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“It is the spirit that quickeneth; the flesh profiteth nothing: the words that I speak unto you, they are spirit, and they are life.” - John 6:63.

ABSTRACT. I derive some infinite product representations for the exponential func-
tion.

1. INTRODUCTION

In present paper, I deduct the following infinite product representation for the expo-
nential function

o]

@+ 1! H (n+2Y(n+ 1" (n+2)"+
(ze)z (n+ 1)znn(n+z+ 1)n+z+1

ﬁ (1+n+1>7
)(1+n+z>n+z

n=1

therefrom, I put some beautiful infinite products
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thereout, I put other pretty infinite products
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2. THE INFINITE PRODUCT REPRESENTATION FOR THE EXPONENTIAL FUNCTION
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2 THE EXPONENTIAL FUNCTION AND ITS INFINITE PRODUCT

Theorem 2.1. If z€ Ry, then
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where e* denotes the exponential function.

Proof. In [1, p. 4, Corollary 8, (13)], I have a new integral representation for the natural
logarithm function. Thereupon, I derive the following power series
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Integrate both members of the (2.2) from 0 at z with respect to x, as follows
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I easily calculate the integrals
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Substitute the rigth hand side of (2.4), (2.5) and (2.6) into both members of (2.3), and
obtain
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The exponentiation of (2.7) give us
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which are the desired results. ]
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Example 2.2. Put z=1 in Theorem 2.1 and encounter
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Exercise 2.1. Prove that, for zE€ R,
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Corollary 2.4. Ifz€ Ry, then
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where e* denotes the exponential function.

Proof. From left hand side of the Theorem 2.1, I get
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On the other hand, in [2, Lemma 1, p. 2], I find
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provided to a,b €R and b#0.
From (2.10), I easily deduce that
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Now, from Theorem 2.1, (2.9) and (2.11), it follows that
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which are the desired results.

Example 2.5. Put z=1 in Theorem 2.1 and encounter
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Example 2.6. Put z=2 in Theorem 2.1 and encounter
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