometric
Bonferroni mean operator, a consensus-reaching process, and an improved Multi-Attributive Border
Approximation area Comparison approach. Finally, a case study concerning product development
is described to demonstrate the feasibility and effectiveness of the proposed method. The results
show that the risk priority of failure modes obtained by the proposed method is more reasonable in
practical application compared with other failure mode and effects analysis methods.

Keywords: failure mode and effects analysis; preference interdependence; consensus-reaching
process; geometric Bonferroni mean; multi-attribute border approximation area comparison

1. Introduction

Failure mode and effects analysis (FMEA) is a very effective and useful engineering technique
used for accident prevention and risk analysis, and it is applied to identify and eliminate known
or potential failures to enhance the reliability and safety of a complex system [1,2]. The major
usefulness of FMEA is that it intends to provide the relative information required for risk management
decision-making and risk analysis [1,3]. As a formal system analysis approach, the technique of FMEA
was originally proposed in the 1960s, and was intended to satisfy the aerospace industry’s apparent
safety and reliability requirements [4]. Since then, the FMEA method has been successfully used in
various industries as a simple and powerful tool to enhance the safety and reliability of products,
systems, and processes in industry, such as the aerospace [5], energy [6], heath care and hospital [7],
and manufacturing industries [8].

In the method of traditional FMEA, the risk priority of failure modes is determined by the risk
priority number (RPN) that is calculated by the multiplication of the three risk factors, namely, Severity
(S), Occurrence (O), and Detection (D). The RPN value is obtained by the equation RPN = S×O× D,
where S is the seriousness of effects, while O and D are the probability of occurrence and likelihood
of being undetected, respectively. The conventional RPN method has been widely used in various
fields because it is quite straight forward. However, it has been criticized extensively for a variety
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of limitations. Numerous alternative methods have been presented in the literature to handle some
of these drawbacks [2], which could explain why focusing on these shortcomings can improve the
performance of traditional FMEA. However, many practical application cases have suggested that the
ranking results determined by these alternative methods are not reliable and suffer from drawbacks in
some situations. The main reasons are the assumption that the experts’ preferences are independent and
the team of experts have reached a consensus before aggregating the experts’ preferences. Therefore,
it is worth studying the problem of how to determine effectively the risk priority of failure modes
without considering these two assumptions.

It is very important for an FMEA team to adopt a suitable aggregation method to aggregate
the experts’ preferences into a collective evaluation matrix before determining the failure modes
ranking. Many aggregation methods that assume that experts’ preferences are independent have been
applied to aggregate the experts’ preferences. In practice, the FMEA team experts come from different
departments or industries, and their subjective preferences, which are often influenced by social, power,
knowledge, and other factors, usually indicate some interdependent characteristics. On the one hand,
the geometric Bonferroni mean (GBM) initially proposed by Xia et al. [9] is an efficient operator to deal
with the aggregation of interdependent arguments. The GBM operator has a prominent characteristic
that can easily capture the interrelationships among input arguments [9]. Therefore, it is significant to
integrate the experts’ preferences into a comprehensive preference by adopting the GBM operator that
depicts the interdependent relationships between the experts’ preferences before determining the risk
priority of failure modes.

On the other hand, group-based FMEA risk assessment is essentially a multi-criteria group
decision-making problem [10]. Many different approaches based on group decision-making,
which assume that FMEA team experts have reached a consensus before ranking the failure modes,
have been presented by researchers and practitioners to improve the reliability of the conventional
FMEA method. In reality, group decision-making consists of two processes: the consensus-reaching
process and the selection process [11,12]. Clearly, it is preferable that decision-makers reach an
acceptable group consensus before applying the selection process. However, the current approach of
FMEA fails to consider the consensus-reaching process, which may lead to some FMEA team experts
not accepting the ranking results of failure modes. Consequently, it is imperative to incorporate a
consensus-reaching process in FMEA risk assessment.

According to the analysis above, the ranking results of failure modes will inevitably be influenced
by the consensus-reaching process and the interdependence of the experts’ preferences. This study
proposes an integrated approach for determining the risk priority of failure modes, which considers the
interdependence of experts’ preferences and introduces the consensus-reaching process into the FMEA
process. The remainder of this paper is organized as follows. Section 2 reviews briefly some relevant
literature. Based on the GBM operator, the interval-valued Pythagorean fuzzy GBM (IVPFGBM)
operator and the interval-valued Pythagorean fuzzy weighted GBM (IVPFWGBM) operator are defined
in Section 3. A new FMEA method for the risk evaluation of failure modes under the interval-valued
Pythagorean fuzzy environment is presented in Section 4. In Section 5, the effectiveness and feasibility
of the proposed approach are illustrated by a practical example. Finally, Section 6 provides directions
for future work and a brief conclusion.

2. Literature Review

In the last decade, many researchers have proposed a number of risk priority approaches
to failure modes to improve the performance of the traditional FMEA method. In what follows,
these approaches are reviewed from two perspectives, namely, aggregation experts’ preferences and
failure mode ranking.
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2.1. Aggregation Experts’Preferences

Generally, FMEA is teamwork-based and should be regarded as a group decision process [13].
It is imperative to use a suitable aggregation operator to aggregate the experts’ preferences to form a
group decision preference before obtaining the risk priority of failure modes.

In the literature, various aggregation operators have been employed to aggregate the experts’
preferences to construct a collective assessment matrix. For example, many researchers often utilize
the arithmetic averaging operator, which assumes that the importance of each FMEA team expert
is equal, to fuse the experts’ preferences [14–16]. In reality, FMEA team experts come from different
departments and industries, possess different backgrounds and expertise, and thus have different
importance. The arithmetic averaging operator is highly simple but it does not reflect the important
difference of experts.

To handle this problem, the weighted averaging (WA) operator and its extended form have been
employed by many researchers to form a group decision preference in FMEA risk assessment [17–21].
In addition, Wang et al. [22] presented a hybrid FMEA risk evaluation model for assessing the risk
of failure modes under an interval-valued intuitionistic fuzzy environment, which utilizes an order
weighted averaging (OWA) operator to aggregate the experts’ preferences.

The WA operator and the OWA operator have their own advantages and disadvantages,
which consider the importance of the input arguments themselves and their location, respectively.
To synthesize the advantages of the WA and OWA operators, Xu and Da [23] proposed a hybrid
weighted averaging (HWA) operator, which can reflect both the given importance and the ordered
position of the input arguments. Subsequently, Liu et al. [24] presented an interval 2-tuple hybrid
weighted averaging operator based on the HWA operator, and applied it to construct a collective
evaluation matrix in FMEA risk assessment. Nevertheless, the above aggregation methods do not
cover the interdependent relationships between the experts’ preferences; they are only suitable to
situations in which the input arguments are independent.

The GBM operator has been focused on by many researchers in recent years because of its ability
to capture the interdependent relationships between the input arguments. For instance, Gong et al. [25]
developed two new trapezoidal interval type-2 fuzzy GBM operators by extending the GBM operator
to a trapezoidal interval type-2 fuzzy environment. Wei [26] proposed some picture 2-tuple linguistic
GBM operators, and applied these to handle multiple attribute decision-making problems. Wang [27]
presented a triangular fuzzy weighted Einstein GBM operator, and employed it to evaluate the
psycholinguistic teaching effect. Liu and Li [28] proposed the normal neutrosophic GBM operator and
the normal neutrosophic weighted GBM operator, and also investigate their properties and special
cases. In addition, the GBM operator has also been introduced into other fuzzy environments to fuse
various fuzzy information [29–32], such as Pythagorean fuzzy sets, interval-valued intuitionistic fuzzy
sets, Pythagorean 2-tuple linguistic sets, and linguistic neutrosophic sets.

