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Abstract

In the arXiv paper [arXiv:1712.07761] from December 2017 we pre-
sented a convergent direct transcription method for optimal control prob-
lems. In the present paper we present a significantly generalized conver-
gence theory in succinct form. Therein, we replace strong assumptions
that we had formerly made on local uniqueness of the solution, and on
differentiability of a particular functional. These assumptions are removed
now.
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1 Introduction
1.1 Problem Statement
In Optimal Control or Dynamic Optimization one seeks properties that are not
constant, but that change dynamically over a time-interval

Ω := (t0, tE) ⊂ R .

For the scope of this work, we seek two functions on this interval:

y : Ω→ Rny , t 7→ y(t)
z : Ω→ Rnz , t 7→ z(t)

For a compact writing we also use x := (y, z) and nx := ny + nz ∈ N.
The component y is continuous, while z may have discontinuities. According

to this, we define the solution space for x as

X :=
(
H1(Ω)

)ny × (L2(Ω)
)nz

with the scalar product

〈(y, z), (v, w)〉X :=
ny∑
j=1
〈y[j], v[j]〉H1(Ω) +

nz∑
j=1
〈z[j], w[j]〉L2(Ω)

and induced norm ‖ · ‖X . X is a Hilbert space.
Dynamic optimization problems impose differential-algebraic constraints and

point-constraints on x. Therefore we use the notation

ẏ := dy
dt

and introduce M ∈ N points

t(k) ∈ Ω , ∀ k ∈ {1, 2, ...,M} .

We can then write the optimal control problem in general form as
min
x∈X

F (x)

subject to b
(
y(t(1)), y(t(2)), ..., y(t(M))

)
= 0 ,

c
(
ẏ(t), y(t), z(t), t

)
= 0 , f.a.e. t ∈ Ω ,

z(t) ≥ 0 , f.a.e. t ∈ Ω .

 (OCP)

with a global minimizer x? . The abbreviation “f.a.e.” means “for almost every”,
and is meant in the Lebesgue sense, since z is only defined in the Lebesque sense
(i.e., not pointwise). In contrast to that, pointwise values of y over Ω are well-
defined because H1(Ω) ↪→ C0(Ω). C0(Ω) is the space of continuous functions
over Ω.
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In (OCP), there appear functions

f :Rny × Rny × Rnz × Ω→ R ,
c :Rny × Rny × Rnz × Ω→ Rm ,
b : Rny × Rny × ...× Rny︸ ︷︷ ︸

M times

→ Rp ,

and the functional

F (x) :=
∫

Ω
f
(
ẏ(t), y(t), z(t), t

)
dt .

1.2 Assumptions
We make a couple of assumptions on (OCP):

1. Feasibility: x? exists.

2. Boundedness: |f |, ‖c‖∞, ‖b‖∞ are globally bounded.

3. L-continuity: f, c, b are globally Lipschitz-continuous in all arguments
except t .

Remarks

• x? does not need to be unique.

• We do not require differentiability of f, c, b.

• Assumptions 2 and 3 can be forced by simply bounding the outputs of
f, c, b as well as their sensitivities.

1.3 Numerical Goal
We want to find a numerical solution x?h ∈ X that solves (OCP) in a tolerance-
accurate sense. To describe what we mean by that, we define the following
measure of feasibility for elements x ∈ X :

r(x) :=
∫

Ω
‖c
(
ẏ(t), y(t), z(t), t

)
‖22 dt+ ‖b

(
y(t(1)), y(t(2)), ..., y(t(M))

)
‖22

We define the optimality gap and feasibility residual of x?h:

gopt := max{F (x?h)− F (x?) , 0 } ,
rfeas :=r(x?h) .

The goal for our numerical method is the construction of x?h such that this gap
and this residual are driven below an arbitrary prescribed positive tolerance.
This is what we mean with a tolerance-accurate solution.
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Beyond that, the numerical solution satisfies

z?h(t) > 0 ∀ t ∈ Ω .

