
On the representation of even integers by the
sum of prime numbers

Zeraoulia Elhadj
Department of Mathematics, University of Tébessa, (12002), Algeria

E-mail: zelhadj12@yahoo.fr

August 25, 2018

Abstract
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1 Introduction

The well known strong Goldbach conjecture [1] states:

Conjecture 1 Every even integer greater than 2 can be expressed as the sum
of two primes.

Conjecture 1 was verified numerically by several authors [2-3-4-5] but
remains unproven as one the oldest unsolved problems in number theory.
Some recent progress in this direction were made toward proving Conjecture
1. For example, Ramaré [6] showed that every even natural number can be
expressed as the sum of at most six primes. The method of analysis is based
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on the Bombieri sieve [13] to obtain a sharp effective bound in the absence of
any progress on the Siegel zero problem. However, the obtained constants in
[6] are not computable explicitly. In [7], Tao showed that every odd number
greater than 1 can be expressed as the sum of at most five primes improving
the result of Ramaré [6]. The idea of the proof is based on the circle method of
Hardy-Littlewood and Vinogradov [8], together with a variant of Vaughan’s
identity [9]. In [10-11] Helfgott showed that the ternary Goldbach conjecture
is true, i.e., Every odd integer greater than 5 is the sum of three primes.
The main objective of this short note is to prove that Conjecture 1 is

equivalent to a true trivial case. The analysis is based on a new prime
formula and some trigonometric expressions.

2 Preliminary results

Let (pm)m∈N denotes the sequence of odd primes. Let x ∈ R, then bxc denotes
the floor function, i.e., the largest integer not greater than x. We have

bxc = j ⇔ j ≤ x < j + 1

and for all j ∈ N, we have

bx+ jc = bxc+ j (1)

Let r ≥ 4 be any positive integer and define

αr =
+∞∑
m=1

pmr
−m2

(2)

Equality (2) was proposed in [12] as a series defined by primes. We have
proved the following result:

Lemma 2 The series (2) defining αr is convergent.

Proof. We have pm ≤ rm because by induction: p1 = 2 < 4 ≤ r1 = r.
Assuming that m ≥ 2 and pm ≤ rm, then by the Bertrand’s Postulate, we
have pm+1 < 2× pm < 2× rm < r × rm = rm+1. So the series defining αr is
convergent since via the Cauchy root test we have:

m

√
pm
rm2 <

m

√
rm

rm2 =
1

rm−1
≤ 1

4m−1
≤ 1
4
< 1.
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Let

δd =
d∑

m=1

pmr
−m2

, d = 1, 2, ...

be the partial sum of the convergent series defining αr. Then we have

Lemma 3 The following inequalities

0 < rd
2

∞∑
m=1+d

pmr
−m2

< 1

0 < rd
2

n−1∑
m=1+d

pmr
−m2

< 1

(3)

holds true for all indices d ≥ 1 and n verifying n ≥ d+ 2.

Proof. To prove the first statement of (3), let m = d+ 1 + l, then

0 < rd
2

∞∑
m=1+d

pmr
−m2

<
∞∑

m=1+d

rd
2+m−m2

=
∞∑
l=0

r−(l+d+2ld+l
2)

≤
∞∑
l=0

r−(l+d+2ld) =
r2d+1

rd (r2d+1 − 1) < 1. (4)

because pm ≤ rm and d2 +m −m2 = − (l + d+ 2ld+ l2) ≤ − (l + d+ 2ld)

and rd
(
r2d+1 − 1

)
− r2d+1 = rd

(
rd+1

(
rd − 1

)
− 1
)
> 0, so, r2d+1

rd(r2d+1−1)
< 1.

The second statement of (3) follows from the first one since

0 < rd
2

n−1∑
m=1+d

pmr
−m2

< rd
2

∞∑
m=1+d

pmr
−m2

< 1

The condition n ≥ d + 2 on the indices d and n implies that the sum
n−1∑

m=1+d

is well defined and not zero since it contain at least one term.
From (4) we conclude that
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
⌊
rd

2
αr

⌋
= rd

2
δd, d = 1, 2, ...