2.2. Failure Mode Ranking

The risk assessment of failure modes in FMEA is a typical multiple-criteria decision-making
(MCDM) problem [33], which needs an MCDM technique to obtain the risk priority of failure modes.
To obtain a reasonable result, many MCDM methods, which have been extensively used in various
fields, have been utilized to determine the risk priority of failure modes. These methods can be divided
into two categories according to the independence and the interdependence of failure modes.

For the first category, a multi-expert MCDM approach was introduced into the FMEA method
by Franceschini and Galetto [34] to identify the risk priority of failure modes without requiring
an arbitrary numerical conversion. In their approach, risk factors were defined as the evaluation
criteria, whereas failure modes were interpreted as the alternatives. Since then, improvements in
FMEA approaches based on various MCDM technologies have been proposed by many researchers.
For example, Wang et al. [22] developed a new risk priority method that utilized the complex
proportional assessment (COPRAS) method to determine the ranking of failure modes. Liu et al. [24]
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presented a new FMEA approach under the interval 2-tuple linguistic environment and used
the Elimination and choice expressing reality (ELECTRE) method to rank the risk priority of
failure modes. For reflecting the psychological character of decision-makers, Huang et al. [21]
presented a new method for FMEA, which combines the linguistic distribution evaluation and
TODIM (an acronym in Portuguese of interactive and multi criteria decision-making) approaches.
In addition, the technique for order preference by similarity to ideal solution (TOPSIS) [3,18], VIKOR
(VIsekriterijumskaoptimizacijaiKOmpromisnoResenje) [16,35–37], PROMETHEE (Preference ranking
organization methods for enrichment evaluations) [33], and MULTIMOORA (MOORA plus Full
Multiplicative Form) [20,38] methods have also been introduced by many researchers into FMEA to
determine the risk priority of failure modes.

On the other hand, many methods have been presented to reflect the effects of the
interdependent relationships between the failure modes on the risk priority of failure modes.
For instance, Xu et al. [39] developed a risk assessment method of FMEA based on a fuzzy-logic-based
approach and an expert system to explore the direct and indirect relationships among various
failure modes. Subsequently, the decision-making trial and evaluation laboratory (DEMATEL),
which possesses the capacity to identify and analyse the interdependencies between the failure modes,
was used by Seyed-Hosseini et al. [40] to rank the risk priority of failure modes. Motivated by the
advantages of the TOPSIS method, Chang et al. [41] presented a new method that integrates TOPSIS
and DEMATEL to determine the risk priority of failure modes. Liu et al. [35] developed a hybrid
MCDM method, which integrates VIKOR, DEMATEL, and an analytic hierarchy process method,
to rank the risk of the failure modes identified in FMEA. Liu et al. [42] proposed a novel risk assessment
method of failure modes that combines fuzzy weighted averaging with the DEMATEL approach.

The Multi-attributive border approximation area comparison (MABAC) approach is a novel
MCDM technique originally developed by Pamučar andĆirović [43] that is a useful and reliable tool to
solve MCDM problems. The main advantages of this method are summarized as follows [44]: (1) The
MABAC method has a simple calculation process and can obtain a stable result; (2) This method
considers the potential values of gains and losses; and (3) It can be incorporated with other methods.
Accordingly, this approach has been applied to various fields, including material selection [45], hospital
management [44], the location of wind farms [46], and strategic project portfolio selection [47]. Hence,
based on its primary characteristic, the MABAC method is modified and applied to obtain the ranking
of failure modes.

As a matter of fact, FMEA risk assessment is a group decision behavior that relates to the
agreement degree of FMEA team experts and the interdependent relationship between the experts’
preferences. However, the existing methods fail to consider these two situations. This study proposes
a hybrid risk priority model based on the extended geometric Bonferroni mean, a consensus-reaching
process, and an improved MABAC method, where the ranking of failure modes can be determined.
In this model, on the one hand we define an extended GBM operator to integrate the experts’
preferences, and on the other hand we construct a consensus-reaching process to measure the
agreement degree of team experts. In addition, linguistic terms expressed in interval-valued
Pythagorean fuzzy numbers are used to depict the experts’ preferences, and the improved MABAC
method is employed to determine the risk priority of failure modes. The contribution of this paper
is that the extended GBM operator is utilized to fuse the experts’ preferences, which can reflect the
interdependence of experts’ preferences, and the consensus-reaching process is introduced into the
FMEA to improve the experts’ acceptance of the results.

3. IVPFGBM and IVPFWGBM Operators

In this section, based on the basic concepts of interval-valued Pythagorean fuzzy sets
(IVPFS), the GBM operator is extended to the IVPFS environment to define the IVPFGBM and
IVPFWGBM operators.
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3.1. Basic Concepts of IVPFS

Definition 1. [48] Let R = {r1, r2, · · ·, rn} be an ordinary finite nonempty set and an IVPFS in R is defined as

P = {< r, µP(r), νP(r) > r ∈ R}, (1)

where µP(r) = [µ
P
(r), µP(r)], νP(r) = [νP(r), νP(r)], µP(r) ⊆ [0, 1], and νP(r) ⊆ [0, 1] are interval values

and µ
P
(r) ∈ [0, 1], µP(r) ∈ [0, 1], νP(r) ∈ [0, 1], and νP(r) ∈ [0, 1] satisfy µ2

P(r) + ν2
P(r) ≤ 1.

For every r ∈ R, we designate πP(r) = [πP(r), πP(r)] as the degree of indeterminacy of the

IVPFS, where πP(r) =
√

1− µ2
P(r)− ν2

P(r) and πP(r) =
√

1− µ2
P
(r)− ν2

P(r). For convenience,

P = ([µ
P

, µP], [νP, νP]) is called an interval-valued Pythagorean fuzzy number (IVPFN),
where µ2

P + ν2
P ≤ 1. Notability, the IVPFS is reduced into PFS when µ

P
= µP and νP = νP.

Definition 2. [48] Let P = ([µ
P

, µP], [νP, νP]), P1 = ([µ
P1

, µP1
], [νP1

, νP1 ]), and P2 = ([µ
P2

, µP2
], [νP2

, νP2 ])

be three IVPFNs, and λ > 0. Then, the basic operational laws are defined as follows:

(1) P1 ⊕ P2 =

([√
µ2

P1
+ µ2

P2
− µ2

P1
µ2

P2
,
√

µ2
P1
+ µ2

P2
− µ2

P1
µ2

P2

]
,
[
νP1

νP2
, νP1 νP2

])
;

(2) P1 ⊗ P2 =
([

µ
P1

µ
P2

, µP1
µP2

]
,
[√

ν2
P1
+ ν2

P2
− ν2

P1
ν2

P2
,
√

ν2
P1
+ ν2

P2
− ν2

P1
ν2

P2

])
;

(3) λP =

([√
1− (1− µ2

P
)λ,
√

1− (1− µ2
P)

λ
]

,
[
(νP)

λ, (νP)
λ
])

; and

(4) Pλ =

([
(µ

P
)λ, (µ

P
)λ
]
,
[√

1− (1− ν2
P)

λ,
√

1− (1− ν2
P)

])
.