Notice that due to our assumptions, both F and r are bounded. Also, both
F and r are Lipschitz-continuous with respect to the norm ‖ · ‖X . We bound
their Lipschitz-constants with LF , Lr ≥ 1.

1.4 Outline
We review our numerical method from December 2017, that shows a way for
computationally constructing the numerical solution x?h. We also review — here
in an improved form — the full proof of convergence for this method.

In Section 2 we introduce a reformulation of (OCP) into an unconstrained
problem. In Section 3 we apply a Finite Element Method to compute a numerical
minimizer of this unconstrained problem.

Eventually, we show that the numerical unconstrained minimizer is a
tolerance-accurate solution to (OCP) in the aforementioned way.

2 Reformulation
The reformulation into an unconstrained problem works in two steps. We first
introduce quadratic penalties and then add logarithmic barriers.

2.1 Penalty Form
We introduce a penalty parameter ω ∈ (0, 0.5] . We define

Fω(x) := F (x) + 1
2 · ω · r(x) .

Notice that Fω is Lipschitz-continuous with constant

Lω := LF + 1
2 · ω · Lr .

Using Fω, we introduce the penalty problem{min
x∈X

Fω(x)

subject to z(t) ≥ 0 f.a.e. t ∈ Ω .

}
(PP)

with a global minimizer x?ω.
The following theorem shows that ε-optimal solutions of (PP) solve (OCP)

in a tolerance-accurate way.
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Theorem 2.1 (Penalty Solution). Let ε ≥ 0. Consider an ε-optimal solution
xεω to (PP), i.e.

Fω(xεω) ≤ Fω(x?ω) + ε and zεω(t) ≥ 0 f.a.e. t ∈ Ω .

Define

Cr := 2 · sup
x∈X
|F (x)| ,

which is bounded due to boundedness of |f |. Then it holds:

F (xεω) ≤ F (x?) + ε ,

r(xεω) ≤ 2 · ω · (Cr + ε) .

Proof: x?, x?ω, xεω are all feasible for (PP), but x?ω is optimal and xεω is ε-optimal.
Thus

Fω(xεω)︸ ︷︷ ︸
≥F (xεω)

≤ Fω(x?)︸ ︷︷ ︸
=F (x?)

+ε .

From this follows

F (xεω) ≤ F (x?) + ε

because r(xεω) ≥ 0 and r(x?) = 0. Besides, it also follows

r(xεω) ≤ 2 · ω ·
(
|F (x?ω)|+ |F (x?)|︸ ︷︷ ︸

≤Cr

+ε
)
.

2.2 Penalty-Barrier Form
In this subsection we reformulate (PP) once more in order to remove the in-
equality constraints. We do so, using logarithmic barriers.

We introduce a barrier parameter τ ∈ (0, 0.5] . We define

Γ(x) := −
nz∑
j=1

∫
Ω

log
(
z[j](t)

)
dt

Fω,τ (x) := Fω(x) + τ · Γ(x)

Using Fω,τ , we introduce the penalty-barrier problem{
min
x∈X

Fω,τ (x)
}

(PBP)

with a global minimizer x?ω,τ .
We have introduced the logarithmic barriers to keep z?ω,τ strictly positive.

But we know that L2(Ω) contains functions that are pointwise unbounded in
terms of poles or other singularities. So one may ask whether these logarithmic
barriers will actually hinder the components of z?ω,τ from becoming negative.
This question motivates the following theorem.
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Theorem 2.2 (Strict Interiorness).

z?ω,τ (t) ≥ τ

Lω
f.a.e. t ∈ Ω .

Proof: We consider a worst-case example, that forces z closest possible to 0 in
every component and almost every time-value.

Since Fω is Lipschitz-continuous, this worst-case example would be obtained
when

Fω(x) := Lω · ‖z‖L1(Ω) .

Consequently,
Fω,τ (x) = Lω · ‖z‖L1(Ω) + τ · Γ(x) .

The analytic minimizer of Fω,τ is

z[j](t) = τ

Lω
f.a.e. t ∈ Ω , ∀ j ∈ {1, 2, ..., ny} .

