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Abstract

In this paper, we study a k-partition problem where a set of
agents must be partitioned into a fixed number of k non-
empty coalitions. The value of a partition is the sum of the
pairwise synergies inside its coalitions. Firstly, we aim at
computing a partition that is robust to failures from any set of
agents with bounded size. Secondly, we focus on resiliency:
when a set of agents fail, others can be moved to replace them.
We settle the computational complexity of decision problem
ROBUST-k-PART as complete for class ΣP

2 . We also conjec-
ture that resilient k-partition is complete for class ΣP

3 under
simultaneous replacements, and for class PSPACE under se-
quential replacements.

Model
We introduce relevant notation for k-partition problems.
Given i ∈ N≥1, set [i] are integers {1, 2, . . . , i}. Set N =
{1, . . . , n} are the agents. Given fixed integer k ∈ N≥1, a
k-partition π = {C1, . . . , Ck} of set N is a collection of
coalitions Ci ⊆ N such that ∀C,D ∈ π, C ∩ D = ∅ and
N =

⋃
i∈[k] Ci. No coalition shall be empty, otherwise we

call π a partition. For agent i ∈ N , let π(i) denote the coali-
tion to which she belongs.

Synergy function w : N ×N → Z maps any two agents
i, j ∈ N to their synergy w(i, j) ∈ Z, the additional value
they obtain for being in the same coalition. Function w sat-
isfies w(i, j) = w(j, i) and w(i, i) = 0 for any i, j ∈ N .
The value that an agent i gives to a k-partition π is defined
by vi(π) =

∑
j∈π(i) w(i, j), the sum of synergies between

her and the other agents in the same coalition. It follows that
the utilitarian value v(π) = 1

2

∑
i∈N vi(π) can also be de-

fined as v(π) =
∑
C∈π

∑
{i,j}⊆C w(i, j), the sum of syn-

ergies between pairs in a same coalition. If some coalition
is empty, then π is not a k-partition, but a partition: in that
case, we extend v to v(π) = −∞.

Any set M ⊆ N of at most m ∈ N≥0 agents might fail.
Given a k-partition π of setN , resulting partition π−M of set
N \M is defined as {C \M | C ∈ π} (and might contain
empty coalitions). The robustness value of π is

v−(π) = minM⊆N,|M |≤m{v(π−M )}.
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To obtain v−(π) 6= −∞, every coalition in π shall contain
at least m+ 1 agents, so that no coalition of π−M is empty.

Once agentsM ⊆ N fail andN\M remain, replacements
are possible, by moving any subset R ⊆ N \M of m other
agents, with a replacement function ρ : R → π. For agent
i ∈ R, ρ(i) is her new coalition. For coalition C ∈ π, ρ(C)
are the agents newly moved to C. Hence, given k-partition
π = {C1, . . . , Ck}, set M ⊆ N of m failing agents and
replacements R ⊆ N \M, |R| ≤ m and ρ : R → π, the
repaired partition πR,ρ−M is {(C ∪ρ(C))\ (M ∪R) | C ∈ π}.
Given k-partition π, its resiliency value is

v+(π) = min
M

max
R,ρ

{
v
(
πR,ρ−M

)}
,

where M ⊆ N has size |M | ≤ m, R ⊆ N \M has size
|R| ≤ m, and ρ : R → π is a map. As long as 2m ≤
n, given a k-partition π and a failing set M , there always
exists a replacement R, ρ that repairs partition π−M into a
k-partition πR,ρ−M ; hence, one always has v+(π) 6= −∞.

In such a simultaneous replacement, all agents in M fail
at once, after which all agents in R are moved by ρ. We
shall only require from R, ρ that for every coalition C ∈ π,
(C ∪ ρ(C)) \ (M ∪ R) is non-empty. In a sequential re-
placement, there are up to m rounds. The idea is that in
each round t ∈ [m], one new agent ft fails, and then
one remaining agent rt is moved to coalition ρt(rt). Let
Mt = {f1, . . . , ft} denote the agents who failed up to
round t. It satisfies ft ∈ N \ Mt−1 and |Mt| = t. Let
Rt = {. . . , rt} and ρt : Rt \ Mt → π denote replace-
ments up to round t. While rt ∈ N \Mt always holds, a
same agent can be moved in two rounds, and an agent who
moved can fail later, so that only |Rt \Mt| ≤ t is true, in-
stead of |Rt \ Mt| = t. Crucially, on any round t ∈ [m],
πRt,ρt
−Mt

has no empty coalition. In other words, if failure ft
empties a coalition, then it shall be replaced by rt, ρt(rt). A
valid strategy σ maps any history (Mt, Rt−1, ρt−1) (failures
set Mt and replacements Rt−1, ρt−1) to next replacement
(rt, ρt(rt)) = σ(Mt, Rt−1, ρt−1), while never letting any
coalition of πRt,ρt

