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Abstract

In this paper, we propose three similarity measure methods for single-valued neutrosophic refined
sets and interval neutrosophic refined sets based on Jaccard, Dice and Cosine similarity measures
of single-valued neutrosophic sets and interval neutrosophic sets. Furthermore, we suggest two
multi-criteria decision making methods under single-valued neutrosophic refined environment and
interval neutrosophic refined environment, and give applications of proposed multi-criteria decision
making methods. Finally we suggest a consistency analysis method for proposed similarity mea-
sures between interval neutrosophic refined sets and give an application to demonstrate process
of the method.
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1. Introduction

Overcoming of situations containing uncertainty and inconsistency data has been very impor-
tant matter for researchers that study on mathematical modeling and decision making which are
very important in some areas such as operations research, social science, economics and man-
agement science, etc. From past to present many studies on mathematical modeling have been
performed. Some of well-known approximations are fuzzy set (FS) theory proposed by Zadeh [30],
intuitionistic fuzzy set (IFS) theory introduced by Atanassov [1] and interval valued intuitionis-
tic fuzzy set theory suggested by Atanassov and Gargov [2]. A FS is identified by membership
function, IFS, which is a generalization of the FSs, is characterized by membership and nonmem-
bership functions. Even though these set theories are very successful in order to model some
decision making problems containing uncertainty and incomplete information, sometimes they
may not suffice to model indeterminate and inconsistent information encountered in real world.
Therefore, Smarandache [23] introduced the concept of neutrosophic set, which is very useful to
model problems containing indeterminate and inconsistent information, based on neutrosophy
which is a branch of philosophy. A neutrosophic set is characterized by three functions called
truth-membership function (T (x)), indeterminacy-membership function (I(x)) and falsity mem-
bership function (F (x)). These functions are real standard or nonstandard subsets of ]−0, 1+[, i.e.,
T (x) : X →]−0, 1+[, I(x) : X →]−0, 1+[, and F (x) : X →]−0, 1+[. Basic of the neutrosophic set
stands up to the non-standard analysis introduced by Abraham Robinson in 1960s [21]. Smaran-
dache [24] discussed comparisons between neutrosophic set, paraconsistent set and intuitionistic
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fuzzy set, and he showed that the neutrosophic set is a generalization of paraconsistent set and
intuitionistic fuzzy set. In some areas such as engineering and real scientific fields, modeling of
problems by using real standard or nonstandard subsets of ]−0, 1+[ may not be easy sometimes,
to cope with this issue concepts of single-valued neutrosophic set (SVN-set) and interval neu-
trosophic set (IN-set) were defined by Wang et al. in [27] and [28], respectively. Zhang et al.
[31] presented an application of IN-set in multi criteria decision making problems. Some novel
operations of interval neutrosophic sets were defined by Broumi and Smarandache [8]. Bhowmik
and Pal [6] defined concept of intuitionistic neutrosophic set by combining intuitionistic fuzzy set
with neutrosophic set, and gave some set theoretical operations of the intuitionistic neutrosophic
set such as complement, union and intersection. Ansari et al. [3] made an application of neutro-
sophic set theory to medical AI. Ye [37] introduced concept of simplified neutrosophic sets and
proposed some aggregation operators. He also developed a multi-criteria decision making method
based on these aggregation operators and cosine similarity measures for simplified neutrosophic
sets. Ye [41] proposed concept of trapezoidal neutrosophic set by combining trapezoidal fuzzy set
with single-valued neutrosophic set. He also presented some operational rules related to this novel
sets, and proposed score and accuracy function for trapezoidal neutrosophic numbers. Peng et
al. [19] suggested an outranking method for multi-criteria decision making under the simplified
neutrosophic environment. They also proposed a multi-criteria group decision making method
using simplified neutrosophic sets [20]. Peng et al. [26] put forward multi-criteria decison making
method based on a cross-entropy with interval neutrosophic sets. Ma et al. [14] developed a
decision making method for a medical treatment selection based on prioritized harmonic mean
operators under an interval neutrosophic linguistic environment and gave application of the pro-
posed method, and compared accuracy of proposed method with traditional methods. Also you
can find other important studies on decision making in references [29, 42].

Set theories mentioned above are based on idea which each element of a set appear only one
time in the set. However, in some situations, a structure containing repeated elements may be
need. For instance, while search in a dad name-number of children-occupation relational basis.
To model such cases, a structure called bags was defined by Yager [32]. In 1998, Baowen [5]
defined concepts of fuzzy bags and their operations based on Peizhuang’s theory of set-valued
statistics [18] and Yager’s bags theory [32]. Concept of intuitionistic fuzzy bags (multi set) and
its operations were defined by Shinoj and Sunil [22], and they gave an application in medical
diagnosis under intuitionistic fuzzy multi environment.

In 2013, Smarandache [25] put forward n-symbolic ( respectively i.e numerical valued) neutro-
sophic logic which is a refined symbolic and respectively numerical neutrosophic logic. Although
existing set theoretical approximations are generally successful in order to model some problems
encountered in real world, in some cases they may not allow for modeling of problems. For exam-
ple, when elements in a set are evaluated by SVN-values in different times as t1, t2, ..., tp, SVN-set
may not be sufficient in order to express such a case. Therefore, Ye and Ye [35] defined concept
of single-valued neutrosophic multiset (refined) (SVNR-set) as a generalization of single-valued
neutrosophic sets, and gave operational rules for proposed novel set. In a SVNR-set, each of
truth membership values, indeterminacy membership values and falsity membership values are
expressed sequences called truth membership sequence, indeterminacy membership sequence and
falsity membership sequence, respectively. SVNR-set allows for modeling of problems containing
changing values with respect to times under SVN-environment. In this regard, SVNR-set is an
important tool to model some problems. Broumi et al. [12] proposed concept of n-valued interval
neutrosophic set and set theoretical operations on n-valued interval neutrosophic set (or interval
neutrosophic set) such as union, intersection, addition, multiplication, scalar multiplication, scalar
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division, truth-favorite. Also they developed a multi-criteria group decision making method and
gave its an application in medical diagnosis.

Similarity measure has an important role in many areas such as medical diagnosis, pattern
recognition, clustering analysis, decision making and so on. There are many studies on similarity
measures of neutrosophic sets and IN-sets. For example, Broumi and Smarandache [7] developed
some similarity measure methods between two neutrosophic sets based on Hausdorff distances
and they used these methods to calculate similarity degree between two neutrosophic sets. Ye [34]
proposed three similarity measure methods based on simplified neutrosophic sets (SN-sets) which
is a subclass of neutrosophic set that is more useful than neutrosophic set in some applications in
engineering and real sciences. He also applied the these methods to decision making problem under
SN-environment. Ye and Zhang [33] suggested similarity measure between two SVN-sets based
on minimum and maximum operators. They also developed a multi-attribute decision making
method based on weighted similarity measure of SVN-sets, and gave applications to demonstrate
effectiveness of the proposed methods. Ye [38] proposed two similarity measures between SVN-
sets by defining a generalized distance measure, and presented a clustering algorithm based on
proposed similarity measure. In 2015, Ye [41] pointed out some drawbacks of similarity measures
given in [34] and proposed improved cosine similarity measures of simplified neutrosophic sets
(SN-sets) based on cosine function. Moreover, he defined weighted cosine similarity measures of
SN-sets and gave an application in medical diagnosis problem containing SN-information. Ye and
Fub [39] proposed a similarity measure of SVN-sets based on tangent function and put forward
a medical diagnosis method called multi-period medical diagnosis method based on suggested
similarity measure and weighted aggregation of multi-period information. They also made a
comparison between tangent similarity measures of SVN-sets and existing similarity measures of
SVN-sets. Furthermore, Ye [40] introduced a similarity measure of SVN-sets based on cotangent
function and gave an application in the fault diagnosis of steam turbine, and he gave comparative
analysis between cosine similarity measure and cotangent similarity measure in the fault diagnosis
of steam turbine. Majumdar and Samanta [15] defined notion of distance between two SVN-sets
and investigated its some properties. They also put forward a measure of entropy for a SVN-set.
Aydoğdu [4] introduced a similarity measure between two SVN-sets and developed an entropy of
SVN-sets. Broumi and Smarandache [11] extended similarity measures proposed in [38] to IN-
sets. Ye [36] proposed a similarity measure between two IN-sets based on Hamming and Euclidian
distances and gave a multi-criteria decision making method.