Hence, in general τ/Lω is an essential lower bound.
The following theorem shows that x?ω,τ is ε-optimal for (PP).

Theorem 2.3 (Penalty-Barrier Solution). Let ‖z?ω‖L∞(Ω), ‖z?ω,τ‖L∞(Ω) = O(1).
Then:

Fω(x?ω,τ )− Fω(x?ω) = O
(
τ · | log(τ) + log(ω)|

)
Proof: We use the following bar-operator:

For x ∈ X , we write x̄ to denote a modified version of x, where z[j](t)
is replaced pointwise with

z̄[j](t) := max
{
z[j](t) ,

τ

Lω

}
∀ j ∈ {1, 2, ..., nz}, ∀ t ∈ Ω .

Notice that x̄ ∈ X .

Notice also that, according to Theorem 2.2, it holds x?ω,τ ≡ x̄?ω,τ .
We further notice the general algebraic result∣∣∣∣τ · log

(
τ

Lω

)∣∣∣∣ = O
(
τ · | log(τ) + log(ω)|

)
.

Using this relation and the bar-operator from above, we find ∀x ∈ X :

|τ · Γ(x̄)| ≤

∣∣∣∣∣∣τ ·
nz∑
j=1

∫
Ω

log
(
z̄[j](t)

)
dt

∣∣∣∣∣∣
≤ nz · |Ω| · max

1≤j≤nz
‖τ · log(z̄[j])‖L∞(Ω)

≤ nz · |Ω| ·
(
O
(
τ · | log(τ) + log(ω)|

)︸ ︷︷ ︸
estimate for z̄[j]<1

+ O(τ)︸ ︷︷ ︸
estimate for z̄[j]≥1

)
(1)
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In the last line of this bound, we have distinguished two cases: Namely,∣∣log
(
z̄[j](t)

)∣∣
attains its largest value at a t ∈ Ω where either z̄[j] < 1 (case 1) or where
z̄[j] ≥ 1 (case 2). In the first case, we can use the above algebraic result together
with Theorem 2.2 and arrive at the left term in the big brackets of (1). In
the second case, we simply bound the logarithm using the extremal value of
|z̄[j](t)| ≤ |z[j](t)| = O(1).

We can use bound (1) to show the proposition:

0 ≤ Fω(x?ω,τ )− Fω(x?ω) ≤ Fω(x̄?ω,τ )− Fω(x̄?ω) + Lω · ‖x?ω − x̄?ω‖X

We used Lipschitz-continuity of Fω and x?ω,τ ≡ x̄?ω,τ . We bound this further to

Fω(x?ω,τ )− Fω(x?ω) ≤ Fω(x̄?ω,τ )− Fω,τ (x̄?ω,τ )︸ ︷︷ ︸
=−τ ·Γ(x̄?ω,τ )

+Fω,τ (x̄?ω,τ )

−
(
Fω(x̄?ω)− Fω,τ (x̄?ω)︸ ︷︷ ︸

=−τ ·Γ(x̄?ω)

+Fω,τ (x̄?ω)
)

+ Lω · nz · |Ω| ·
τ

Lω
.

Therein, we just added two zeros. Also, we used the bound

‖x?ω − x̄?ω‖X ≤ nz · |Ω| ·
τ

Lω
≤ nz · |Ω| · τ ,

which follows easily from the definition of the bar-operator.
For the terms |τ · Γ(x̄?ω,τ )| and |τ · Γ(x̄?ω)| we can use the bound (1), hence

obtaining:

Fω(x?ω,τ )− Fω(x?ω) ≤ Fω,τ (x̄?ω,τ )− Fω,τ (x̄?ω)︸ ︷︷ ︸
≤0

+ nz · |Ω| · O
(
τ · | log(τ) + log(ω)|

)
+ nz · |Ω| · τ

The under-braced term is bounded above by zero because x̄?ω,τ ≡ x?ω,τ is a global
minimizer of Fω,τ .

From the proof of the theorem follows a bound for Γ.