Definition 3. [48] Suppose P1 = ([µ
P1

, µP1
], [νP1

, νP1 ]) and P2 = ([µ
P2

, µP2
], [νP2

, νP2 ]) are two IVPFNs,
then the distance between P1 and P2 is defined as:

d(P1, P2) =
1
4

(∣∣∣µ2
P1
− µ2

P2

∣∣∣+ ∣∣∣µ2
P1
− µ2

P2

∣∣∣+ ∣∣∣ν2
P1
− ν2

P2

∣∣∣+ ∣∣∣ν2
P1
− ν2

P2

∣∣∣+ ∣∣∣π2
P1
− π2

P2

∣∣∣+ ∣∣∣π2
P1
− π2

P2

∣∣∣). (2)

Definition 4. [49] Let P = ([µ
P

, µP], [νP, νP]) be an IVPFN. Then, the score and accuracy functions of P are
defined, respectively, as follows

s(P) =
1
2

(
µ2

P
+ µ2

P − ν2
P − ν2

P

)
, (3)

a(P) =
1
2

(
µ2

P
+ µ2

P + ν2
P + ν2

P

)
. (4)

According to Equations (3) and (4), the order relation for two IVPFNs [49] is defined as follows:

(1) If s(P1) > s(P2), then P1 is superior to P2, P1 > P2;
(2) If s(P1) = s(P2), then

a. If a(P1) > a(P2), then P1 is superior to P2, P1 > P2;
b. If a(P1) = a(P2), then P1 is equivalent to P2, P1 = P2.

3.2. Some Interval-Valued Pythagorean Fuzzy GBM Operators

Inspired by the advantages of the GBM operator, the GBM operator will be extended to the
IVPFN environment to aggregate the experts’ preferences, which can reflect the interdependence of
experts’ preferences.
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Definition 5. [9] Let ai(i = 1, 2, · · ·, n) be a collection of non-negative numbers such that for all i, x ≥ 0,
y ≥ 0, and not have the same value of 0 simultaneously. If

GBMx,y(a1, a2, · · ·, an) =
1

x + y
n
⊗

i, j = 1
i 6= j

(xai + yaj)
1

n(n−1) , (5)

then the GBMx,y is called the GBM operator.

Definition 6. Let pi = ([µ
Pi

, µPi
], [νPi

, νPi ]), (i = 1, 2, · · ·, n) be a collection of IVPFNs. Let x, y ≥ 0, and x,
y do not take the value 0 simultaneously. If

IVPFGBMx,y(p1, p2, · · ·, pn) =
1

x + y


n
⊗

i, j = 1
i 6= j

(xpi ⊕ ypj)
1

n(n−1)

, (6)

then the IVPFGBMx,y is called an IVPFGBM operator.

Theorem 1. Let x, y ≥ 0, and x, y do not take the value 0 simultaneously. Let pi = ([µ
Pi

, µPi
], [νPi

, νPi ]),

(i = 1, 2, · · ·, n) be a collection of IVPFNs, then the aggregated value by using the IVPFGBM operator is also
an IVPFN, and

IVPFGBMx,y(p1, p2, · · ·, pn)

=





√√√√√√√√√√√1−

1−
n
∏

i, j = 1
i 6= j

(
1− (1− µ2

Pi
)x(1− µ2

Pj
)y
) 1

n(n−1)



1
x+y

,

√√√√√√√√√√√1−

1−
n
∏

i, j = 1
i 6= j

(
1− (1− µ2

Pi
)

x
(1− µ2

Pj
)

y
) 1

n(n−1)



1
x+y


,



√√√√√√√√√√√

1−
n
∏

i, j = 1
i 6= j

(1− ν2x
Pi

ν
2y
Pj
)

1
n(n−1)



1
x+y

,

√√√√√√√√√√√

1−
n
∏

i, j = 1
i 6= j

(1− ν2x
Pi

ν
2y
Pj
)

1
n(n−1)



1
x+y





. (7)

For the proof of Theorem 1, see Appendix A.

Definition 7. Let x, y ≥ 0 and x, y do not take the value 0 simultaneously. Let pi = ([µ
Pi

, µPi
], [νPi

, νPi ]),

(i = 1, 2, · · ·, n) be a collection of IVPFNs, and w = (w1, w2, · · ·, wn)
T be the weight vector of pi, where wi

indicates the importance degree of pi, satisfying wi ∈ [0, 1] and ∑n
i=1 wi = 1. If

IVPFWGBMx,y(p1, p2, · · ·, pn) =
1

x + y


n
⊗

i, j = 1
i 6= j

(
xpwi

i ⊕ yp
wj
j

) 1
n(n−1)

, (8)

then the IVPFWGBMx,y(p1, p2, · · ·, pn) is called the IVPFWGBM operator.

Theorem 2. Let x, y ≥ 0 and x, y do not take the value 0 simultaneously. Let pi = ([µ
Pi

, µPi
], [νPi

, νPi ]),

(i = 1, 2, · · ·, n) be a collection of IVPFNs, and w = (w1, w2, · · ·, wn)
T be the weight vector of pi, where wi
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indicates the importance degree of pi, satisfying wi ∈ [0, 1] and ∑n
i=1 wi = 1. Then, the aggregated value by

using the IVPFWGBM operator is also an IVPFN, and

IVPFWGBMx,y(p1, p2, · · ·, pn)

=





√√√√√√√√√√√1−

1−
n
∏

i, j = 1
i 6= j

(
1− (1− µ

2wi
Pi

)
x
(1− µ

2wj
Pj

)
y
) 1

n(n−1)



1
x+y

,

√√√√√√√√√√√1−

1−
n
∏

i, j = 1
i 6= j

(
1− (1− µ

2wi
Pi

)
x
(1− µ

2wj
Pj

)
y
) 1

n(n−1)



1
x+y


,



√√√√√√√√√√√

1−
n
∏

i, j = 1
i 6= j

(
1− (1− (1− ν2

Pi
)

wi )
x
(1− (1− ν2

Pj
)

wj)
y) 1

n(n−1)



1
x+y

,

√√√√√√√√√√√

1−
n
∏

i, j = 1
i 6= j

(
1− (1− (1− ν2x

Pi
)

wi )
x
(1− (1− ν

2y
Pj
)

wj
)

y) 1
n(n−1)



1
x+y





. (9)

For the proof of Theorem 2, see Appendix B.

4. The Proposed Method

In this section, a method that integrates the IVPFWGBM operator, a consensus-reaching process,
and the improved MABAC approach is proposed to rank the failure modes. The flow diagram of the
proposed method is shown in Figure 1.

The presented approach consists of four parts: failure mode evaluation, consensus-reaching
process, risk factors weight, and failure modes ranking. The relative steps of the proposed method are
described as follows.

4.1. Failure Modes Evaluation

Let an FMEA team consist of l cross-functional experts Ek (k = 1, 2, ..., l), which come from various
departments and domains, and they are responsible for ranking m potential failure modes FMi (i = 1,
2, ..., m) and each failure mode is evaluated on n risk factors RFj (j = 1, 2, ..., n). The weight vector λk

(k = 1, 2, ..., l), which satisfies λk ∈ [0, 1] and ∑l
k=1 λk = 1, is allocated to experts to reflect their relative

importance. Let wj (j=1, 2, ..., n) be the weight vector of risk factors that reflects the relative importance
of risk factors, and satisfies wj ∈ [0, 1] and ∑n

j=1 wj = 1.

Step 1: Construct linguistic evaluation matrix.

FMEA team experts prefer to employ the linguistic variables in Table 1 to assess the importance of
risk factors, and use the linguistic variables in Table 2 to evaluate the failure modes’ risk with respect
to each risk factor because of the uncertainty and fuzziness of human judgments and the complexity of
the assessment objectives. Let the linguistic evaluation matrix of failure modes evaluation provided by
Ek be denoted as Lk = (lk

ij)m×n
, and the linguistic assessment matrix of the relative importance of a

risk factor given by Ek be denoted as Zk = (zk
j )1×n

.
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Table 1. Linguistic terms for rating the weights of risk factors [49].

Linguistic Variables Abbreviation IVPFNs

Very high VH ([0.8000,0.9000],[0.1000,0.2000])
High H ([0.7000,0.8000],[0.2000,0.3000])

Medium M ([0.5000,0.6000],[0.4000,0.5000])
Low L ([0.3000,0.4000],[0.6000,0.7000])

Very low VL ([0.1000,0.2000],[0.8000,0.9000])

Table 2. Linguistic terms for rating the failure modes [49].