δd = δd−1 +
pd
rd2
, d = 1, 2, ...

(5)

Indeed, the first equation of (5) is verified since by (1) we get

⌊
rd

2

αr

⌋
=

⌊
rd

2
∞∑
m=1

pmr
−m2

⌋
= rd

2

δd +

⌊
rd

2
∞∑

m=1+d

pmr
−m2

⌋
= rd

2

δd

since rd
2
δd ∈ N and 0 < rd

2

∞∑
m=1+d

pmr
−m2

< 1 by (4).

Define the sequence (Hd)d≥2 by:

Hd =
⌊
rd

2

(αr − δd−1)
⌋

(6)

Lemma 4 For all indices d ≥ 2, we have

Hd = pd

Proof. We have Hd ∈ N because it is the integer part of the positive real
number rd

2
(αr − δd−1) since for all d ≥ 2 we have αr > δd−1. It is clear that

Hd = pd because

Hd =
⌊
rd

2

αr

⌋
− rd2δd−1 = rd

2

δd − rd
2

δd−1

= rd
2
(
δd−1 +

pd
rd2

)
− rd2δd−1 = pd

Thus, the sequence (6) is a prime number but written in another equiv-
alent and appropriate form. The new prime formula (6) will be used in the
proof of Theorem 9 below.

Lemma 5 For all d ≥ 2, the real number rd2 (αr − δd−1) is not an integer.
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Proof. We have

rd
2

(αr − δd−1) = rd
2

(
+∞∑
m=1

pmr
−m2 −

d−1∑
m=1

pmr
−m2

)

= rd
2

(
+∞∑
m=d

pmr
−m2

)

= rd
2

(
pdr
−d2 +

+∞∑
m=1+d

pmr
−m2

)

= pd + rd
2

+∞∑
m=1+d

pmr
−m2

is not an integer since 0 < rd
2

∞∑
m=1+d

pmr
−m2

< 1 by Lemma 3.

Lemma 6 For all non-integer x we have

bxc = −1
2
+ x+

arctan (cot πx)

π
(7)

Proof. The cotangent function has period π, then the cotangent of πx has
period 1. By definition, the arc tangent function is defined from R to

]−π
2
, π
2

[
.

Hence, for all x not an integer we have:

arctan (cotπx)

π
=
arctan

(
tan
(
π
2
− πx

))
π

=
1

2
− xmod 1

But, we have

−1
2
+
1

2
+ x− xmod 1 = x− {x} = bxc
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Lemma 7 For all real x and y we have

arctanx+ arctan y =



arctan
(
x+y
1−xy

)
, if xy < 1

or

π + arctan
(
x+y
1−xy

)
, if x > 0, y > 0, xy > 1

or

−π + arctan
(
x+y
1−xy

)
, if x < 0, y < 0, xy > 1

or
π
2
, if x > 0, xy = 1

or
−π
2
, if x < 0, xy = 1

(8)

Proof. Let −π
2
< γ = arctanu < π

2
, −π

2
< α = arctanx < π

2
,−π

2
< β =

arctan y < π
2
, then we have tan γ = tan (α + β) = x+y

1−xy = u. If xy > 1, i.e., x
and y have the same sign, then we have the two cases:
(a) x > 0, y > 0 → u < 0 → γ < 0 → α + β = γ + π, i.e., arctanx +

arctan y = arctan
(
x+y
1−xy

)
+ π

(b) x < 0, y < 0 → u > 0 → γ > 0 → α + β = γ − π, i.e., arctanx +
arctan y = arctan

(
x+y
1−xy

)
− π

For the last two formulas: If x > 0, then 0 < arctanx < π
2
, and if

t = arctanx, then cot t = 1
tan t

= 1
x
, so that arctan 1

x
= π

2
− t. If x > 0,

then arctanx + arctan 1
x
= π

2
. As arctan is an odd function, if x < 0, then

arctanx+ arctan 1
x
= −π

2
.