Similarity measure on the NR-sets was studied Broumi and Smarandache [9]. Broumi and
Smarandache extended improved cosine similarity measure of SVN-sets to NR-sets and gave its
an application in medical diagnosis. Mondal and Pramanik [16] introduced cotangent similarity
measure of NR-sets and studied on its properties, and applied cotangent similarity measure to ed-
ucational stream selection. Also they proposed a similarity measure method [17] for NR-sets based
on tangent function and gave an application in multi-attribute decision making. In 2015. Broumi
and Smarandache [10] presented a new similarity measure method by extending the Hausdorff
distance to NR-sets, and gave an application of proposed method in medical diagnosis.

In this paper, we propose three similarity measure methods for single-valued neutrosophic re-
fined sets (SVNR-sets) and interval neutrosophic refined sets (INR-sets) by extending Jaccard,
Dice and Cosine similarity measures under SVN-value and IN-value given by Ye in [34]. Also we
give two multi-criteria decision making methods by defining ideal solutions for best and cost crite-
ria under SVNR-environment and INR-environment. Furthermore, to determine which similarity
measure under INR-environment is more appropriate for considered problems, we give a consis-
tency analysis method based on developed similarity measure methods. To demonstrate processes
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of the similarity measure methods and consistency analysis method, we present real examples
based on criteria and attributes given in [34]. The rest of the article is organized as follows. In
section 2, some definitions related to the SVN-sets and IN-sets and formulas of Jaccard, Dice and
Cosine similarity measures under SVN-environment are given. In section 3, for SVNR-set and
INR-sets similarity measures methods are developed as an extension of vector similarity measures
between two SVN-sets and between two IN-sets given in [34]. In section 4, multi criteria deci-
sion making methods are developed under SVNR-environment and INR-environment, and given
examples related to the developed methods, and proposed similarity measure methods are com-
pared with existing similarity measures methods. In section 5 for similarity measures between two
INR-sets, a consistency analysis method is suggested and an application of this method is given.
In section 6, conclusions of the paper and studies that can be made in future are presented.

2. Preliminary

In this section, concepts of SVN-set, IN-set, SVNR-set and INR-set and some set theoretical
operations required in subsequent sections of them are presented .

Throughout the paper, X denotes initial universe, E is a set of parameters and Ip = {1, 2, ..., p}(p ∈
N) is an index set.

Definition 1. [28] Let X be a nonempty set (initial universe), with a generic element in X de-
noted by x. A single-valued neutrosophic set (SV N -set) A is characterized by three functions called
truth membership function tA(x), indeterminacy membership function iA(x) and falsity member-
ship function fA(x) such that tA(x), iA(x), fA(x) ∈ [0, 1] for all x ∈ X, as follows:

If X is continuous, a SV N -set A can be written as follows:

A =

∫

X

〈tA(x), iA(x), fA(x)〉 /x, for all x ∈ X.

If X is crisp set, a SV N -set A can be written as follows:

A =
∑

x

〈tA(x), iA(x), fA(x)〉 /x, for all x ∈ X.

Also, finite SV N -set A can be presented as follows:

A = {〈x1, tA(x1), iA(x1), fA(x1)〉, . . . , 〈xM , tA(xM), iA(xM), fA(xM)〉}
for all x ∈ X. Here 0 ≤ tA(x) + iA(x) + fA(x) ≤ 3 for all x ∈ X.

Throughout this paper, initial universe will be considered as a finite and crisp set, and set of
all SV N -sets over X will be denoted by SV NX .

Operations on SVN-sets are given by Wang et. al in [28] as follows:

Definition 2. [28] Let A,B ∈ SV NX . Then,

1. A ⊆ B if and only if tA(x) ≤ tB(x), iA(x) ≥ iB(x), fA(x) ≥ fB(x) for all x ∈ X.

2. A = B if and only if A ⊆ B and B ⊆ A for all x ∈ X.

3. Ac={〈x, fA(x), 1− iA(x), tA(x)〉 : x ∈ X}.
4. A ∪B= {〈x, (tA(x) ∨ tB(x)), (iA(x) ∧ iB(x)), (fA(x) ∧ fB(x))〉 : x ∈ X}
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5. A ∩B= {〈x, (tA(x) ∧ tB(x)), (iA(x) ∨ iB(x)), (fA(x) ∨ fB(x))〉 : x ∈ X}.

Definition 3. [35] Let X be a nonempty set with generic elements in X denoted by x. A single-
valued neutrosophic refined set (SVNR-set), denoted by Ã, is defined as follows:

Ã =
{〈

x, (t1A(x), t2A(x), ..., tpA(x)), (i1A(x), i2A(x), ..., ipA(x)), (f 1
A(x), f 2

A(x), ..., f p
A(x))

〉
: x ∈ X

}
.

Here, t1A, t2A, ..., tpA : X → [0, 1], i1A, i2A, ..., ipA : X → [0, 1] and f 1
A, f 2

A, ..., f p
A : X → [0, 1]

such that 0 ≤ trA(x) + irA(x) + f r
A(x) ≤ 3 for all x ∈ X and r ∈ Ip. (t1A(x), t2A(x), ..., tpA(x)),

(i1A(x), i2A(x), ..., ipA(x)) and (f 1
A(x), f 2

A(x), ..., f p
A(x)) are called truth-membership sequence, indeter-

minacy-membership sequence and falsity-membership sequence of the element x. These sequences
may be in decreasing or increasing order. Also p is called the dimension of single-valued neutro-
sophic refined set Ã.

A SV NR-set Ã can be represented as follows:

Ã =
{〈

x, trA(x), irA(x), f r
A(x)

〉
: x ∈ X, r ∈ Ip

}
.

From now on, set of all single-valued neutrosophic refined sets with p dimension over X will be
denoted by SV NRp

X .

Definition 4. [35] Let Ã, B̃ ∈ SV NRp
X . Then,

1. If trA(x) ≤ tr
B̃
(x), irA(x) ≥ ir

B̃
(x), f r

A(x) ≥ f r
B̃
(x) for all r ∈ Ip and x ∈ X, then Ã is said to

be SVNR-subset of B̃ and this relation is denoted by Ã⊆̃B̃.

2. Ã⊆̃B̃ and B̃⊆̃Ã if and only if Ã = B̃;

3. The complement of Ã, denoted by Ãc, is defined by

Ã =
{〈

x, f r
A(x), 1− irA(x), trA(x)

〉
: x ∈ X, r ∈ Ip

}
.

Definition 5. [13] Let Ã ∈ SV NRp
X . Then,

1. if trA(x) = 0, irA(x) = 1 and f r
A(x) = 1 for all r ∈ Ip and x ∈ X, Ã is called a null SVNR-set,

and denoted by Φ̃,

2. if trA(x) = 1, irA(x) = 0 and f r
A(x) = 0 for all r ∈ Ip and x ∈ X, Ã is called universal

SVNR-set, and denoted by X̃.