LinguisticVariables Abbreviation IVPFNs

Extremely high EH ([0.9000,1.0000],[0.0000,0.1000])
Very high VH ([0.8000,0.9000],[0.1000,0.2000])

High H ([0.7000,0.8000],[0.2000,0.3000])
Medium high MH ([0.6000,0.7000],[0.3000,0.4000])

Medium M ([0.5000,0.6000],[0.4000,0.5000])
Medium low ML ([0.4000,0.5000],[0.5000,0.6000])

Low L ([0.3000,0.4000],[0.6000,0.7000])
Very low VL ([0.2000,0.3000],[0.7000,0.8000])

Extremely low EL ([0.1000,0.2000],[0.8000,0.9000])

4.2. Consensus-ReachingProcess

To increase the agreement degree of FMEA team experts, a consensus-reaching process is
introduced into the risk assessment process of FMEA. According to the evaluation information
provided by experts, we will define the consensus degree on four levels, which include the consensus
degree on elements of failure modes, the consensus degree on failure modes, the consensus degree on
the matrix, and the consensus degree on team experts.

Definition 8. Let Ak be the assessment matrix provided by the k expert and C be the comprehensive assessment
matrix. The consensus degree between assessment matrix Ak and comprehensive assessment matrix C on the
element of failure modes FMi under risk factors RFj is given as follows:

CDEk
ij(Ak, C) =

1
2
(1 + grc(ak

ij, cij)), (10)

where grc(ak
ij, cij) is the gray relational coefficient between ak

ij and cij. The CDEk
ij(Ak, C) is called the consensus

degree on elements of failure modes. Given Ak and C, the elaborated expression of CDEk
ij(Ak, C) is

CDEk
ij(Ak, C) =

1
2

(
1 +

min min min|s(ak
ij)− s(cij)|+ ρ max max max|s(ak

ij)− s(cij)|
|s(ak

ij)− s(cij)|+ ρ max max max|s(ak
ij)− s(cij)|

)
, (11)

where ρ is the identification coefficient, ρ ∈ [0, 1]. The smaller the value of the identification coefficient, the larger
the range of the gray relational coefficient, but it will not affect the final priority of failure modes [50]. Generally,
ρ = 0.5 [51].

Definition 9. Let Ak be the assessment matrix provided by the k expert and C be the comprehensive assessment
matrix. The consensus degree between assessment matrix Ak and comprehensive assessment matrix C on the
failure modes FMi is defined as:

CDFk
i (Ak, C) =

1
n∑n

j=1 CDEij(Ak, C), (12)
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then CDFk
i (Ak, C) is called the consensus degree on failure modes.

Definition 10. Let Ak be the assessment matrix provided by the k expert and C be the comprehensive assessment
matrix. The consensus degree between assessment matrix Ak and comprehensive assessment matrix C on the
matrix Ak is calculated as

CDMk(Ak, C) =
1

mn∑m
i=1 ∑n

j=1 CDEij(Ak, C), (13)

then CDMk(Ak, C) is called the consensus degree on decision-makers.

Definition 11. Let Ak be the assessment matrix provided by the k expert and C be the comprehensive assessment
matrix. The consensus degree on the team experts is determined as

CDT(Ak, C) = ∑L
k=1 λkCDMk(Ak, C). (14)

Then, we will construct a consensus model.

Step 2: Construct a consensus-reaching process.
Step 2.1: Let γ = 1, ζ and round, where ζ and round represents the threshold value and the

maximum number of cycles, respectively.
Step 2.2: Convert all linguistic variables in the matrix Lk into the IVPFN according to Table 2 to

construct an IVPFN evaluation matrix Ak = (ak
ij)m×n

.

Step 2.3: Construct the comprehensive matrix C = (cij)m×n by the internal-valued Pythagorean
weighted averaging (IVPFWA) operator [49] to calculate the consensus degree, where

cij = IVPFWA(a1
ij, a2

ij, · · ·, aL
ij)

=

([√
1−

L
∏

k=1
(1− (µk

Pij
)

2
)

λk ,

√
1−

L
∏

k=1
(1− (µk

Pij
)

2
)

λk

]
,
[

L
∏

k=1
(νk

Pij
)

λk ,
L
∏

k=1
(νk

Pij
)

λk ,
])

.
(15)

Step 2.4: Compute the consensus degree according to Equations (11)–(14).
Step 2.5: If CDT(Ak, C) ≥ ζ or γ > round, then go to step 2.8, otherwise go to next step.
Step 2.6: Identify the elements of failure modes for which the consensus degree is lower than the

threshold value ζ by carrying out the follow steps:

(1) Identify the experts for which the consensus degree is lower than threshold value ζ:

ADS =
{

k|CDMk < ζ
}

. (16)

(2) For the determined experts, the failure modes with CDFk
i lower than ζ are identified:

AFS =
{
(k, i)|k ∈ ADS ∩ CDFk

i < ζ
}

. (17)

(3) Finally, the elements of failure modes that need to be modified are:

AES =
{
(k, i, j)|(k, i) ∈ AFS ∩ CDEk

ij < ζ
}

. (18)

Step 2.7: Generate modification suggestions.
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If (k, i, j) ∈ AES, the personalized suggestions for Ek are generated as follows: you are suggested
to change your evaluation linguistic term lk

ij for failure modes FMi under risk factor RFj to the value

l̂k
ij, where

l̂k
ij =

{
liguistic variable level minus one i f s(ak

ij) ≥ s(cij) and lk
ij is not liguistic variable of the lowest level

liguistic variable level plus one i f s(ak
ij) < s(cij) and lk

ij is not liguistic variable of the highest level
, (19)

then let γ = γ + 1, go back to step 2.2.

Step 2.8: Output the adjusted IVPFN evaluation matrix.

4.3. Risk Factors Weight

Entropy was developed by Shannon and weaver [52] and is well-suited to reflect the relative
importance of the criteria that represent the intrinsic information for assessing issues [14]. Therefore,
the entropy method has been used by many researchers for calculating the objective weight of criteria
in an MCDM problem [14,36]. In order to reflect the importance of risk factors, we will define an
interval-valued Pythagorean fuzzy entropy (IVPFE), which is parallel to interval-valued intuitionistic
fuzzy entropy [53], to compute the weight of risk factors.

Definition 12. Let P be an IVPFS defined in the universe of discourse U. The IVPFE is given as follows:

E(P) =
1
n

n

∑
i=1

2−
∣∣∣µ2

Pi
− ν2

Pi

∣∣∣− ∣∣∣µ2
Pi
− ν2

Pi

∣∣∣+ π2
Pi
+ π2

Pi

2 +
∣∣∣µ2

Pi
− ν2

Pi

∣∣∣+ ∣∣∣µ2
Pi
− ν2

Pi

∣∣∣+ π2
Pi
+ π2

Pi

. (20)

Step 3: Aggregate the experts’ preferences into a comprehensive evaluation matrix.

In order to depict the interdependent relationships between experts’ preferences, we can aggregate
all individual evaluation information into a collective evaluation matrix D = (dij)m × n by the
IVPFWGBM operator, where dij = IVPFWGBMx,y

λ (a1
ij, a2

ij, · · ·, aL
ij).

Step 4: Calculate the combination weights of risk factors.
Step4.1: Determine the subjective weights of risk factors.

According to Table 1, we can convert all linguistic variables elements in matrix Zk into the IVPFN
to construct matrix Hk = (hk

j )1×n
. Subsequently, the IVPFWGBM operator is applied to aggregate

all individual valuations for risk factors to construct a collective evaluation matrix H = (hj)1×n,
where hj = IVPFWGBMx,y

λ (h1
j , h2

j , · · ·, hL
j ).