3 Representation of even integers by the sum
of prime numbers

Let us consider the following conjecture (equivalent to Conjecture 1):

Conjecture 8 For all positive integer k ≥ 3, there exist two primes pλk ≥
3, pµk ≥ 3 such that

pλk + pµk = 2k (9)

6



By formula (6), we have
pλk =

⌊
rλ

2
k (αr − δλk−1)

⌋
pµk =

⌊
rµ

2
k

(
αr − δµk−1

)⌋ (10)

Define

xk = rλ
2
k (αr − δλk−1) = pλk + rλ

2
k

∞∑
m=1+λk

pmr
−m2

= pλk + zk

yk = rµ
2
k

(
αr − δµk−1

)
= pµk + rµ

2
k

∞∑
m=1+µk

pmr
−m2

= pµk + tk

(11)

We have proved the following result:

Theorem 9 The Conjecture 7 is equivalent to the true trivial case: For all
k ≥ 3, there exist two positive integers λk ≥ 2, µk ≥ 2 such that

0 < tk + zk <
1
2
or zk + tk =

1
2
or 1

2
< zk + tk <

3
2

or
zk + tk =

3
2
or 3

2
< tk + zk < 2

Proof. The fact that xk and yk are not integers by Lemma 5 and from (7)
and (9) we get

pλk + pµk = 2k

⇔ bxkc+ bykc = 2k

⇔ −1
2
+ xk +

arctan (cot πxk)

π
− 1
2
+ yk +

arctan (cot πyk)

π
= 2k

⇔ arctan (cot πxk) + arctan (cotπyk) = π (2k − xk − yk + 1)

Here xk and yk depends on the positive integers indices λk ≥ 2, µk ≥ 2.
Hence, the Conjecture 8 is equivalent to the case: For all k ≥ 3, there exist
two positive integers λk ≥ 2, µk ≥ 2 such that

arctan (cot πxk) + arctan (cotπyk) = π (2k − xk − yk + 1) (12)
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By definition, the arc tangent function is defined from R to
]−π
2
, π
2

[
. We have

arctanuk+arctan vk =



arctan
(
uk+vk
1−ukvk

)
, if ukvk < 1

or

π + arctan
(
uk+vk
1−ukvk

)
, if uk > 0 and vk > 0 and ukvk > 1

or

−π + arctan
(
uk+vk
1−ukvk

)
, if uk < 0 and vk < 0 and ukvk > 1

or
π
2
, if uk > 0 and vk = 1

uk

or
−π
2
, if uk < 0 andvk = 1

uk

Let uk = cotπxk, vk = cotπyk, then we get

arctan
(
uk+vk
1−ukvk

)
= π (2k − xk − yk + 1) , if ukvk < 1

or

π + arctan
(
uk+vk
1−ukvk

)
= π (2k − xk − yk + 1) , if uk > 0 and vk > 0 and ukvk > 1

or

−π + arctan
(
uk+vk
1−ukvk

)
= π (2k − xk − yk + 1) , if uk < 0 and vk < 0 and ukvk > 1

or
π
2
= π (2k − xk − yk + 1) , if uk > 0 and vk = 1

uk

or
−π
2
= π (2k − xk − yk + 1) , if uk < 0 andvk = 1

uk

that is,

arctan
(
uk+vk
1−ukvk

)
= π (2k − xk − yk + 1) , if ukvk < 1

or

arctan
(
uk+vk
1−ukvk

)
= π (2k − xk − yk) , if uk > 0 and vk > 0 and ukvk > 1

or

arctan
(
uk+vk
1−ukvk

)
= π (2k − xk − yk + 2) , if uk < 0 and vk < 0 and ukvk > 1

or
4k − 2xk − 2yk + 1 = 0, if uk > 0 and vk = 1

uk

or
4k − 2xk − 2yk + 3 = 0, if uk < 0 and vk = 1

uk
(13)
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We have

arctan

(
uk + vk
1− ukvk

)
= arctan

(
(cotπxk) + (cot πyk)

