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M
agic squares have interested (recre-
ational) mathematicians for hundreds,
if not thousands, of years. A magic

square is a n×n grid filled with integers such
that the sum of integers in each row, column
and diagonal is equal to a magic constant M .

There are various ways to construct magic squares.
For odd integers, probably the most famous one is
the Siamese method where one also requires that the
grid is filled with distinctive positive integers in the
range 1, . . . , n2. Below is an example when n = 5 (Du
Royaume de Siam, 1693):

17 24 1 8 15

23 5 7 14 16

4 6 13 20 22

10 12 19 21 3

11 18 25 2 9

But what would happen if the grid would be infinite?

The simplest “solution” to this problem would be
setting all cells to zero

⋱ ⋮ ⋮ ⋮ ⋱
⋯ 0 0 0 ⋯
⋯ 0 0 0 ⋯
⋯ 0 0 0 ⋯
⋱ ⋮ ⋮ ⋮ ⋱

but this is not what we are really after here. We
can obtain a slightly more interesting solution by
subtracting the middle value from a Siamese magic

square and adding zeros elsewhere:

⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱
⋯ 0 0 0 0 0 0 0 ⋯
⋯ 0 4 11 −12 −5 2 0 ⋯
⋯ 0 10 −8 −6 1 3 0 ⋯
⋯ 0 −9 −7 0 7 9 0 ⋯
⋯ 0 −3 −1 6 8 −10 0 ⋯
⋯ 0 −2 5 12 −11 −4 0 ⋯
⋯ 0 0 0 0 0 0 0 ⋯
⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

This procedure gives us an infinite magic square
where the sum in each row, column and diagonal is
equal to zero. This still does not feel quite right as
the infinite square has nonzero elements only in the
middle.

But what about the infinite square below?

⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱
⋯ −1 +1 −1 +1 −1 +1 −1 ⋯
⋯ +1 −1 +1 −1 +1 −1 +1 ⋯
⋯ −1 +1 −1 +1 −1 +1 −1 ⋯
⋯ +1 −1 +1 −1 +1 −1 +1 ⋯
⋯ −1 +1 −1 +1 −1 +1 −1 ⋯
⋯ +1 −1 +1 −1 +1 −1 +1 ⋯
⋯ −1 +1 −1 +1 −1 +1 −1 ⋯
⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

(∞)

It already looks quite magical with only +1 and -1
entries. But where would the series in each row,
column and diagonal sum to?

One can note that up, down, left and right
from each diagonal cell we have Grandi’s series
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∑∞n=1(−1)n−1 = 1 − 1 + 1 − 1 + 1 − 1 + . . . Grandi’s
series is Cesàro summable, with Cesàro sum 1/2. One
way to justify this value is to set

S = 1 − 1 + 1 − 1 + 1 − 1 + . . .
and then note that S = 1−S, and hence S = 1/2. Now
one may calculate

. . . + 1 − 1 + 1 − 1 + . . . = −1 +
∞

∑
n=0

(−1)n +
∞

∑
n=0

(−1)n

= −1 + 1/2 + 1/2 = 0.

Thus, the series in every row and column are Cesàro
summable, with Cesàro sum 0. But what about the
diagonals?

In both diagonals, after the center cell we have
−1 − 1 − 1 − 1 − . . . One can recognize this series as a
specific case of the Riemann zeta function

ζ(s) =
∞

∑
n=1

1

ns

when s = 0. We have that ζ(0) = −1/2, thus one may
write −1 − 1 − 1 − 1 − . . . = −ζ(0) = 1/2. In fact, this
series is related to Grandi’s series via the Dirichlet
eta function

η(s) =
∞

∑
n=1

(−1)n−1
ns

= (1 − 21−s)ζ(s).

Now when s = 0, we have that

1 − 1 + 1 − 1 + . . . = η(0) = −ζ(0) = −1 − 1 − 1 − 1 − . . .
The diagonals are

. . . − 1 − 1 − 1 − 1 − . . . = −1 −
∞

∑
n=1

1

n0
−

∞

∑
n=1

1

n0

= −1 − ζ(0) − ζ(0) = 0.

Now the infinite square (∞) is indeed an infinite
magic square as the series in every row, column and
diagonal are equal (in above sense) to the magic
constant M = 0.

We note that by multiplying the infinite magic
square (∞) with an integer a, we obtain another
infinite magic square with M = 0. If we set a = −1,
we obtain the “evil twin:”

⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱
⋯ +1 −1 +1 −1 +1 −1 +1 ⋯
⋯ −1 +1 −1 +1 −1 +1 −1 ⋯
⋯ +1 −1 +1 −1 +1 −1 +1 ⋯
⋯ −1 +1 −1 +1 −1 +1 −1 ⋯
⋯ +1 −1 +1 −1 +1 −1 +1 ⋯
⋯ −1 +1 −1 +1 −1 +1 −1 ⋯
⋯ +1 −1 +1 −1 +1 −1 +1 ⋯
⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

If we square the values of the magic square (∞), we
obtain an infinite square full of ones:

⋱ ⋮ ⋮ ⋮ ⋱
⋯ 1 1 1 ⋯
⋯ 1 1 1 ⋯
⋯ 1 1 1 ⋯
⋱ ⋮ ⋮ ⋮ ⋱

In every direction we have

. . . + 1 + 1 + 1 + 1 + . . . = 1 +
∞

∑
n=1

1

n0
+

∞

∑
n=1

1

n0

= 1 + ζ(0) + ζ(0) = 0.

Thus, it is also an infinite magic square. This new
square, however, seems little bit less magical than
the original one (∞).
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