Then, the normalized subjective weight of each risk factor is computed as follows:

ws
j =

s(hj)

∑n
j=1 s(hj)

, (j = 1, 2, · · ·, n). (21)

Step 4.2: Compute the objective weights of risk factors using the entropy method.

E(dij) =

2−
∣∣∣∣µ2

Pij
− ν2

Pij

∣∣∣∣− ∣∣∣µ2
Pij
− ν2

Pij

∣∣∣+ π2
Pij

+ π2
Pij

2 +
∣∣∣∣µ2

Pij
− ν2

Pij

∣∣∣∣+ ∣∣∣µ2
Pij
− ν2

Pij

∣∣∣+ π2
Pij

+ π2
Pij

, (i = 1, 2, · · ·, m; j = 1, 2, · · ·, n). (22)
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Then, the normalized objective weight of each risk factor can be calculated by applying the
following formula.

wo
j =

∑m
i=1 (1− E(dij))

∑n
j=1 ∑m

i=1 (1− E(dij))
, (i = 1, 2, · · ·, m; j = 1, 2, · · ·, n). (23)

Step 4.3: Obtain the integration weights of risk factors:

wj = σws
j + (1− σ)wo

j , (i = 1, 2, · · ·, m; j = 1, 2, · · ·, n), (24)

where parameter σ is the relative importance coefficient of the subjective weight and satisfies 0 ≤ σ ≤ 1.
Generally, the subjective weight and objective weight are assumed to be equally important, namely,
σ = 0.5.

4.4. Failure Modes Ranking

As a particularly pragmatic and reliable tool, the MABAC approach is applied to solve
MCDM problems because it can obtain a stable solution. However, this method fails to capture
the interdependence between failure modes. Therefore, an improved MABAC method is utilized to
determine the ranking order of failure modes in which the border approximation area is calculated by
the IVPFGBM operator instead of the geometry mean operator.

Step 5: Compute the weighted group decision matrix Y.

The weighted decision matrix Y = (yij)m×n can be determined by the following formula:

yij = wjdij =

([√
1− (1− µ2

Pij
)wj ,

√
1− (1− µ2

Pij
)

wj

]
,
[
(νPij

)wj , (νPij)
wj
])

, (25)

where yij is a weighted IVPFN and dij are the elements of the collective evaluation matrix D.

Step 6: Determine the border approximation area vector G.

The border approximation area for each risk factor is computed by applying the IVPFGBM
operator as:

gj = IVPFGBM(y1j, y2j, · · ·, ymj) = ([µ
Pj

, µPj
], [νPj

, νPj ]). (26)

Then, the border approximation area vector G can be constructed in the following format
G = (g1, g2, · · ·, gn).

Step 7: Construct the distance matrix X.

The distance of the failure modes from the border approximation area (See Figure 2) is calculated
by Equation (2) to construct the distance matrix X = (xij)m×n, where

xij =

{
d(yij, gj) i f s

(
yij
)
≥ s
(

gj
)

−d(yij, gj) i f s
(
yij
)
< s
(

gj
) . (27)

Step 8: Determine the ranking of failure modes.

All failure modes will be included in approximation areas that consist of an upper approximation
area G+, a border approximation area G, and a lower approximation area G−. The ideal failure mode
(FM+) is located in the upper approximation area, while the anti-ideal failure mode (FM−) is located in
the lower approximation area (See Figure 2). Consequently, in order to select the ideal failure mode,
it is necessary to have as many risk factors as possible belonging to the upper approximation area.
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We can obtain the closeness coefficient θi for each failure mode by computing the sum of the row
elements of the distance matrix X.

θi = ∑n
j=1 xij, i = 1, 2, · · ·, m. (28)

The risk priority of failure modes is obtained according to the decreasing order of the
closeness coefficient.Algorithms 2018, 11, x 13 of 24 
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5. Case Study

In this section, the development of new product—a horizontal directional drilling (HDD)
machine [17,54]—is selected as an illustrative example to demonstrate the applicability of the proposed
method. As an important piece of equipment in trenchless construction, the HDD machine is a
particularly complex product that contains multiple sub-systems, such as an engine system, a hydraulic
system, and an electric system. The conceptual model of the HDD machine is shown in Figure 3.

In what follows, we use the proposed approach to identify the key failure modes in the product
development of the HDD machine. The steps are summarized as follows.
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5.1. Implement the Proposed Method

An FMEA team consisting of five cross-functional experts Ek (k = 1,2,3,4,5) from different
departments is formed to identify the most important failure modes; we suppose that the relative
weights of the five team experts are assigned as 0.15, 0.2, 0.25, 0.1, and 0.3 according to their different
professional knowledge and expertise. The FMEA team identifies nine potential failure modes through
brainstorming, namely, gear abrasion of dynamic head, action invalidation of force motor, non-normal
friction of pedrail, leak of hydraulic system, abrasion of feed mechanism, unexpected halt of engine,
cavitation erosion of hydraulic pump, failures of hydraulic system induced by hydraulic oil pollution,
and nozzle choking of aiguilles.

Step1: Construct linguistic assessment matrix.

In a practical application, the five experts use the linguistic variables to evaluate the nine failure
modes on each risk factor and the relative importance of risk factors; the evaluation results are shown
in Table 3.

Table 3. Evaluation information on the nine failure modes provided by the FMEA team experts.

Failure Modes
Severity(S) Occurrence(O) Detection(D)

E1 E2 E3 E4 E5 E1 E2 E3 E4 E5 E1 E2 E3 E4 E5

FM1 ML MH ML M M M M M MH M M L ML ML ML
FM2 MH MH H M H M MH H MH MH MH MH ML MH M
FM3 MH M H MH M ML ML L M M H H H MH MH
FM4 M MH ML M M L M L M M VL ML VL L VL
FM5 M H MH MH M M ML M M M L ML VL L VL
FM6 H H MH MH H H MH M MH M L M L EL L
FM7 MH MH H MH MH VH MH VH MH H MH M MH M M
FM8 EH H EH H VH ML M L ML ML ML ML L L L
FM9 ML M ML ML M M M ML M M M M M ML ML

Factor weight H VH H VH H H M H M M VL L L M L

Step 2: Construct a consensus-reaching process.
Step 2.1: Generally, the threshold value and the maximum number of cycles are determined by

the team experts according to the actual situation. In this case study, let γ = 1, ζ = 0.86, and round = 3.
Step 2.2: Convert all linguistic variables in each linguistic evaluation matrix L1, L2, L3, L4, and L5

into the IVPFNs according to Table 2 to construct assessment matrices A1, A2, A3, A4, and A5.
Step 2.3: The collective matrix C is aggregated by the IVPFWA operator to compute the

consensus degree.