1− (cotπxk) (cotπyk)

)
= arctan (tan (−πxk − πyk)) = −πxk − πyk + jkπ

for some integer jk. Thus, (13) becomes

−πxk − πyk + jkπ = π (2k − xk − yk + 1) ∈
(
−π
2
, π
2

)
and ukvk < 1

or
−πxk − πyk + jkπ = π (2k − xk − yk) ∈

(
−π
2
, π
2

)
and

uk > 0 and vk > 0 and ukvk > 1
or

−πxk − πyk + jkπ = π (2k − xk − yk + 2) ∈
(
−π
2
, π
2

)
and

uk < 0 and vk < 0 and ukvk > 1
or

4k − 2xk − 2yk + 1 = 0, if uk > 0 and vk = 1
uk

or
4k − 2xk − 2yk + 3 = 0, if uk < 0 and vk = 1

uk
(14)

So, finding an integer jk in the first three equations of (14) implies that they
are verified. The fact that arctan (x) ∈

]−π
2
, π
2

[
implies that in the first three

cases of (14) we must assume that the corresponding quantity is located in
the interval

]−π
2
, π
2

[
:

jk = 2k + 1 and π (2k − xk − yk + 1) ∈
(
−π
2
, π
2

)
and ukvk < 1

or
jk = 2k and π (2k − xk − yk) ∈

(
−π
2
, π
2

)
and

uk > 0 and vk > 0 and ukvk > 1
or

jk = 2k + 2 and π (2k − xk − yk + 2) ∈
(
−π
2
, π
2

)
and

uk < 0 and vk < 0 and ukvk > 1
or

4k − 2xk − 2yk + 1 = 0, if uk > 0 and vk = 1
uk

or
4k − 2xk − 2yk + 3 = 0, if uk < 0 and vk = 1

uk

(15)

We have 
uk = cotπxk = cotπ (pλk + zk) = cot πzk

vk = cotπyk = cotπ
(
pµk + tk

)
= cotπtk
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since the cotangent function has period π. Thus, (15) becomes

jk = 2k + 1 and π (2k − xk − yk + 1) ∈
(
−π
2
, π
2

)
and (cotπzk) (cotπtk) < 1

or
jk = 2k and π (2k − xk − yk) ∈

(
−π
2
, π
2

)
and cot πzk > 0 and

cotπtk > 0 and (cotπzk) (cotπtk) > 1
or

jk = 2k + 2 and π (2k − xk − yk + 2) ∈
(
−π
2
, π
2

)
and

cot πzk < 0 and cotπtk < 0 and (cotπzk) (cotπtk) > 1
or

2
(
2k − pλk − pµk

)
− 2tk − 2zk + 1 = 0, if cotπzk > 0 and cotπtk = 1

cotπzk

or
2
(
2k − pλk − pµk

)
− 2tk − 2zk + 3 = 0, if cotπzk < 0 and cot πtk = 1

cotπzk
(16)

We have cot (πzk) cot (πtk) = 1 if cos π (zk + tk) = 0, that is, zk + tk =
1
2
or

zk + tk =
3
2
because 0 < zk < 1 and 0 < tk < 1. Hence, (16) is equivalent to

−π
2
< π (2k − xk − yk + 1) < π

2
and (cotπzk) (cotπtk) < 1

or
−π
2
< π (2k − xk − yk) < π

2
and cot πzk > 0 and

cotπtk > 0 and (cotπzk) (cotπtk) > 1
or

−π
2
< π (2k − xk − yk + 2) < π

2
and cotπzk < 0 and

cotπtk < 0 and (cotπzk) (cotπtk) > 1
or

zk + tk =
1
2
, if cot πzk > 0 and zk + tk =

1
2

or
zk + tk =

3
2
, if cot πzk < 0 and zk + tk =

3
2

(17)