−Mt
empty, for any round t. Strategy σ, for

any sequence of failures f1, . . . , fm alternated with the re-
placements of σ, induces final replacements Rm, ρm.

We assume that the following concepts are common
knowledge: decision problem, length function, polynomial-



time many-to-one reduction, hardness, completeness and
classes P, NP, coNP, ΣP2 , ΠP

2 , ΣP3 , PH and PSPACE.
Definition 1. We study this sequence of decision problems:
• ROBUST-k-PART/VERIF

Given n agents, synergies w, a number m of failing
agents, a k-partition π and a threshold θ ∈ Z, does ro-
bustness value v−(π) satisfy v−(π) ≥ θ?

• ROBUST-k-PART
Given n agents, synergiesw, a numberm of failing agents
and a threshold θ ∈ Z, is there a k-partition π with robust-
ness value satisfying v−(π) ≥ θ?

• SIMRES-k-PART/VERIF2
Given n agents, synergies w, k-partition π, set M ⊆ N
of m failures and threshold θ ∈ Z, is there a replacement
R ⊆ N \M, |R| ≤ m, ρ : R→ π such that v(πR,ρ−M ) ≥ θ?

• SIMRES-k-PART/VERIF
Given n agents, synergies w, k-partition π and threshold
θ ∈ Z, does resiliency value v+(π) satisfy v+(π) ≥ θ?

• SIMRES-k-PART
Given n agents, synergies w and threshold θ ∈ Z, is there
a k-partition π with resiliency value v+(π) ≥ θ?

• SEQRES-k-PART/STR
Given n agents, synergies w, k-partition π and threshold
θ ∈ Z, does a valid strategy σ exist such that for any
sequence of failures f1, . . . , fm, the final replacements
Rm, ρm induced by σ are such that v(πRm,ρm

−Mm
) ≥ θ?

• SEQRES-k-PART
Given n agents, synergies w and threshold θ ∈ Z, does a
k-partition π and valid strategy σ exist such that for any
sequence of failures f1, . . . , fm, the final replacements
Rm, ρm induced by σ are such that v(πRm,ρm

−Mm
) ≥ θ?

The Complexity of Robust k-Partition
In this section, we settle the computational complexity of
robust k-partition as complete for the second level of the
polynomial hierarchy.
Theorem 1. ROBUST-k-PART/VERIF is coNP-complete.
(It holds even for k = 1, synergies w in {0, 1} and θ = 1.)

Proof. Decision problem ROBUST-k-PART/VERIF, given n
agents, synergies w, a number m of failing agents, a k-
partition π and a threshold θ ∈ Z, asks whether:

∀M ⊆ N, |M | ≤ m, v(π−M ) ≥ θ.

This problem is in class coNP, since for any no-instance, a
failing set M such that v(π−M ) ≤ θ − 1 is a no-certificate
verifiable in polynomial-time. We show coNP-hardness by
complementary reduction from MINVERTEXCOVER. Let
graph G = (V,E) and threshold m ∈ N be any instance of
MINVERTEXCOVER, which asks whether there exists a sub-
set U ⊆ V, |U | ≤ m such that ∀{i, j} ∈ E, i ∈ U or j ∈ U ,
i.e. every edge is covered by a vertex in U . We reduce it to a
ROBUST-k-PART/VERIF instance with agents N ≡ V , syn-
ergies w(i, j) ∈ {0, 1} equal to one if and only if {i, j} ∈ E
(otherwise zero) and threshold θ = 1. Our k-partition π is
the grand coalition (k = 1).