C =



([0.4896, 0.5092], [0.4129, 0.5144])
([0.6528, 0.7545], [0.2470, 0.3492])
([0.5877, 0.6902], [0.3130, 0.4162])
([0.5025, 0.6031], [0.3933, 0.5005])
([0.5858, 0.6879], [0.3149, 0.4175])
([0.6692, 0.7703], [0.2305, 0.3318])
([0.6287, 0.7297], [0.2711, 0.3722])
([0.8310, 1.0000], [0.0000, 0.1712])
([0.4542, 0.5542], [0.4472, 0.5477])

([0.5117, 0.6119], [0.3887, 0.4890])
([0.6171, 0.7186], [0.2830, 0.3849])
([0.4254, 0.5252], [0.4786, 0.5797])
([0.4355, 0.5352], [0.4704, 0.5720])
([0.4825, 0.5826], [0.4183, 0.5186])
([0.5701, 0.6720], [0.3307, 0.4331])
([0.7246, 0.8310], [0.1712, 0.2781])
([0.4028, 0.5025], [0.5005, 0.6012])
([0.4780, 0.5780], [0.4229, 0.5233])

([0.4010, 0.5008], [0.5015, 0.6021])
([0.5307, 0.6315], [0.3716, 0.4733])
([0.6645, 0.7656], [0.2352, 0.3366])
([0.2651, 0.3626], [0.6444, 0.7453])
([0.2788, 0.3767], [0.6297, 0.7305])
([0.3422, 0.4402], [0.5694, 0.6711])
([0.5442, 0.6446], [0.3656, 0.4573])
([0.3393, 0.4389], [0.5629, 0.6632])
([0.4639, 0.5640], [0.4373, 0.5378])


Step 2.4: Calculate the consensus degree.

Based on Equations (11) and (12), the CDF value is determined as follows.
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CDF =



0.8381 0.8288 0.9147 0.9143 0.9715
0.8035 0.8659 0.7972 0.8232 0.8994
0.9204 0.8646 0.7959 0.8604 0.8046
0.8562 0.7725 0.7806 0.8943 0.8834
0.8775 0.7633 0.8981 0.9301 0.8455
0.8420 0.8354 0.8397 0.7942 0.8675
0.8508 0.8364 0.8207 0.8364 0.8921
0.9051 0.7694 0.8459 0.8626 0.9007
0.8830 0.8877 0.8433 0.8644 0.8690


.

Then, according to Equation (13), the CDM value is calculated as follows.

CDM = (0.8641, 0.8249, 0.8374, 0.8644, 0.8815).

Finally, using Equation (14), the CDT value is obtained as CDT = 0.8548.

Step 2.5: Due to CDT < ζ, go to next step.
Step 2.6: Based on Equations (16)–(18), the elements of failure modes that need to be modified are

determined to be:

AES = {(2,1,1), (2,1,3), (2,4,1), (2,4,2), (2,4,3), (2,5,1), (2,5,2), (2,5,3), (2,6,3), (2,7,2), (2,8,1), (2,8,2),
(2,8,3), (3,2,2), (3,2,3), (3,3,1), (3,3,2), (3,4,1), (3,4,2), (3,4,3), (3,6,1), (3,6,2), (3,7,1), (3,7,2), (3,7,3), (3,8,2),
(3,9,1), (3,9,2)}.

Step 2.7: According to Equation (19), the personalized suggestions for experts are obtained.
The modified assessment information on the nine failure modes is shown in Table 4. Then, let γ = 2,
go back to step 2.2.

Next is the second round of the consensus-reaching process.

Step 2.2: Convert all linguistic variables in each linguistic evaluation matrix L2 and L3 into the
IVPFNs according to Table 2 to construct assessment matrices A2 and A3.

Table 4. Assessment information on the nine failure modes by FMEA team experts.

Failure Modes
Severity(S) Occurrence(O) Detection(D)

E1 E2 E3 E4 E5 E1 E2 E3 E4 E5 E1 E2 E3 E4 E5

FM1 ML M ML M M M M M MH M M ML ML ML ML
FM2 MH MH H M H M MH MH MH MH MH MH M MH M
FM3 MH M MH MH M ML ML ML M M H H H MH MH
FM4 M M M M M L ML ML M M VL L L L VL
FM5 M MH MH MH M M M M M M L L VL L VL
FM6 H H H MH H H MH MH MH M L ML L EL L
FM7 MH MH MH MH MH VH H H MH H MH M M M M
FM8 EH VH EH H VH ML ML ML ML ML ML L L L L
FM9 ML M M ML M M M M M M M M M ML ML

Step 2.3: Based on the IVPFWA operator, the comprehensive matrix C is obtained as follows:

C =



([0.4639, 0.5640], [0.4373, 0.5378])
([0.6528, 0.7545], [0.2470, 0.3492])
([0.5542, 0.6547], [0.3464, 0.4472])
([0.5000, 0.6000], [0.4000, 0.5000])
([0.5592, 0.6596], [0.3415, 0.4423])
([0.6916, 0.7920], [0.2083, 0.3088])
([0.6000, 0.7000], [0.3000, 0.4000])
([0.8434, 1.0000], [0.0000, 0.1578])
([0.4780, 0.5780], [0.4229, 0.5233])

([0.5117, 0.6119], [0.3887, 0.4890])
([0.5870, 0.6873], [0.3132, 0.4136])
([0.4441, 0.5442], [0.4573, 0.5578])
([0.4330, 0.5329], [0.4700, 0.5708])
([0.5000, 0.6000], [0.4000, 0.5000])
([0.5927, 0.6941], [0.3077, 0.4096])
([0.7105, 0.8132], [0.1877, 0.2905])
([0.4000, 0.5000], [0.5000, 0.6000])
([0.5000, 0.6000], [0.4000, 0.5000])

([0.4173, 0.5173], [0.4835, 0.5838])
([0.5492, 0.6497], [0.3514, 0.4522])
([0.6645, 0.7656], [0.2352, 0.3366])
([0.2604, 0.3594], [0.6431, 0.7434])
([0.2507, 0.3496], [0.6531, 0.7533])
([0.3112, 0.4096], [0.5954, 0.6960])
([0.5173, 0.6176], [0.3831, 0.4835])
([0.3176, 0.4173], [0.5838, 0.6840])
([0.4639, 0.5640], [0.4373, 0.5378])
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Step 2.4 Compute the consensus degree.

Based on Equations (11) and (12), the CDF value is determined as follows.

CDF =



0.8456 0.9162 0.8967 0.8560 0.8919
0.8120 0.8695 0.8756 0.8266 0.8860
0.8570 0.8511 0.8570 0.8252 0.8193
0.8469 0.9129 0.9129 0.8849 0.8428
0.8834 0.8965 0.8998 0.8965 0.8238
0.8929 0.8973 0.9668 0.7994 0.8608
0.8489 0.9594 0.9594 0.8897 0.8989
0.8896 0.9087 0.9410 0.8729 0.8401
0.8847 0.9042 0.9263 0.8653 0.8917


.

Then, according to Equation (13), the CDM value is calculated as follows.

CDM = (0.8623, 0.9042, 0.9150, 0.8574, 0.8939).

Finally, using Equation (14), the CDT value is obtained as CDT = 0.8929.

Step 2.5: Due to CDT > ζ, go to step 2.8.
Step 2.8: Output the adjusted IVPFN assessment matrix.
Step 3: The comprehensive evaluation matrix D is obtained by considering the weights of experts

and applying the IVPFWGBM operator. The result is as follows.

D =



([0.8594, 0.8928], [0.2048, 0.2573])
([0.9154, 0.9422], [0.1199, 0.1669])
([0.8912, 0.9203], [0.1591, 0.2082])
([0.8740, 0.9052], [0.1835, 0.2343])
([0.8923, 0.9213], [0.1571, 0.2061])
([0.9293, 0.9543], [0.0956, 0.1418])
([0.9052, 0.9327], [0.1356, 0.1835])
([0.9640, 0.9867], [0.0403, 0.0801])
([0.8629, 0.8960], [0.1988, 0.2509])

([0.8781, 0.9088], [0.1784, 0.2287])
([0.9000, 0.9281], [0.1441, 0.1925])
([0.8517, 0.8863], [0.2153, 0.2687])
([0.8441, 0.8802], [0.2255, 0.2802])
([0.8740, 0.9052], [0.1835, 0.2343])
([0.9028, 0.9305], [0.1421, 0.1901])
([0.9337, 0.9583], [0.0898, 0.1353])
([0.8374, 0.8740], [0.2343, 0.2894])
([0.8740, 0.9052], [0.1835, 0.2343])

([0.8441, 0.8796], [0.2264, 0.2806])
([0.8904, 0.9195], [0.1608, 0.2100])
([0.9226, 0.9483], [0.1081, 0.1547])
([0.7693, 0.8192], [0.3166, 0.3836])
([0.7667, 0.8169], [0.3210, 0.3885])
([0.7822, 0.8318], [0.2980, 0.3650])
([0.8796, 0.9101], [0.1762, 0.2264])
([0.8011, 0.8441], [0.2806, 0.3413])
([0.8606, 0.8937], [0.2037, 0.2560])


.