Lemma 2.4 (Bound for Γ). Let x ∈ X with ‖z‖L∞(Ω) = O(1). Consider x̄,
according to the above bar-operator. Then:∣∣∣∣τ · Γ(x+ x̄

2

)∣∣∣∣ = O
(
τ · | log(τ) + log(ω)|

)
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Proof: Notice that

x̃ := x+ x̄

2

is so to say a milder version of x̄. Namely, z̃ is only pushed half as much into
the interior. In particular, it follows

z̃(t) ≥ τ

2 · Lω
f.a.e. t ∈ Ω .

The proposition now follows in the same way as we showed the bound (1).

Remark: On Boundedness Notice that ‖z?ω‖L∞(Ω), ‖z?ω,τ‖L∞(Ω) = O(1)
can be forced easily. E.g., the path constraints

z[1](t) ≥ 0 , z[2](t) ≥ 0 , z[1](t) + z[2](t) = const

lead to
‖z[j]‖L∞(Ω) ≤ const ∀ j ∈ {1, 2} .

3 Finite Element Method
The approach of our method is to solve the unconstrained problem (PBP) com-
putationally in a finite-dimensional subspace of X , using nonlinear optimization
methods. The subspace is constructed using the Finite Element method.

In this section we introduce a suitable finite-dimensional space. We then
show a stability result. Eventually, we prove convergence of the Finite Element
solution for (PBP) and (OCP).

3.1 Spaces
We use a mesh parameter h ∈ R+ \ {0}.

The set Th := {T} is called triangulation, consisting of open intervals T ⊂ Ω.
These intervals satisfy:

(i) Disjunction: T1 ∩ T2 = ∅ ∀T1 6= T2 ∈ Th
(ii) Coverage:

⋃
T∈Th

T = Ω

(iii) Resolution: max
T∈Th

|T | ≤ h

(iv) Quasi-uniformity: min
T1,T2∈Th

|T1|
|T2|
≥ σ ∈ R+ \ {0}

In this, σ > 0 is a constant that must not depend on h, such that 1/σ = O(1).
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We write Pp(T ) for the space of functions that are polynomials of degree
≤ p ∈ N0 on interval T . Our Finite Element space is then given conventionally
as

Xh,p :=
{
x : Ω→ Rnx

∣∣∣ x ∈ Pp(T ) ∀T ∈ Th and y ∈ C0(Ω)
}
.

Xh,p is a Hilbert-space. It holds Xh,p ⊂ X .

3.2 Stability
The following theorem shows that two particular Lebesgue-norms are equivalent
in this Finite Element space.

Theorem 3.1 (Norm equivalence). Let p ≤ 103. Then:

‖x[j]‖L∞(Ω) ≤
p+ 1
σ · h

· ‖x‖X ∀x ∈ Xh,p , ∀ j ∈ {1, 2, ..., nx} .

Proof: Let T ⊂ R, T 6= ∅. We find empirically from the optimality conditions
of a convex quadratic program, that

min
0 6=u∈Pp(T )

‖u‖2L2(T )

‖u‖2L∞(T )
= |T |2

(p+ 1)2

holds ∀p ∈ {1, 2, ..., 103}. This implies

‖u‖L∞(T ) ≤
p+ 1
|T |

· ‖u‖L2(T ) ∀u ∈ Pp(T ) . (2)

Using the above bound, we can show the proposition:

‖x[j]‖L∞(Ω) ≤ max
T∈Th

‖x[j]‖L∞(T )

(∗)
≤ max

T∈Th

p+ 1
|T |

· ‖x[j]‖L2(T )

≤ p+ 1
σ · h

· ‖x[j]‖L2(Ω) ≤
p+ 1
σ · h

· ‖x‖X

We used the bound (2) for inequality (∗).
The following theorem gives a bound on the growth of Fω,τ in a neighborhood

of x?ω,τ for elements of Xh,p.