N1,0 N2,0 N|I|,0

N1,1 N2,1 N|I|,1

−L
−L

−Lw = 2 for edges in E

w = 1 for edges not in E

Figure 1: We reduce any instance of MAXMINVERTEX-
COVER G = (V,E) where V =

⋃
i∈I(Vi,0 ∪ Vi,1) and m is

a threshold, to the following instance of ROBUST-k-PART.
Agents N ≡ V are identified with vertices, hence can be
partitionned the same into N =

⋃
i∈I(Ni,0 ∪ Ni,1). We fix

k = 2 coalitions and choose a large number L, e.g. L = n2.
For every {i, j} ∈ P2(N), if {i, j} ∈ E, we define synergy
w(i, j) = 2; otherwise if {i, j} /∈ E, we define w(i, j) = 1;
but for every ` ∈ I and every (i, j) ∈ N`,0×N`,1, where we
define synergy w(i, j) = −L. Up to 2m agents might fail,
and the threshold is defined in the proof.

(yes⇒no) If there exists a vertex cover U ⊆ V, |U | ≤ m,
then failing set M ≡ U is such that any synergy w(i, j)
equal to one has i ∈M or j ∈M , hence disappears from π
in π−M , and value is v(π−M ) ≤ 0.

(yes⇐no) If there is a failing set M ⊆ N, |M | ≤ m such
that v(π−M ) ≤ 0, then any synergy w(i, j) equal to one has
i ∈M or j ∈M . Therefore, U ≡M is a vertex cover.

If k > 1, this result still holds (when coalitions are larger
than any failing set). It suffices to copy the construction
above into k identical coalitions and ask for at most km
failing agents. The yes⇒no part is trivially the same. Con-
cerning yes⇐no, even though a failing set of size at most
km might be unequally distributed between the k identical
coalitions, the coalition containing the smallest failing sub-
set gives a vertex cover smaller than m.

Theorem 2. ROBUST-k-PART is ΣP2 -complete.
(It holds even for k = 2 coalitions and w ∈ {−n2, 1, 2})

Proof. Decision problem ROBUST-k-PART, given n agents,
a number k of coalitions, synergies w, a number m of fail-
ures and a threshold θ ∈ Z, asks whether:

∃ k-partition π, ∀M ⊆ N, |M | ≤ m, v(π−M ) ≥ θ.

It lies in class ΣP2 , since for yes-instances, such a k-partition
π is a certificate that can be verified by an NP-oracle
on remaining coNP problem ROBUST-k-PART/VERIF. We
show ΣP2 -hardness by a complementary reduction from
ΠP

2 -complete problem MAXMINVERTEXCOVER, defined
as follows. Given a finite graph G = (V,E) which ver-
tices are partitionned by a finite index set I into V =⋃
i∈I(Vi,0 ∪ Vi,1), for a function p : I → {0, 1}, we define

V (p) =
⋃
i∈I Vi,p(i) and G(p) = G[V (p)]. Given a threshold



m ∈ N, the problem asks whether:

∀p :I→{0, 1},∃U ⊆ V (p), |U |≤m,U vertex covers G(p).

where “U vertex covers G(p)” means ∀{u, v} ∈ E[V (p)],
u ∈ U or v ∈ U . Since edges between Vi,0 and Vi,1 are
never relevant, we can shave E from them. One can assume
that all Vi,j sets have the same size, hence whatever p, set
V (p) has constant size n (and |V | = 2n). The reduction is
described in Figure 1. That construct is a no-instance when:

∀2-partition π,∃M⊆N, |M |≤2m, v(π−M )≤fn,m(m),

where fn,m : [0, 2m] → [0, n2] is defined later. First of all,
this condition is trivially satisfied on 2-partitions π where
two agents (i, j) ∈ N`,0×N`,1 are in the same coalition and
value v(π−∅) incurs synergy w(i, j) = −L. Hence, the in-
teresting part of this condition is on the other 2-partitions:
the proper 2-partitions π = {C1, C2}, that can be char-
acterized by a function q : I → {0, 1} such that coali-
tions are C1 =

⋃
i∈I Ni,q(i) and C2 =

⋃
i∈I Ni,1−q(i), and

|C1| = |C2| = n. Since the remaining synergies are posi-
tive, we can focus on failures of size |M | = 2m. Function
fn,m maps x ∈ [0, 2m] to the number of in-coalition agent
pairs in a proper 2-partition π = {C1, C2} when 2m agents
fail: x in C1 and 2m− x in C2.