We have

cot (πzk) cot (πtk) > 1⇔
cos (πzk)

sin (πzk)

cos (πtk)

sin (πtk)
> 1

The inequality sin (πt) > 0 is verified for all 0 < t < 1. Then

cot (πzk) cot (πtk) > 1⇔ cos (πzk) cos (πtk)−sin (πzk) sin (πtk) = cos π (zk + tk) > 0

that is,

0 < zk + tk <
1

2
or
3

2
< zk + tk < 2
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Also,

cot (πzk) cot (πtk) < 1⇔ cos (πzk)

sin (πzk)

cos (πtk)

sin (πtk)
< 1

⇔ cos π (zk + tk) < 0⇔
1

2
< zk + tk <

3

2

Also, cot (πt) > 0, if 0 < t < 1
2
and cot (πt) < 0, if 1

2
< t < 1. Thus, (17)

becomes

−1
2
< 2k − pλk − pµk − tk − zk + 1 <

1
2
and 1

2
< zk + tk <

3
2

or
−1
2
< 2k − pλk − pµk − tk − zk <

1
2
and cotπzk > 0 and cot πtk > 0 and

0 < zk + tk <
1
2
or 3

2
< zk + tk < 2

or
−1
2
< 2k − pλk − pµk − tk − zk + 2 <

1
2
and cot πzk < 0 and cotπtk < 0 and

0 < zk + tk <
1
2
or 3

2
< zk + tk < 2

or
zk + tk =

1
2
and cotπzk > 0 and zk + tk =

1
2

or
zk + tk =

3
2
and cotπzk < 0 and zk + tk =

3
2

By using (9) we get

1
2
< zk + tk <

3
2
and 1

2
< zk + tk <

3
2

or
0 < tk + zk <

1
2
and 0 < zk <

1
2
and 0 < tk <

1
2
and

0 < zk + tk <
1
2
or 3

2
< zk + tk < 2

or
3
2
< tk + zk <

5
2
and 1

2
< zk < 1 and 1

2
< tk < 1 and

0 < zk + tk <
1
2
or 3

2
< zk + tk < 2

or
zk + tk =

1
2
and 0 < zk <

1
2
and zk + tk =

1
2

or
zk + tk =

3
2
and 1

2
< zk < 1 and zk + tk =

3
2
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i.e., 

0 < tk + zk <
1
2
and 0 < zk <

1
2
and 0 < tk <

1
2

or
zk + tk =

1
2
and 0 < zk <

1
2

or
1
2
< zk + tk <

3
2

or
zk + tk =

3
2
and 1

2
< zk < 1

or
3
2
< tk + zk < 2 and 1

2
< zk < 1 and 1

2
< tk < 1

(18)

The assumption 0 < tk + zk <
1
2
implies that 0 < zk <

1
2
and 0 < tk <

1
2
.

The assumption zk + tk =
1
2
implies that 0 < zk < 1

2
and 0 < tk < 1

2
.

The assumption zk + tk =
3
2
implies that 1

2
< zk < 1 and 1

2
< tk < 1. The

assumption 3
2
< tk + zk < 2 implies that 1

2
< zk < 1 and 1

2
< tk < 1 since

we have 0 < tk < 1 and 0 < zk < 1. Otherwise all these implications are not
true. Thus, (18) can be reduced to:

0 < tk + zk <
1

2
or zk + tk =

1

2
or
1

2
< zk + tk <

3

2
or zk + tk =

3

2
(19)

or
3

2
< tk + zk < 2

The last statement (19) is true for all k ≥ 3 since 0 < tk < 1 and 0 < zk <
1 and it is a trivial case as it presents all the locations of the real number
zk + tk.
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