Definition 6. [35] Let Ã, B̃ ∈ SV NRp
X . Then,

1. union:

Ã∪̃B̃ =
{〈

x, trA(x) ∨ trB(x), irA(x) ∧ irB(x), f r
A(x) ∧ f r

B(x)
〉

: x ∈ X, r ∈ Ip

}
,

2. intersection:

Ã∩̃B̃ =
{〈

x, trA(x) ∧ trB(x), irA(x) ∨ irB(x), f r
A(x) ∨ f r

B(x)
〉

: x ∈ X, r ∈ Ip

}
.
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Example 1. Consider SVNR-sets Ã, B̃ and C̃ are given as follows:

Ã =





〈
x1(.1, .2, .4), (.1, .4, .6), (.0, .3, .3)

〉
,〈

x2, (.3, .3, .5), (.2, .3, .7), (.1, .5, .6)
〉
,〈

x3, (.2, .4, .8), (.1, .3, .3), (.5, .6, .9)
〉





, B̃ =





〈
x1(.5, .6, .7), (.4, .6, .7), (.3, .3, .4)

〉
,〈

x2, (.2, .4, .4), (.2, .5, .8), (.2, .6, .7)
〉
,〈

x3, (.1, .6, .6), (.1, .5, .5), (.3, .4, .7)
〉





and

C̃ =





〈
x1(.3, .3, .5), (.4, .5, .6), (.1, .3, .4)

〉
,〈

x2, (.0, .1, .3), (.2, .3, .6), (.1, .4, .6)
〉
,〈

x3, (.1, .4, .7), (.1, .3, .4), (.3, .3, .5)
〉





.

Then, Ã∪̃B̃ =





〈
x1(.5, .6, .7), (.4, .6, .7), (.3, .3, .4)

〉
,〈

x2, (.2, .3, .4), (.2, .3, .7), (.1, .5, .6)
〉
,〈

x3, (.1, .4, .6), (.1, .3, .3), (.3, .4, .7)
〉





, Ã∩̃B̃ =





〈
x1(.1, .2, .4), (.1, .4, .6), (.0, .3, .3)

〉
,〈

x2, (.3, .4, .5), (.2, .5, .8), (.2, .6, .7)
〉
,〈

x3, (.2, .6, .8), (.1, .5, .7), (.5, .6, .9)
〉





,

and C̃⊆̃B̃.

Definition 7. [27] Let D[0, 1] be the set of all closed sub-intervals of the interval [0, 1] and X be
an ordinary finite non-empty set. An IN-set Â over X is a set of quadruple given as follows:

Â = {〈x, tA(x), iA(x), fA(x)〉 |x ∈ X} ,

where, tA(x) ∈ D[0, 1], iA(x) ∈ D[0, 1], and fA(x) ∈ D[0, 1] with the relation

0 ≤ sup tA(x) + sup iA(x) + sup fA(x) ≤ 3, for all x ∈ X.

Here intervals tA(x)=
[
tLA(x), tUA(x)

] ⊂ [0, 1], iA(x)=
[
iLA(x), iUA(x)

] ⊂ [0, 1] and fA(x)=
[
fL

A(x), fU
A (x)

] ⊂
[0, 1] denote the degree of truth, indeterminacy, and falsity membership of x ∈ X in Ã, respectively;
moreover

tLA(x) = inftA(x), tUA(x) = suptA(x)

iLA(x) = infiA(x), iUA(x) = supiA(x)

fL
A(x) = inffA(x), fU

A (x) = supfA(x)

for every x ∈ X. The interval neutrosophic set Â can be expressed in the following interval format:

Â =
{〈

x,
[
tLA(x), tUA(x)

] [
iLA(x), iUA(x)

] [
fL

A(x), fU
A (x)

]〉 |x ∈ X
}

where, 0 ≤ sup tUA(x) + sup iUA(x) + sup fU
A (x) ≤ 3, TL

A (x) ≥ 0, IL
A(x) ≥ 0 and FL

A (x) ≥ 0 for all
x ∈ X. Henceforth set of all IN -sets over X will be denoted by INX .

Definition 8. [12] Let X be a nonempty initial universe whose elements are discrete. An n-valued
interval neutrosophic refined set (or interval neutrosophic refined set) Ä is defined as follows:

Ä =
{〈

x, ([trL
A(x), trU

A(x)]), ([irL
A(x), irU

A(x)]), ([f rL
A(x), f rU

A(x)])
〉

: x ∈ X and r ∈ Ip

}
,

where trL
A(x) ≤ trU

A(x), irL
A(x) ≤ irU

A(x) and f rL
A(x) ≤ f rU

A(x) for all x ∈ X.
Here, 0 ≤ trL

A(x) + irL
A(x) + f rL

A(x) ≤ 3 and 0 ≤ trU
A(x) + irU

A(x) + f rU
A(x) ≤ 3 for all x ∈ X

and r ∈ Ip.

([t1
L
A(x), t1

U
A(x)], [t2

L
A(x), t2

U
A(x)], ..., [tpL

A(x), tpU
A(x)]),
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([i1
L
A(x), i1

U
A(x)], [i2

L
A(x), i2

U
A(x)], ..., [ipL

A(x), ipU
A(x)])

and
([f 1L

A(x), f 1U
A(x)], [f 2L

A(x), f 2U
A(x)], ..., [fpL

A(x), fpU
A(x)])

are the truth-membership sequence, indeterminacy-membership sequence and falsity-membership
sequence of the element x, respectively. p is called the dimension of n-valued neutrosophic sets Ä.

Henceforth set of all n-valued interval neutrosophic set with p dimension over X will be denoted
by INRp

X . Also notion of interval neutrosophic refined set (INR-set) will be used instead of notion
of n-valued interval neutrosophic set.

2.1. Similarity measures of SVN-sets and IN-sets
In this subsection, Jaccard, Dice, and Cosine similarity measures between two SV N−sets and

between two IN−sets defined in [34] are given.

Definition 9. Let A and B be two SVN-sets over universe X ={x1, x2, . . . , xn}. Then the Jaccard
similarity measure between SVN-sets A and B in the vector space is defined as follows:

(A,B)J =
1

n

n∑
i=1

tA(xi)tB(xi) + iA(xi)iB(xi) + fA(xi)fB(xi)(
(t2A(xi) + i2A(xi) + f 2

A(xi)) + (t2B(xi) + i2B(xi) + f 2
B(xi))

−(tA(xi)tB(xi) + iA(xi)iB(xi) + fA(xi)fB(xi)

) . (1)

Definition 10. Let A and B be two SVN-sets over universe X ={x1, x2, . . . , xn}. Then the Dice
similarity measure between SVN-sets A and B in the vector space is defined as follows:

(A,B)D =
1

n

n∑
i=1

2 (tA(xi)tB(xi) + iA(xi)iB(xi) + fA(xi)fB(xi))

[(t2A(xi) + i2A(xi) + f 2
A(xi)) + (t2B(xi) + i2B(xi) + f 2

B(xi))]
. (2)

Definition 11. Let A and B be two SVN-sets in a universe of discourse X ={x1, x2, . . . , xn}.
Then the cosine similarity measure between SVN-sets A and B in the vector space is defined as
follows:

(A,B)C =
1

n

n∑
i=1

(tA(xi)tB(xi) + iA(xi)iB(xi) + fA(xi)fB(xi))[√
(t2A(xi) + i2A(xi) + f 2

A(xi)).
√

(t2B(xi) + i2B(xi) + f 2
B(xi))

] . (3)

In some applications, each element xi ∈ X(i ∈ In) may have different weights. Let w1, w2, ..., wn

be the weights of elements x1, x2, ..., xn ∈ X such that wi ≥ 0(∀i ∈ In) and
∑n

i=1 wi = 1,
respectively. Then, formulas of Jaccard, Dice and Cosine similarity measures between A and B
can be extended to weighted Jaccard, Dice and Cosine similarity measures are defined as follows:
defined as follows:

W (A,B)J =
n∑

i=1

wi
tA(xi)tB(xi) + iA(xi)iB(xi) + fA(xi)fB(xi)(

(t2A(xi) + i2A(xi) + f 2
A(xi)) + (t2B(xi) + i2B(xi) + f 2

B(xi))
−(tA(xi)tB(xi) + iA(xi)iB(xi) + fA(xi)fB(xi))

) , (4)

W (A,B)D =
n∑

i=1

wi
2 (tA(xi)tB(xi) + tA(xi)tB(xi) + fA(xi)fB(xi))

((t2A(xi) + i2A(xi) + f 2
A(xi)) + (t2B(xi) + i2B(xi) + f 2

B(xi))]
(5)

and

W (A,B)C =
n∑

i=1

wi
(tA(xi)tB(xi) + iA(xi)iB(xi) + fA(xi)fB(xi))(√

(t2A(xi) + i2A(xi) + f 2
A(xi)).