fn,m(x) = n(n− 1)/2−
∑x

i=1
(n− i)

+ n(n− 1)/2−
∑2m−x

j=1
(n− j)

= gn,m + x(x− 2m),

where gn,m is constant w.r.t. x. It is a strictly convex function
with minimum x = m, hence for an integer x 6= m, inequal-
ity fn,m(m) + 1 ≤ fn,m(x) holds. Assuming all remaining
synergies have value 1 (instead of 1 or 2) yields fn,m(x) as a
lower bound on v(π−M ). Therefore, the main condition can
only be satisfied by balanced failures M = M1 ∪M2 such
that M1 ⊆ C1, M2 ⊆ C2 and |M1| = |M2| = m. We can
now proceed with the proof.

(yes⇒no) Any subgraph G(p) admits a vertex cover U ⊆
V (p) with size |U | ≤ m. Let us show that any proper 2-
partition π = {C1, C2} (characterized by function q : I →
{0, 1}) can be failed to fn,m(m). Let M1 ⊆ C1 corre-
spond to the vertex cover of subgraph G(q) and M2 ⊆ C2 to
G(1−q). Then, failing setM = M1∪M2 has size |M | ≤ 2m,
is balanced, and any agent pair i, j of synergy two in π has i
or j inM , thanks to the vertex covers: v(π−M ) = fn,m(m).

(yes⇐no) Any proper 2-partition π = {C1, C2} (charac-
terized by function q : I → {0, 1}) admits a well balanced
failing set M = M1 ∪M2 such that v(π−M ) ≤ fn,m(m).
Then it must be the case that M1 (and M2) covers all the
agent pairs of synergy two in C1 (resp. C2) that corre-
spond to the edges of G(q) (resp. G(1−q)). Let any function
p : I → {0, 1}. Then the proper 2-partition characterized by
function p provides vertex cover U ≡M1 for G(p).

The Complexity of Resilient k-Partition
We conjecture Theorems 3-7:
Theorem 3. SIMRES-k-PART/VERIF2 is NP-complete.

Theorem 4. SIMRES-k-PART/VERIF is ΠP
2 -complete.

Theorem 5. SIMRES-k-PART is ΣP3 -complete.

Theorem 6. SEQRES-k-PART/STR is PSPACE-complete.

Theorem 7. SEQRES-k-PART is PSPACE-complete.

Related Work
Partitioning of a set into (non-empty) subsets may also be re-
ferred as coalition structure formation of a set of agents into
coalitions. When a number of coalitions k is required and
there are synergies between vertices/agents, this problem is
referred as k-cut, or k-way partition, where one minimizes
the weight of edges/synergies between the coalitions, or
maximizes it inside the coalitions. For positive weights and
k ≥ 3, this problem is NP-complete (Dahlhaus et al. 1992),
when one vertex is fixed in each coalition. For positive
weights and fixed k, a polynomial-time O(nk

2

T (n,m)) al-
gorithm exists (Goldschmidt and Hochbaum 1994), when no
vertex is fixed in coalitions, and where T (n,m) is the time
to find a minimum (s, t) cut on a graph with n vertices and
m edges. When not too many negative synergies exist (that
is, negative edges can be covered by O(log(n)) vertices),
an optimal k-partition can be computed in polynomial-time
(Sless et al. 2018). Various formulations of the robust and
resilient problem studied were initially proposed by (Kraus
and Yokoo 2017). The complexity results in this paper result
from an original work in July and August 2018, between
Anisse Ismaili and Emi Watanabe.

References
Dahlhaus, E.; Johnson, D. S.; Papadimitriou, C. H.; Sey-
mour, P. D.; and Yannakakis, M. 1992. The complexity
of multiway cuts (extended abstract). In Proceedings of the
Twenty-fourth Annual ACM Symposium on Theory of Com-
puting, STOC ’92, 241–251. New York, NY, USA: ACM.
Goldschmidt, O., and Hochbaum, D. S. 1994. A polynomial
algorithm for the k-cut problem for fixed k. Mathematics of
Operations Research 19(1):24–37.
Kraus, S., and Yokoo, M. 2017. private communication.
Sless, L.; Hazon, N.; Kraus, S.; and Wooldridge, M. 2018.
Forming k coalitions and facilitating relationships in social
networks. Artificial Intelligence 259:217 – 245.