Theorem 3.2 (Lipschitz-continuity). Define

δω,τ,h := τ

2 · Lω
· σ · h
p+ 1 ,

Lω,τ,h := Lω + nz · 2 · Lω ·
p+ 1
σ · h

.
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Consider the spherical neighbourhood

B :=
{
x ∈ X

∣∣∣ ‖x− x?ω,τ‖X ≤ δω,τ } .
The following holds:

|Fω,τ (xA)− Fω,τ (xB)| ≤ Lω,τ,h · ‖xA − xB‖X ∀xA, xB ∈ B ∩ Xh,p .

Proof: From Theorem 2.2 and xA, xB ∈ B follows

min
1≤j≤nz

min
Q∈{A,B}

ess inf
t∈Ω

zQ[j](t) ≥
τ

Lω
− p+ 1
σ · h

· δω,τ,h = τ

2 · Lω
. (3)

With this bound we can show the proposition:

|Fω,τ (xA)− Fω,τ (xB)|

≤|Fω(xA)− Fω(xB)|+ τ ·
nz∑
j=1

∫
Ω

∣∣∣log
(
zA

[j](t)
)
− log

(
zB

[j](t)
)∣∣∣ dt

≤Lω · ‖xA − xB‖X + τ · nz · |Ω| · max
1≤j≤nz

ess sup
t∈Ω

∣∣∣log
(
zA

[j](t)
)
− log

(
zB

[j](t)
)∣∣∣

The essential supremum term can be bounded with a Lipschitz-result for the
logarithm, because we know lower bounds for the arguments of the logarithm
from (3). We obtain

max
1≤j≤nz

ess sup
t∈Ω

∣∣∣log
(
zA

[j](t)
)
− log

(
zB

[j](t)
)∣∣∣

≤ max
1≤j≤nz

1
τ

2·Lω
· ‖zA

[j] − z
B
[j]‖L∞(Ω)

≤2 · Lω
τ
· p+ 1
σ · h

· ‖xA − xB‖X ,

wherein the latter inequality is obtained using Theorem 3.1 .

3.3 Optimality
We state the discrete penalty-barrier problem.

min
x∈Xh,p

Fω,τ (x)

subject to z(t) ≥ τ

2 · Lω
f.a.e. t ∈ Ω

 (PBPh)

Using the space

Xω,τh,p :=
{
x ∈ Xh,p

∣∣∣ z(t) ≥ τ

2 · Lω
f.a.e. t ∈ Ω

}
,
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we can write (PBPh) as unconstrained problem{
min

x∈Xω,τ
h,p

Fω,τ (x)
}
,

with a global minimizer x?h.

We show that the Finite Element solution x?h is ε-optimal for (PBP).

Theorem 3.3 (Optimality of FEM Solution). Let B as in Theorem 3.2 . If
B ∩ Xh,p 6= ∅ , then x?h satisfies:

Fω,τ (x?h)− Fω,τ (x?ω,τ ) ≤ Lω,τ,h · inf
xh∈Xh,p

{
‖x?ω,τ − xh‖X

}
.

Proof: Consider the Finite Element best-approximation

x̃h := argmin
xh∈Xh,p

{
‖x?ω,τ − xh‖X

}
,

as well-defined by the Hilbert-space Xh,p.
Since B ∩ Xh,p 6= ∅, it follows

∃xh ∈ Xh,p : ‖x?ω,τ − xh‖X ≤ δω,τ,h .

Thus, x̃h ∈ B ∩ Xh,p. Hence,

x̃h ≡ argmin
xh∈B∩Xh,p

{
‖x?ω,τ − xh‖X

}
.

In analogy to (3), we find B ∩ Xh,p ⊂ Xω,τh,p . Thus, x̃h ∈ Xω,τh,p ⊂ Xh,p. Hence,

x̃h ≡ argmin
xh∈Xω,τh,p

{
‖x?ω,τ − xh‖X

}
.

Since x?ω,τ is a global minimizer of Fω,τ in X , whereas x?h is only a global
minimizer of Fω,τ in the subspace Xω,τh,p ⊂ X , and whereas x̃h just lives in Xω,τh,p ,
it holds

Fω,τ (x?ω,τ ) ≤ Fω,τ (x?h) ≤ Fω,τ (x̃h) .