√
(t2B(xi) + i2B(xi) + f 2

B(xi))
] , (6)

respectively.
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3. Similarity measures under SVNR and INR-environments

In this section, similarity measures between two SVNR-sets and between two INR-sets are
defined based on similarity measures between two SVN-sets and similarity measures between two
IN-sets given in [34].

Definition 12. Let Ã, B̃ ∈ SV NRp
X . Then, the Jaccard similarity measure between SVNR-sets

Ã and B̃ is defined as follows:

(Ã, B̃)J =
1

p.n

n∑
j=1

p∑
r=1

(trA(xj)t
r
B(xj) + irA(xj)i

r
B(xj) + f r

A(xj)f
r
B(xj))(

([trA(xj)]
2 + [irA(xj)]

2 + [f r
A(xj)]

2) + ([trB(xj)]
2 + [irB(xj)]

2 + [f r
B(xj)]

2)
−[trA(xj)t

r
B(xj) + irA(xj)i

r
B(xj) + f r

A(xj)f
r
B(xj)]

) ,

(7)

Definition 13. Let Ã, B̃ ∈ SV NRp
X . Then the Dice similarity measure between SVNR-sets Ã

and B̃ is defined as follows:

(Ã, B̃)D =
1

p.n

n∑
j=1

p∑
r=1

2(trA(xj)t
r
B(xj) + irA(xj)i

r
B(xj) + f r

A(xj)f
r
B(xj))(

[trA(xj)]2 + [irA(xj)]2 + [f r
A(xj)]2) + ([trB(xj)]2 + [irB(xj)]2 + [f r

B(xj)]2
) .

(8)

Definition 14. Let Ã, B̃ ∈ SV NRp
X . Then, the cosine similarity measure between SVNR-sets Ã

and B̃ is defined as follows:

(Ã, B̃)C =
1

p.n

n∑
j=1

p∑
r=1

(trA(xj)t
r
B(xj) + irA(xj)i

r
B(xj) + f r

A(xj)f
r
B(xj))(√

([trA(xj)]2 + [irA(xj)]2 + [f r
A(xj)]2).

√
([trB(xj)]2 + [irB(xj)]2 + [f r

B(xj)]2)
) .

(9)

If wj ∈ [0, 1] be the weight of each element xj for j = 1, 2, . . . , n such that
∑n

j=1 wj = 1, then the

weighted Jaccard, Dice and Cosine similarity measures between SVNR-sets Ã and B̃ are defined
as follows:

W (Ã, B̃)J =
1
p

n∑

j=1

p∑

r=1

wj
(trA(xj)trB(xj) + irA(xj)irB(xj) + f r

A(xj)f r
B(xj))(

([trA(xj)]2 + [irA(xj)]2 + [f r
A(xj)]2) + ([trB(xj)]2 + [irB(xj)]2 + [f r

B(xj)]2)
−[trA(xj)trB(xj) + irA(xj)irB(xj) + f r

A(xj)f r
B(xj)]

) ,

(10)

W (Ã, B̃)D =
1
p

n∑

j=1

p∑

r=1

wj
2(trA(xj)trB(xj) + irA(xj)irB(xj) + f r

A(xj)f r
B(xj))(

([trA(xj)]2 + [irA(xj)]2 + [f r
A(xj)]2) + ([trB(xj)]2 + [irB(xj)]2 + [f r

B(xj)]2)
) (11)

and

W (Ã, B̃)C =
1
p

n∑

j=1

p∑

r=1

wj
(trA(xj)trB(xj) + irA(xj)irB(xj) + f r

A(xj)f r
B(xj))(√

([trA(xj)]2 + [irA(xj)]2 + [f r
A(xj)]2).

√
([trB(xj)]2 + [irB(xj)]2 + [f r

B(xj)]2)
) ,

(12)
respectively.

Example 2. Consider SVNR-sets Ã and B̃ given in Example 1. Then, by using Eqs.(7),(8) and
(9), similarity measures between SVNR-sets Ã and B̃ are obtained as in Table 1.

If weights of the x1, x2 and x3 are taken as w1 = .1 w2 = .65 and w3 = .25, respectively. Then,
by using Eqs.(10),(11) and (12), weighted similarity measures are obtained as in Table 3:
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Table 1: Similarity measure under SVNR-environment
Similarity measures Values

(Ã, B̃)J 0.784

(Ã, B̃)D 0.856

(Ã, B̃)C 0.955

Table 2: Weighted similarity measures under SVNR-environment
Similarity measure Values

W (Ã, B̃)J 0.683

W (Ã, B̃)D 0.773

W (Ã, B̃)C 0.946

Proposition 1. Let Ã, B̃ ∈ SV NRp
X . Then, each similarity measure (Ã, B̃)Λ(Λ = J,D, C) sat-

isfies the following properties:

1. 0 ≤ (Ã, B̃)Λ ≤ 1

2. (Ã, B̃)Λ = (B̃, Ã)Λ;

3. (Ã, B̃)Λ = 1 if B̃ = Ã i.e. trA(xj) = trB(xj), irA(xj) = irB(xj), and f r
A(xj) = f r

B(xj) for
every xj ∈ X and r ∈ Ip.

Proof. 1. For p = 1 Eq. (7), (8) and (9) are reduce to Eq. (1), (2) and (3), respectively. For
all r ∈ Ip(p > 1) according to inequality x2 + y2 ≥ 2xy, for any xj ∈ X we know that

p∑
r=1

([trA(xj)]
2 + [trB(xj)]

2) ≥ 2

p∑
r=1

([trA(xj)].[t
r
B(xj)]),

p∑
r=1

([irA(xj)]
2 + [irB(xj)

2]) ≥ 2

p∑
i=1

([irA(xj)].[i
r
B(xj)])

p∑
r=1

([f r
A(xj)]

2 + [f r
B(xj)]

2) ≥ 2

p∑
r=1

([f r
A(xj)].[f

r
B(xj)]),

and∑p
i=1([t

r
A(xj)]2+[trB(xj)]2+[irA(xj)]2+[irB(xj)]2+[f r

A(xj)]2+[f r
B(xj)]2) ≥ 2

∑p
i=1([t

r
A(xj)].[trB(xj)]+

[irA(xj)].[irB(xj)] + [f r
A(xj)].[f r

B(xj)]). Thus,

1

p

p∑
r=1

(trA(xj)t
r
B(xj) + irA(xj)i

r
B(xj) + f r

A(xj)f
r
B(xj))(

([trA(xj)]
2 + [irA(xj)]

2 + [f r
A(xj)]

2) + ([trB(xj)]
2 + [irB(xj)]

2 + [f r
B(xj)]

2)
−[trA(xj)t

r
B(xj) + irA(xj)i

r
B(xj) + f r

A(xj)f
r
B(xj)]

) ≤ 1

p
.

(13)
and for all xj ∈ X and p > 0.
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1

p

n∑
j=1

p∑
r=1

(trA(xj)t
r
B(xj) + irA(xj)i

r
B(xj) + f r

A(xj)f
r
B(xj))(

([trA(xj)]
2 + [irA(xj)]

2 + [f r
A(xj)]

2) + ([trB(xj)]
2 + [irB(xj)]

2 + [f r
B(xj)]

2)
−[trA(xj)t

r
B(xj) + irA(xj)i

r
B(xj) + f r

A(xj)f
r
B(xj)]

) ≤ n.

(14)
Similarly, Eq.(8) and Eq. (9) are true.