Step 4: Calculate the combination weights of risk factors.
Step 4.1: Determine the subjective weights of risk factors.

The collective evaluation matrix H of risk factors is constructed by aggregating all individual
assessments for risk factors. Subsequently, the normalized subjective weights of risk factors based on
Equation (21) are determined to be ws

j = (0.4021, 0.3602, 0.2378)T.

Step 4.2: Compute the objective weights of risk factors by the entropy method.

Based on the comprehensive evaluation matrix D, the entropy value of each failure mode with
regard to each risk factor can be calculated by applying Equation (22). Then, the objective weights for
each risk factor can be derived as wo

j = (0.3568, 0.3390, 0.3042)T by utilizing Equation (23).

Step 4.3: Obtain the combination weights of risk factors.

Based on the subjective weights and objective weights of risk factors, the combination weights of
risk factors are calculated as wj = (0.3795, 0.3496, 0.2709)T according to Equation (24).

Step 5: Compute the weighted group decision matrix Y.

The weighted decision matrix can be calculated by Equation (25) as follows.
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Y =



([0.6317, 0.6739], [0.5479, 0.5974])
([0.7062, 0.7509], [0.4471, 0.5069])
([0.6717, 0.7138], [0.4978, 0.5513])
([0.6494, 0.6912], [0.5255, 0.5765])
([0.6732, 0.7154], [0.4954, 0.5492])
([0.7284, 0.7748], [0.4102, 0.4765])
([0.6912, 0.7340], [0.4684, 0.5255])
([0.7964, 0.8648], [0.2957, 0.3837])
([0.6359, 0.6782], [0.5416, 0.5917])

([0.6346, 0.6762], [0.5474, 0.5970])
([0.6636, 0.7063], [0.5080, 0.5621])
([0.6030, 0.6541], [0.5846, 0.6317])
([0.5944, 0.6373], [0.5941, 0.6409])
([0.6295, 0.6711], [0.5528, 0.6021])
([0.6676, 0.7103], [0.5055, 0.5597])
([0.7157, 0.7638], [0.4306, 0.4969])
([0.5870, 0.6295], [0.6021, 0.6482])
([0.6295, 0.6711], [0.5528, 0.6021])

([0.5353, 0.5757], [0.6687, 0.7088])
([0.5892, 0.6301], [0.6095, 0.6552])
([0.6349, 0.6804], [0.5473, 0.6032])
([0.4643, 0.5100], [0.7323, 0.7714])
([0.4620, 0.5078], [0.7350, 0.7740])
([0.4756, 0.5225], [0.7204, 0.7611])
([0.5757, 0.6161], [0.6248, 0.6687])
([0.4927, 0.5353], [0.7088, 0.7473])
([0.5533, 0.5935], [0.6498, 0.6914])



Step 6: Determine the border approximation area vector G.

According to Equation (26), the border approximation area vector G can be obtained as

G = (([0.6881, 0.7345], [0.4752, 0.5323]), ([0.6367, 0.6796], [0.5442, 0.5951]), ([0.5323, 0.5757], [0.6696, 0.7120])).

Step7: Construct the distance matrix X.

The distance of failure modes from the border approximation area is computed by Equation (27);
the distance matrix is determined as

X =



−0.0799 −0.0041 0.0038
0.0261 0.0382 0.0772
−0.0261 −0.0456 0.1459
−0.0567 −0.0567 −0.0880
−0.0240 −0.0105 −0.0920
0.0591 0.0416 −0.0715
0.0071 0.1161 0.0589
0.1846 −0.0662 −0.0528
−0.0743 −0.0105 0.0275


Step 8: Determine the ranking of failure modes.

The closeness coefficient θi can be calculated by Equation (28) as follows.

θ = (−0.0801 0.1415 0.0742 −0.2014 −0.1266 0.0293 0.1821 0.0657 −0.0573)

The risk priority of failure modes is ranked as FM7 > FM2 > FM3 > FM8 > FM6 > FM9 > FM1 >
FM5 > FM4 by the decreasing order of the closeness coefficient θi.

5.2. Sensitivity Analysis

In the above case study, we set the consensus threshold value ζ = 0.86 in the application of the
consensus-reaching process. Generally, the consensus threshold value plays an important role in the
consensus-reaching process. Hence, a sensitivity analysis by setting different ζ values is performed
to validate the performance of the ranking order of failure modes. The relative results are shown in
Table 5.

From Table 5, it can be observed that the scores of the nine failure modes have changed under the
different values of ζ. The ranking order of some failure modes is not the same, but the FM2, FM4, FM6,
and FM7 failure modes have the same ranking. In addition, the values of n(E) and n(FM) increase with
an increasing ζ, which illustrates that there are more evaluation values that need to be modified in the
first round when the value of ζ is increasing. The above analysis indicates that the value of ζ has a
great influence on the ranking of failure modes and the numbers of modifications. Therefore, in a real
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application, determining a suitable value of ζ is of significance and benefit to obtain a suitable ranking
of failure modes and simplify the proposed method.

Table 5. Ranking of different threshold values ζ.

Failure Modes
ı = 0.84 ı = 0.86 ı = 0.88 ı = 0.90

Scores Ranking Scores Ranking Scores Ranking Scores Ranking

FM1 −0.0604 6 −0.0801 7 −0.0723 7 −0.0544 6
FM2 0.1437 2 0.1415 2 0.1276 2 −0.1181 2
FM3 0.0782 3 0.0742 3 0.0744 4 0.0622 3
FM4 −0.2074 9 −0.2014 9 −0.1944 9 −0.1995 9
FM5 −0.1129 8 −0.1266 8 −0.1304 8 −0.0853 7
FM6 0.0106 5 0.0293 5 0.0422 5 0.0375 5
FM7 0.2140 1 0.1821 1 0.1781 1 0.1900 1
FM8 0.0563 4 0.0657 4 0.0856 3 0.0618 4
FM9 −0.0800 7 −0.0573 6 −0.0570 6 −0.0989 8
n(E) 0 2 4 5

n(FM) 0 13 27 38

n(E) is the number of modified expert evaluations, and n(FM) is the number of modified failure modes.

5.3. Comparisons and Discussion

To further demonstrate the effectiveness of the proposed method, we use the result to compare
some similar approaches, including the RPN method, the fuzzy TOPSIS [14], the fuzzy VIKOR [36],
the fuzzy MULTIMOOR [20], and the IFHWED-based FMEA [54] in this section. Table 6 shows the
ranking results of all nine failure modes obtained by implementing the six approaches.

Table 6. Ranking of failure modes of different approaches.

Failure Modes
RPN Method Proposed Method

[14] [36] [20] [54]
S O D RPN Ranking Round 1 Round 2

FM1 6 6 5 180 7 6 7 6 7 7 7
FM2 8 7 6 336 1 2 2 3 2 3 2
FM3 7 5 8 280 3 3 3 4 5 4 5
FM4 6 5 4 120 9 9 9 9 8 9 9
FM5 7 6 4 168 8 8 8 7 6 6 6
FM6 8 7 4 224 4 5 5 5 3 5 4
FM7 7 8 6 336 1 1 1 2 1 2 1
FM8 10 5 4 200 6 4 4 1 4 1 3
FM9 6 6 6 216 5 7 6 8 9 8 8

The crisp values of S, O, and D are obtained by transforming the elements of matrix C (Step2.3) by the equation
c(cij) = ceil(10 × (s(cij) + 1)/2), where ceil(x) is a function that returns the smallest integer ≥ x. RPN: risk
priority number.