2. The proof is clear.

3. Let A = B. Then, trA(xj) = trB(xj), irA(xj) = irB(xj), and f r
A(xj) = f r

B(xj) for all
xj ∈ X and r ∈ Ip and

(Ã, B̃)J =
1
n

n∑

j=1

p∑

r=1

[trA(xj ]2 + [irA(xj)]2 + [f r
A(xj)]2(

2[trA(xj)]2 + 2[irA(xj)]2 + 2[f r
A(xj)]2 − ([trA(xj)]2 + [irA(xj)]2 + [f r

A(xj)]2)
)

=
1

p.n

n∑

j=1

p∑

r=1

1 = 1.

The proofs for Dice and Cosine similarity measures can be made by similar way.

Each similarity measure between two SVNR-sets Ã =
{〈

x, trA(x), irA(x), f r
A(x)

〉
: x ∈ X, i ∈ Ip

}

and B̃ =
{〈

x, trB(x), irB(x), f r
B(x)

〉
: x ∈ X, i ∈ Ip

}
are undefined when trA(x) = irA(x) =

f r
A(x) = 0 and trB(x) = irB(x) = f r

B(x) = 0 for all x ∈ X and i ∈ Ip.

Proposition 2. Let Ã, B̃ ∈ SV NRp
X . Then, each weighted similarity measure W (Ã, B̃)Λ(Λ =

J,D, C) satisfies the following properties:

1. 0 ≤ W (Ã, B̃)Λ ≤ 1,

2. W (Ã, B̃)Λ = W (B̃, Ã)Λ,

3. W (Ã, B̃)Λ = 1 if B̃ = Ã i.e. trA(xj) = trB(xj), irA(xj) = irB(xj), and f r
A(xj) = f r

B(xj)
for every xj ∈ X and r ∈ Ip.

Proof. The proofs can be made similar way to proof of Proposition 1.

Note that, if wj(j = 1, 2, ..., n) values take as 1
n
, Eqs. (10), (11) and (12) are reduced Eqs. (4),

(5) and (6), respectively.
Now similarity measures between two INR-sets will be defined as a extension of similarity

measures between two IN-sets given in [34].

For convenience, Ä =
{〈

x, ([trL
A(x), trU

A(x)]), ([irL
A(x), irU

A(x)]), ([f rL
A(x), f rU

A(x)])
〉

: x ∈ X and r ∈
Ip

}
will be meant by Ä ∈ INRX
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Definition 15. Let Ä, B̈ ∈ INRp
X . Then, the Jaccard similarity measure between INR-sets Ä

and B̈ is defined as follows:

(Ä, B̈)J =
1

p.n

n∑

j=1

p∑
r=1




(trL
A(xj)trL

B(xj) + trU
A(xj)trU

B(xj))
+(irL

A(xj)irL
B(xj) + irU

A(ij)irU
B(ij))

+(frL
A(xj)frL

B(xj) + frU
A(xj)frU

B(xj))







([trL
A(xj)]2 + [irL

A(xj)]2 + [frL
A(xj)]2) + ([trU

A(xj)]2 + [irU
A(xj)]2 + [frU

A(xj)]2)
+([trL

B(xj)]2 + [irL
B(xj)]2 + [frL

B(xj)]2) + ([trU
B(xj)]2 + [irU

B(xj)]2 + [frU
B(xj)]2)

−[
trL

A(xj)trL
B(xj) + irL

A(xj)irL
B(xj) + frL

A(xj)frL
B(xj)

]
−[

trU
A(xj)trU

B(xj) + irU
A(xj)irU

B(xj) + frU
A(xj)frU

B(xj)
]




.

(15)

Definition 16. Let Ä, B̈ ∈ INRp
X . Then, the Dice similarity measure between INR-sets Ä and

B̈ is defined as follows:

(Ä, B̈)D =
1

p.n

n∑

j=1

p∑
r=1

2




(trL
A(xj)trL

B(xj) + trU
A(xj)trU

B(xj))
+(irL

A(xj)irL
B(xj) + irU

A(xj)irU
B(xj))

+(frL
A(xj)frL

B(xj) + frU
A(xj)frU

B(xj))




(
([trL

A(xj)]2 + [irL
A(xj)]2 + [frL

A(xj)]2) + ([trU
A(xj)]2 + [irU

A(xj)]2 + [frU
A(xj)]2)

+([trL
B(xj)]2 + [irL

B(xj)]2 + [frL
B(xj)]2) + ([trU

B(xj)]2 + [irU
B(xj)]2 + [frU

B(xj)]2)

) .

(16)

Definition 17. Let Ä, B̈ ∈ INRp
X . Then the cosine similarity measure between Ä and B̈ is

defined as follows:

(Ä, B̈)C =
1

p.n

n∑

j=1

p∑
r=1




(trL
A(xj)trL

B(xj) + trU
A(xj)trU

B(xj))
+(irL

A(xj)irL
B(xj) + irU

A(ij)irU
B(ij))

+(frL
A(xj)frL

B(xj) + frU
A(xj)frU

B(xj))







√
([trL

A(xj)]2 + [irL
A(xj)]2 + [frL

A(xj)]2) + ([trU
A(xj)]2 + [irU

A(xj)]2 + [frU
A(xj)]2)√

([trL
B(xj)]2 + [irL

B(xj)]2 + [frL
B(xj)]2) + ([trU

B(xj)]2 + [irU
B(xj)]2 + [frU

B(xj)]2)




.

(17)

If wj ∈ [0, 1] be the weight of each element xj for j = 1, 2, . . . , n such that
∑n

j=1 wj = 1, then the

weighted Jaccard, Dice and Cosine similarity measures between INR-sets Ä and B̈ is defined as
follows:

W (Ä, B̈)J =
1
p

n∑

j=1

p∑
r=1

wj




(trL
A(xj)trL

B(xj) + trU
A(xj)trU

B(xj))
+(irL

A(xj)irL
B(xj) + irU

A(ij)irU
B(ij))

+(frL
A(xj)frL

B(xj) + frU
A(xj)frU

B(xj))







([trL
A(xj)]2 + [irL

A(xj)]2 + [frL
A(xj)]2) + ([trU

A(xj)]2 + [irU
A(xj)]2 + [frU

A(xj)]2)
+([trL

B(xj)]2 + [irL
B(xj)]2 + [frL

B(xj)]2) + ([trU
B(xj)]2 + [irU

B(xj)]2 + [frU
B(xj)]2)

−[
trL

A(xj)trL
B(xj) + irL

A(xj)irL
B(xj) + frL

A(xj)frL
B(xj)

]
−[

trU
A(xj)trU

B(xj) + irU
A(xj)irU

B(xj) + frU
A(xj)frU

B(xj)
]




,

(18)

W (Ä, B̈)D =
1
p

n∑

j=1

p∑
r=1

wj

2




(trL
A(xj)trL

B(xj) + trU
A(xj)trU

B(xj))
+(irL

A(xj)irL
B(xj) + irU

A(ij)irU
B(ij))

+(frL
A(xj)frL

B(xj) + frU
A(xj)frU

B(xj))




(
([trL

A(xj)]2 + [irL
A(xj)]2 + [frL

A(xj)]2) + ([trU
A(xj)]2 + [irU

A(xj)]2 + [frU
A(xj)]2)

+([trL
B(xj)]2 + [irL

B(xj)]2 + [frL
B(xj)]2) + ([trU

B(xj)]2 + [irU
B(xj)]2 + [frU

B(xj)]2)

) .

(19)
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and

W (Ä, B̈)C =
1
p

n∑

j=1

p∑
r=1

wj




(trL
A(xj)trL

B(xj) + trU
A(xj)trU

B(xj))
+(irL

A(xj)irL
B(xj) + irU

A(ij)irU
B(ij))

+(frL
A(xj)frL

B(xj) + frU
A(xj)frU

B(xj))







√
([trL

A(xj)]2 + [irL
A(xj)]2 + [frL

A(xj)]2) + ([trU
A(xj)]2 + [irU

A(xj)]2 + [frU
A(xj)]2)√

([trL
B(xj)]2 + [irL

B(xj)]2 + [frL
B(xj)]2) + ([trU

B(xj)]2 + [irU
B(xj)]2 + [frU

B(xj)]2)




,

(20)
respectively.

Proposition 3. Ä, B̈ ∈ INRp
X . Then, each similarity measure (Ä, B̈)Λ(Λ = J,D, C) satisfies the

following properties:

1. 0 ≤ (Ä, B̈)Λ ≤ 1

2. (Ä, B̈)Λ = (B̈, Ä)Λ;

3. (Ä, B̈)Λ = 1 if B̈ = Ä i.e. [trL
A(xj), t

rU
A(xj)] = [trL

B(xj), t
rU
B(xj)], [irL

A(xj), i
rU
A(xj)] =

[irL
B(xj), i

rU
B(xj)], and [f rL

A(xj), f
rU
A(xj)] = [f rL

B(xj), f
rU
B(xj)] for all xj ∈ X and r ∈ Ip.

Proof. The proofs can be made similar way to proof of Proposition 1.

Proposition 4. Ä, B̈ ∈ INRp
X . Then, each weighted similarity measure W (Ä, B̈)Λ(Λ = J,D, C)

satisfies the following properties:

1. 0 ≤ W (Ä, B̈)Λ ≤ 1

2. W (Ä, B̈)Λ = W (B̈, Ä)Λ;

3. W (Ä, B̈)Λ = 1 if B̃ = Ã i.e. [trL
A(xj), t

rU
A(xj)] = [trL

B(xj), t
rU
B(xj)], [irL

A(xj), i
rU
A(xj)] =

[irL
B(xj), i

rU
B(xj)], and [f rL

A(xj), f
rU
A(xj)] = [f rL

B(xj), f
rU
B(xj)] for every xj ∈ X and r ∈ Ip.

Proof. The proofs can be made similar way to proof of Proposition 1.

Note that if [trL
A(x), trU

A(x)] = [0, 0],[irL
A(x), irU

A(x)] = [0, 0], [f rL
A(x), f rU

A(x)] = [0, 0] and [trL
B(x), trU

B(x)] =
[0, 0], [irL

B(x), irU
B(x)] = [0, 0], [f rL

B(x), f rU
B(x)] = [0, 0], each similarity measure between two INR-

sets Ä and B̈ are undefined.

4. Similarity measure based multicriteria decision making under SVNR-environment
and INR-environment

In this section, applications of weighted similarity measures in multicriteia decision making
problems under SVNR-environment and INR-environment are given.

Let us consider a MCDM problem with k alternatives and r criteria. Let A = {A1, A2, ..., Ak}
be a set of alternatives and C = {C1, C2, ..., Cr} be the set of criteria and w = {w1, w2, ...wr} be
weights of the criteria Cj(j = 1, 2, ..., r) such that wj ≥ 0(j = 1, 2, ..., r) and

∑r
j=1 wj = 1.
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4.1. Multi-criteria decision making under SVNR-environment

Let {A1, A2, ..., Ak} be a set of alternatives and {C1, C2, ..., Cs} be a set of criterion. Alterna-
tives Ai(i = 1, 2, ..., k) are characterized by SVNR-values for each Cj(j = 1, 2, ..., s) as follows:

Ai =
{
〈Cj, (t

1
Ai

(Cj), ..., t
p
Ai

(Cj)), (i
1
Ai

(Cj), ..., i
p
Ai

(Cj)), (f
1
Ai

(Cj), ..., f
p
Ai

(Cj))〉 : Cj ∈ C
}

.

For the sake of shortness, (t1Ai
(Cj), ..., t

p
Ai

(Cj)), (i1Ai
(Cj), ..., i

p
Ai

(Cj)) and (f 1
Ai

(Cj), ..., f
p
Ai

(Cj)) are
denoted by (t1ij, ..., t

p
ij), (i1ij, ..., i

p
ij) and (f 1

ij, ..., f
p
ij), respectively. Thus, the evaluation of the alter-

native Ai with respect to the criteria Cj made by expert or decision maker can be briefly written
as γij = 〈(t1ij, ..., tpij), (i1ij, ..., ipij), (f 1

ij, ..., f
p
ij)〉(i = 1, 2, ..., k; j = 1, 2, ..., r). Hence, SVNR-decision

matrix D = [γij]k×s can be constructed.
In MCDM environment, to characterize the best alternative properly in the decision set the

notion of the ideal point is used. In order to evaluate the criteria, two type modifiers called benefit
criteria (BC) and cost criteria (CC) are used generally.

In this study, for benefit criteria (BC) and cost criteria (CC) ideal SVNR-values are defined,
respectively, as follows:

• γ∗j = 〈(t1∗j , ..., tp∗j ), (i1∗j , ..., ip∗j ), (f1∗
j , ..., f

p∗
j )〉 =

〈
(maxi(t1ij), ..., maxi(t

p
ij)), (mini(i1ij), ...,mini(i

p
ij)),

(mini(f1
ij), ..., mini(f

p
ij))

〉

• γ∗j = 〈(t1∗j , ..., tp∗j ), (i1∗j , ..., ip∗j ), (f1∗
j , ..., f

p∗
j )〉 =

〈
(mini(t1ij), ..., mini(t

p
ij)), (maxi(i1ij), ..., maxi(i

p
ij)),

(maxi(f1
ij), ..., maxi(f

p
ij))

〉
,

Here equations are called positive ideal solution and negative ideal solution, respectively. Also set
of ideal SVNR-values will be denoted by A∗.

Algorithm

Step 1: Determination of BC and CC criteria

Step 2: Determination of ideal SVNR-values A∗

Step 3: Calculation of weighted similarity measures

In this step, using one of the Eq. (10), Eq. (11) or Eq.(12) weighted similarity measures
between the ideal alternative A∗ and Ai(i = 1, 2, ..., k) are calculated.

Step 4: Ranking of the alternative

Considering the values obtained using one of the Eq. (10), Eq. (11) or Eq.(12), the ranking
order of all the alternatives can be easily determined.

Example 3. Let us consider the decision making problem given in [36]. We adapt this decision
making problem to SVNR-set. There is an investment company, which wants to invest a sum
money in the best option. There is a list of four possible alternatives so as to invest the money:
(1) A1 is a car company; (2) A2 is a food company; (3) A3 is a computer company; (4) A4 is an
arms company. The investment company must take a decision according to the three criteria (1)
C1 is the risk; (2) C2 is the growth; (3) C3 is an environmental impact, The weights of criteria
C1, C2 and C3 are given by w1 = 0.35, w2 = 0.25 and w3 = 0.40, respectively. The four alternatives
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are evaluated under the criteria by SVNR-values provided by decision maker. These values are
shown in SVNR-decision matrix as follows:

D = [γij ]k×r =

0
BBBBB@

〈(.1, .2, .4), (.3, .3, .5), (.2, .4, .8)
E D

(.1, .4, .6), (.2, .3, .7), (.1, .3, .3)
E D

(.0, .3, .3), (.1, .5, .6), (.5, .6, .9)
E

D
(.5, .6, .7), (.2, .4, .4), (.1, .6, .6)

E D
(.4, .6, .7), (.2, .5, .8), (.1, .5, .5)

E D
(.3, .3, .4), (.2, .6, .7), (.3, .4, .7)

E
D
(.3, .3, .5), (.0, .1, .3), (.1, .4, .7)

E D
(.4, .5, .6), (.2, .3, .6), (.1, .3, .4)

E D
(.1, .3, .4), (.1, .4, .6), (.3, .3, .5)

E
D
(.2, .4, .9), (.1, .5, .6), (.3, .5, 1)

E D
(.0, .2, .4), (.1, .5, .7), (.6, .7, .9)

E D
(.8, .8, .9), (.3, .4, .4), (.6, .6, .8)

E

1
CCCCCA

Step 1: Let us consider C1 and C2 as benefit criteria and C3 as cost criterion.