The ranking order of failure modes obtained by the proposed method is partly different from the
ones according to the RPN value, but FM7 possesses the highest risk in the two methods. The FM2 and
FM7 failure modes have the same risk in the RPN method, which indicates that different values of S,
O, and D may produce the same value of RPN. In this situation, it is difficult to distinguish the risk
between FM2 and FM7 for a decision-maker. However, the risk of FM2 is lower than that of FM7 in the
proposed method. Therefore, this drawback of the RPN approach can be solved easily by using the
proposed method.

The priority of the nine failure modes produced by the fuzzy TOPSIS method is significantly
different from the ones determined by the proposed approach. The ranking order obtained by the
fuzzy TOPSIS method may be irrational because it does not take into account the interdependent
relationships between the experts’ preferences. However, the process of risk assessment based on
the FMEA team is considered as a group decision process, and there are many different types of
correlations between experts. In addition, each FMEA team expert was considered to have equal
importance in the fuzzy TOPSIS method. In reality, FMEA team experts usually come from various
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departments, and have different professional backgrounds, practical experiences, and knowledge
structures. Therefore, they should be assigned different importance during risk assessments.

We can see that there are some differences between the priority of failure modes determined
by the proposed method and the fuzzy VIKOR approach. The ranking results determined by the
fuzzy VIKOR method may be unreasonable because the consensus-reaching process and the experts’
judgments dependencies were not considered in the risk assessment. For example, FM9 was the least
important failure mode using the fuzzy VIKOR method, whereas it ranked sixth using the proposed
method. Interestingly, FM6 ranked before FM3 with the fuzzy VIKOR approach, however, the latter is
more important in reality. Therefore, FM3 was merited a higher priority in comparison with FM6 in our
proposed method. Furthermore, the solution obtained through the fuzzy VIKOR method compared
with the proposed approach is a set of compromise solutions.

Apart from FM1, FM4, and FM6, the ranking orders of the failure modes obtained by the fuzzy
MULTIMOORA approach are totally different from those determined through the proposed method.
These inconsistent ranking results may be expressed by the fact that the subjective weights of risk
factors were not taken into account in the fuzzy MULTIMOORA method, which may result in irrational
rankings of failure modes. For example, FM8 is given to be a more important failure mode than FM7

according to the fuzzy MULTIMOORA approach. However, in the proposed approach, it ranks only
the fourth position; FM7 has the top risk priority, which also can be validated by the IFHWED-based
and the fuzzy VIKOR methods. In addition, the consensus-reaching process is not considered in the
fuzzy MULTIMOORA approach, which may be another reason that leads to the biased ranking results.

As shown in Table 5, the failure modes for FM3, FM5, FM6, FM8, and FM9 have different
ranking orders between the proposed approach and IFHWED-based method. Interestingly, the sorting
positions of FM5 and FM9 have been interchanged in the proposed method comparing with the
IFHWED-based approach. There are many different types of interdependent relationships between
the experts’ preferences in the real world because of the mutual influences of FMEA team experts.
However, the interdependent relationships among experts’ preferences are not considered in the
IFHWED-based method, which may be the reason that results in the different ranking results.
In addition, the IFHWED-based approach also fails to take into account the consensus-reaching process.

Through the comparative analysis above, we can conclude that the risk evaluation results
determined by the proposed approach are more reasonable and accurate than those obtained by
the fuzzy TOPSIS, fuzzy VIKOR, fuzzy MULTIMOORA, and IFHWED-based methods. Compared
with the listed approaches, the advantages of the proposed method are summarized as follows:

(1) The IVPFWGBM operator was used to aggregate the experts’ preferences into group assessments,
which sufficiently reflect the interdependent relationships between the experts’ preferences.

(2) Compared with the other improved FMEA approach, the ranking results obtained by the
proposed method are more acceptable because the level of agreement between decision-maker and
group is considered through introducing a consensus-reaching process into the risk assessment
process of FMEA.

(3) The ranking results of failure modes obtained by the proposed approach are more reasonable
when compared with the other improved FMEA methods; the reason is that the improved
MABAC method adopted the IVPFGBM operator to construct the border approximation area
matrix, which considers the direct and indirect relationships among failure modes.

6. Conclusions

In this paper, a new FMEA method based on a consensus reaching process, the IVPFWGBM
operator, and a modified MABAC approach was developed to obtain the risk priority of failure modes
under an interval-valued Pythagorean fuzzy environment. In the proposed method, all assessment
information of failure modes with respect to risk factors was provided by the FMEA team experts in
the form of linguistic variables expressed by the IVPFNs. Then, the consensus-reaching process was
applied to achieve an acceptable level of consensus before aggregating the evaluation information
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of FMEA team experts. Subsequently, the group decision matrix was constructed by aggregating
the experts’ preferences information using the IVPFWGBM operator. Finally, the improved MABAC
approach was used to rank the risk priority of failure modes. In addition, the effectiveness and
feasibility of the proposed approach was demonstrated with its application to the development of
a new product, namely, a horizontal directional drilling machine; the risk priority of failure modes
obtained by the proposed method is more reasonable, reliable, and practical than those produced by
other improved FMEA approaches.

Inevitably, there are some limitations to the proposed approach. The proposed approach does
not consider the psychological behavior of the FMEA team experts and also neglects the correlations
between risk factors, both of which may result in unreasonable ranking results. Hence, in further
research, the following directions deserve to be focused on. Firstly, an analytic network process can be
introduced into the developed method to reflect the interdependent relationships between risk factors.
Secondly, extending the proposed approach by considering the psychological behavior of the experts
in the risk evaluation process is recommended. In addition, the method proposed in the paper can be
utilized for other engineering fields.
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Appendix

The proof of Theorem 1.

Proof. The operational laws (3) and (1) depicted in Definition 2 yield
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Based on these equations above, the operational laws (4) and (2) in Definition 2 yield

(
xpi ⊕ ypj

) 1
n(n−1) ⊗

(
xpj ⊕ ypi

) 1
n(n−1)

=




√(

1− (1− µ2
Pi
)x(1− µ2

Pj
)y
) 1

n(n−1)
(

1− (1− µ2
Pj
)x(1− µ2

Pi
)y
) 1

n(n−1)
,√(

1− (1− µ2
Pi
)

x
(1− µ2

Pj
)

y
) 1

n(n−1)
(

1− (1− µ2
Pj
)

x
(1− µ2

Pi
)

y
) 1

n(n−1)

,

[√
1− (1− ν2x

Pi
ν

2y
Pj
)

1
n(n−1) (1− ν2x

Pj
ν

2y
Pi
)

1
n(n−1) ,

√
1− (1− ν2x

Pi
ν

2y
Pj
)

1
n(n−1) (1− ν2x

Pj
ν

2y
Pi
)

1
n(n−1)

]


(A3)

Assume that for s and k, s 6= k. Similarly,
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Then, Equation (A5) is suitable for any situation. Hence,
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According to Equation (A6) and operational laws (3) in Definition2,
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which completes the proof of Theorem1. �

Appendix

The proof of Theorem 2.

Proof. The operational law (4) in Definition 2 yields
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In the Definition 6, we replace pi and pj with pwi
i and pwi

j , respectively, according to Equation (6).
Similar to the proof of Theorem 1, we obtained
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which completes the proof of Theorem 2. �
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