Step 2: By using Eqs (4.1), (4.1) and SVNR-decision matrix, set of ideal SVNR-values A∗
are obtained as follows:

A∗ =
{〈

(.5, .6, .9), (.0, .1, .3), (.1, .4, .6)
〉
,
〈
(.4, .6, .7), (.1, .3, .6), (.1, .3, .3)

〉
,
〈
(.0, .3, .3), (.3, .6, .7), (.6, .6, .9)

〉}
.

Step 3: By using the Eqs. (7), (10), (8), (11), (9) and (12), for Λ ∈ {J,D, C}, similarity
measures and weighted similarity measures are obtained as in Table 3

Table 3: Similarity measure values under SVNR-environment
Similarity measure i = 1 i=2 i=3 i=4 Ranking order

(A∗, Ai)J 0.74683 0.87717 0.84399 0.58717 A2 Â A3 Â A1 Â A4

(A∗, Ai)D 0.82330 0.92951 0.91115 0.71588 A2 Â A3 Â A1 Â A4

(A∗, Ai)C 0.84663 0.94562 0.96771 0.73688 A3 Â A2 Â A1 Â A4

W (A∗, Ai)J 0.74934 0.87590 0,85143 0.80483 A2 Â A3 Â A4 Â A1

W (A∗, Ai)D 0.82887 0.92437 0.90083 0.75112 A2 Â A3 Â A1 Â A4

W (A∗, Ai)C 0.85016 0.94076 0.96521 0.81158 A3 Â A2 Â A1 Â A4

Step 4: Rankings of the alternatives are shown in last column of Table 3.

4.2. Comparative analysis of various similarity measures under SVNR-environment

In this section, proposed similarity measure methods in this paper are compared with existing
similarity measures methods given in references [9], [10], [16] and [17]. Under SVNR-values given
in Example 3, results of similarity measures and ordering of alternatives are shown in Table 4.

Table 4: Similarity measure values under SVNR-environment
Similarity measure i = 1 i=2 i=3 i=4 Ranking order

(A∗, Ai)J 0.74683 0.87717 0.84399 0.58717 A2 Â A3 Â A1 Â A4

(A∗, Ai)D 0.82330 0.92951 0.91115 0.71588 A2 Â A3 Â A1 Â A4

(A∗, Ai)C 0.84663 0.94562 0.96771 0.73688 A3 Â A2 Â A1 Â A4

CNRS(A∗, Ai) [9] 0.96485 0.97138 0.96352 0.90499 A2 Â A1 Â A3 Â A4

S1
HNRS(A∗, Ai)[10] 0.74444 0.78889 0.75556 0.50000 A2 Â A3 Â A1 Â A4

S2
HNRS(A∗, Ai) [10] 0.64324 0.69892 0.65693 0.37754 A2 Â A3 Â A1 Â A4

S3
HNRS(A∗, Ai) [10] 0.59292 0.65138 0.60714 0.33333 A2 Â A3 Â A1 Â A4

COTNRS(A∗, Ai) [16] 0.80729 0.82576 0.79722 0.64835 A2 Â A1 Â A3 Â A4

TNRS(A∗, Ai) [17] 0.88829 0.98252 0.96212 0.89749 A2 Â A3 Â A4 Â A1

Note that, it is shown that similarity measure methods proposed in the paper is generally
coherent by other similarity measure methods proposed before.
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4.3. Multi-attribute decision making under INR-environment
Let alternatives Ai(i = 1, 2, ..., k) are characterized by INR-values for each criterion Cj(j =

1, 2, ..., s) as follows:

Ai =

{
〈Cj , ([t1

L
Ai

(Cj), t1
U
Ai

(Cj)], ..., [tpL
Ai

(Cj), tpU
Ai

(Cj)]), ([i1
L
Ai

(Cj), i1
U
Ai

(Cj)], ..., [ipL
Ai

(Cj), ipU
Ai

(Cj)]),
([f1L

Ai
(Cj), f1U

Ai
(Cj)], ..., [fpL

Ai
(Cj), fpU

Ai
(Cj)])〉 : Cj ∈ C

}
.

For convenience, ([t1
L
Ai

(Cj), t
1U
Ai

(Cj)], ..., [t
pL
Ai

(Cj), t
pU
Ai

(Cj)]), ([i
1L
Ai

(Cj), i
1U
Ai

(Cj)], ..., [i
pL
Ai

(Cj),

ipU
Ai

(Cj)]) and ([f 1L
Ai

(Cj), f
1U
Ai

(Cj)], ..., [f
pL
Ai

(Cj), f
pU
Ai

(Cj)]) are denoted by ([t1
L
ij], ..., [t

pU
ij]),

([i1
L
ij], ..., [i

pU
ij]) and ([f 1L

ij], ..., [f
pU
ij]), respectively. So INR-value θij = 〈([t1L

ij, t
1U
ij], ..., [t

pL
ij, t

pU
ij]),

([i1
L
ij, i

1U
ij], ..., [i

pL
ij, i

pU
ij]), ([f

1L
ij, f

1U
ij], ..., [f

pL
ij, f

pU
ij])〉(i = 1, 2, ..., k; j = 1, 2, ..., s) which is generally

obtained from the evaluation of the alternative Ai with related to the criteria Cj by opinion of
expert or decision maker. Thus, INR-decision matrix D = [θij]k×s can be constructed.

Here, for benefit criteria (BC) and cost criteria (CC) ideal INR-values are defined, respectively,
as follows:

• θ∗j = 〈(t1∗j , ..., tp∗j ), (i1∗j , ..., ip∗j ), (f1∗
j , ..., f

p∗
j )〉 =

〈 ([maxi(t1
L
ij),maxi(t1

U
ij)], ..., [maxi(tpL

ij),maxi(tpU
ij)]),

([mini(i1
L
ij),mini(i1

U
ij)], ..., [mini(ipL

ij),mini(ipU
ij)]),

([mini(f1L
ij),mini(f1U

ij)], ..., [mini(fpL
ij),mini(fpU

ij)])

〉

• θ∗j = 〈(t1∗j , ..., tp∗j ), (i1∗j , ..., ip∗j ), (f1∗
j , ..., f

p∗
j )〉 =

〈 ([mini(t1
L
ij),mini(t1

U
ij)], ..., [mini(tpL

ij),mini(tpU
ij)]),

([maxi(i1
L
ij),maxi(i1

U
ij)], ..., [maxi(ipL

ij),maxi(ipU
ij)]),

([maxi(f1L
ij),maxi(f1U

ij)], ..., [maxi(fpL
ij),maxi(fpU

ij)])

〉
,

Here equations are called positive ideal solution and negative ideal solution, respectively. Also set
of ideal INR-values will be denoted by Ä∗.

Algorithm

Step 1: Determination of BC and CC criteria

Step 2: Determination of ideal INR-values Ä∗ solution

Step 3: Calculation of weighted similarity measures

In this step, using one of the Eq. (18), Eq. (19) or Eq.(20) weighted similarity measures
between the ideal alternative Ä∗ and INR-sets Ai(i = 1, 2, ..., k) are calculated.

Step 4: Ranking of the alternative

According to the values obtained using one of the Eq. (18), Eq. (19) or Eq.(20), the ranking
order of all the alternatives can be easily determined.

Example 4. In this example, alternatives and criteria given in previous illustrative example will
be considered under INR-environment. The four alternatives are to evaluated under the criteria by
INR-values provided by decision maker. These values are shown in INR-decision matrix as follows:
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D = [θij ]k×r =




〈 ([.2, .3], [.2, .5], [.4, .7]),
([.3, .4], [.3, .6], [.5, .9]),
([.2, .5], [.4, .7], [.8, .8])

〉 〈 ([.1, .5], [.4, .5], [.6, 1]),
([.2, .4], [.3, .7], [.7, .8]),
([.1, .2], [.3, .8], [.3, .8])

〉 〈 ([.0, .3], [.3, .5], [.3, 9]),
([.1, .2], [.5, .6], [.6, .6]),
([.5, .5], [.6, .7], [.9, .9])

〉

〈 ([.1, .2], [.2, .8], [.4, .8]),
([.4, .5], [.3, .6], [.5, .7]),
([.1, .3], [.4, .5], [.8, .8])

〉 〈 ([.1, .4], [.4, .5], [.6, .6]),
([.2, .3], [.3, .4], [.7, .8]),
([.1, .5], [.3, .6], [.3, .7])

〉 〈 ([.0, .3], [.3, .4], [.3, 5]),
([.1, .6], [.5, .6], [.6, .7]),
([.5, .8], [.6, .8], [.9, 1])

〉

〈 ([.1, .4], [.2, .5], [.4, .6]),
([.3, .4], [.3, .4], [.6, .7]),
([.2, .3], [.4, .5], [.8, 1])

〉 〈 ([.2, .3], [.4, .5], [.6, .7]),
([.2, .5], [.3, .6], [.7, .8]),
([.1, .2], [.3, .4], [.4, .5])

〉 〈 ([.0, .1], [.3, .3], [.3, .4]),
([.1, .2], [.5, .6], [.6, .7]),
([.5, .6], [.6, .7], [.9, .9])

〉

〈 ([.1, .4], [.2, .4], [.4, .4]),
([.3, .5], [.3, .6], [.5, .6]),
([.2, .5], [.4, .6], [.8, .9])

〉 〈 ([.1, .5], [.4, .5], [.4, .6]),
([.2, .4], [.3, .5], [.7, .9]),
([.2, .2], [.3, .4], [.3, .4])

〉 〈 ([.0, .2], [.3, .4], [.3, .5]),
([.1, .4], [.5, .6], [.6, .8]),
([.5, .6], [.6, .7], [.9, 1])

〉




Step 1: Let us consider C1 and C2 as benefit criteria and C3 as cost criterion.

Step 2: From INR-decision matrix, ideal alternative Ä∗ can be obtained as follows:

Ä∗ =
{
〈([.2, .4], [.2, .8], [.4, .8]), ([.3, .4], [.3, .4], [.5, .6]), ([.1, .3], [.4, .5], [.8, .8])〉,
〈([.2, .5], [.4, .5], [.6, 1]), ([.2, .3], [.3, .4], [.7, .8]), ([.1, .2], [.3, .4], [.3, .4])〉
〈([.0, .1], [.3, .3], [.3, .4]), ([.1, .6], [.5, .6], [.6, .8]), ([.5, .8], [.6, .8], [.9, 1])〉

}
.

Step 3: By using the Eq. (18), Eq. (19) and Eq. (20) similarity measures and weighted
similarity measures are obtained as in Table 5.

Step 4: Rankings of the alternatives are shown in last column of Table 5.

Table 5: Similarity measure values and ranking of alternatives under INR-environment
Similarity measure i = 1 i=2 i=3 i=4 Ranking order

(Ä∗, Ai)J 0.89674 0.94268 0.93521 0.93702 A2 Â A4 Â A3 Â A1

(Ä∗, Ai)D 0.94405 0.96944 0.96546 0.96689 A2 Â A4 Â A3 Â A1

(Ä∗, Ai)C 0.95629 0.97093 0.97344 0.97320 A2 Â A3 Â A4 Â A1

W (Ä∗, Ai)J 0.89348 0.94992 0.93656 0.93731 A2 Â A4 Â A3 Â A1

W (Ä∗, Ai)D 0.94212 0.97339 0.96612 0.96701 A2 Â A4 Â A3 Â A1

W (Ä∗, Ai)C 0.95421 0.97463 0.65693 0.97360 A3 Â A2 Â A4 Â A1

5. Consistency analysis of similarity measures based INR-sets

In this section, so as to determine which similarity measure gives more consistent results, a
methods is developed.

Let A = {A1, A2, ..., Ak} be a set of alternatives, C = {C1, C2, ..., Cs} be a set of criteria and Ä∗

be set of ideal alternative values obtained from decision matrix defined in illustrative example of
similarity measures based on INR-set. Then, consistencies of the similarity measures and weighted
similarity measures based INR-values are defined, respectively, as follows:
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Con(Λ) =
1

k

k∑
i=1

|(Ä∗L

, Ai
L)Λ − (Ä∗U

, Ai
U)Λ|.

ConW (Λ) =
1

k

k∑
i=1

|W (Ä∗L

, Ai
L)Λ −W (Ä∗U

, Ai
U)Λ|.

Here, Ä∗L
and Ä∗U

are determined with help of INR-decision matrix using formula of benefit
criteria (BC) and cost criteria (CC) given as follows: For ∆ ∈ {L = lower, U = upper}

• δ∗j
∆ = 〈(t1∗∆j , ..., tp∗∆j ), (i1∗

∆

j , ..., ip∗∆j ), (f1∗∆
j , ..., fp∗∆

j )〉 =

〈 (maxi(t1
∆
ij), ...,maxi(tp∆

ij)),
(mini(i1

∆
ij), ...,mini(ip∆

ij)),
(mini(f1∆

ij), ...,mini(fp∆
ij)])

〉

• δ∗j
∆ = 〈(t1∗∆j , ..., tp∗∆j ), (i1∗

∆

j , ..., ip∗∆j ), (f1∗∆
j , ..., fp∗∆

j )〉 =

〈 (mini(t1
∆
ij), ..., mini(tp∆

ij)),
(maxi(i1

∆
ij), ..., maxi(ip∆

ij)),
(maxi(f1∆

ij), ..., maxi(fp∆
ij))

〉
,

respectively.

Also Ä∗L
=

{
〈(t1∗Lj , ..., tp∗Lj ), (i1

∗L
j , ..., ip∗Lj ), (f 1∗L

j , ..., f p∗L
j ) : i ∈ Ip

}
and

Ä∗U
=

{
〈(t1∗Uj , ..., tp∗Uj ), (i1

∗U
j , ..., ip∗Uj ), (f 1∗U

j , ..., f p∗U
j )〉 : i ∈ Ip

}
.

Example 5. Let us consider the Example 4. Then for all Λ ∈ {J,D, C}, results and orderings
are obtained as in Table 6,

Note that, Con(Ä∗, Ai)J ≥ Con(Ä∗, Ai)D ≥ Con(Ä∗, Ai)C . Since consistency degree of Jaccard
similarity measure under INR environment is higher than consistency degrees of Dice and Cosine
similarity measures, it is more convenient using the Jaccard similarity measure for discussed
problem. If weighted similarity measures are considered, on the grounds that ConW (Ä∗, Ai)D ≥
ConW (Ä∗, Ai)C ≥ ConW (Ä∗, Ai)J , it is more convenient using the Dice similarity measure for
discussed problem.

6. Conclusion

In this paper, three similarity measure methods are developed for SVNR-set and INR-sets based
on Jaccard, Dice and Cosine similarity measures. Furthermore, applications of proposed similarity
measure methods are given in multi-criteria decision making, and is given comparative analysis
of various similarity measures under SVNR-environment. Also a method is developed in order to
compare similarity measures of INR-sets, and an application of this method is given. However, I
hope that the main thrust of proposed formulas will be in the field of equipment evaluation, data
mining and investment decision making. Also in future, similarity measure methods for INR-sets
can be proposed based on the methods other than Jaccard, Dice and Cosine similarity measures.
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(Ä
∗U

,A
i)

C
}

{0
.9

92
82

,0
.9

44
34
}

{0
.9

89
62

,0
.9

70
80
}

{0
.9

90
91

,0
.9

70
80
}

{0
.9

81
01

,0
.9

70
93
}

0.
02

34
5

18



[3] A.Q. Ansari, R. Biswas, S. Aggarwal, Proposal for Applicability of Neutrosophic Set Theory
in Medical AI, International Journal of Computer Applications 27(5), (2011).
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