For the latter, using Theorem 3.2, we obtain the bound

Fω,τ (x̃h) ≤ Fω,τ (x?ω,τ ) + Lω,τ,h · ‖x?ω,τ − x̃h‖X .
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Remark: Non-emptiness We show that usually the space B ∩ Xh,p is non-
empty. If

inf
xh∈Xh,p

{
‖x?ω,τ − xh‖X

}
︸ ︷︷ ︸

(∗)

≤ δω,τ,h (4)

then the minimizing argument of (∗) lives in B ∩ Xh,p, showing non-emptiness.
Also, if we keep ω, τ fixed, then

δω,τ,h ∈ Θ(h) .

Thus, if the infimum term (∗) converges superlinearly in h, then for h > 0
sufficiently small it follows (4).

3.4 Convergence
We obtain a bound for the optimality gap and feasibility residual of x?h for
(OCP).

Theorem 3.4 (Convergence for OCP). Let ‖z?h‖L∞(Ω) = O(1). Then the nu-
merical solution x?h satisfies:

gopt = O
(
τ · | log(τ) + log(ω)|+ Lω,τ,h · inf

xh∈Xh,p

{
‖x?ω,τ − xh‖X

})
rfeas = O

(
ω + ω · Lω,τ,h · inf

xh∈Xh,p

{
‖x?ω,τ − xh‖X

}
︸ ︷︷ ︸

=:εh,p

) )
.

Proof: From Theorem 3.3 we know that for εh,p > 0 it holds:

Fω,τ (x?h) ≤ Fω,τ (x?ω,τ ) + εh,p

This is equivalent to

Fω(x?h) + τ · Γ(x?h) ≤ Fω(x?ω,τ ) + τ · Γ(x?ω,τ ) + εh,p

⇒ Fω(x?h) ≤ Fω(x?ω,τ ) + |τ · Γ(x?h)|+ |τ · Γ(x?ω,τ )|︸ ︷︷ ︸
(∗)

.

Since x?h ∈ X
ω,τ
h,p , it follows z?h ≥ τ

2·Lω and thus

x?h = x?h + x̄?h
2 .

Similarly, since x?ω,τ ≡ x̄?ω,τ , it also follows

x?ω,τ =
x?h + x̄?ω,τ

2 .
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Therefore, we can apply Lemma 2.4 to bound (∗) in O(τ · | log(τ) + log(ω)|). It
follows:

Fω(x?h) ≤ Fω(x?ω,τ ) +O(τ · | log(τ) + log(ω)|) + εh,p

Since, according to Theorem 2.3, x?ω,τ is ε̃-optimal for (PP), where ε̃ = O(τ ·
| log(τ) + log(ω)|), it follows further:

Fω(x?h) ≤ Fω(x?ω) +O(τ · | log(τ) + log(ω)|) + εh,p︸ ︷︷ ︸
=:ε

I.e., x?h is ε-optimal for (PP). The proposition now follows from Theorem 2.1.

Remark: Order of Convergence It holds

Lω,τ,h = O
(

1
ω · h

)
.

If τ ≤ ω then
τ · | log(τ) + log(ω)| = O(

√
τ) .

Assuming that the solution x?ω,τ is sufficiently smooth, such that

∃ ` ∈ (0, p] : inf
xh∈Xh,p

{
‖x?ω,τ − xh‖X

}
= O(h1+`) ,

and choosing h ∈ (0, 1] , τ = h` , and ω = h`/2, then

gopt = O(h`/2) , rfeas = O(h`/2) .

4 Conclusions
We summarized the convergence result at a glance. In this, we removed some
assumptions.

In the present form, basic assumptions like uniqueness of x? and continuity
of f, c, b are no longer required. The convergence of the numerical solution is
characterized in the measures of optimality gap and feasibility residual.

Certainly, for the numerical computation of x?h with optimization methods,
it is beneficial when f, c, b are smooth. But, for the convergence of the direct
transcription scheme, this is not crucial.

Outlook Typically, when solving (PBPh), one uses numerical quadrature for
the integrals in F, r. I.e., F, r are replaced with perturbed functionals Fh, rh.
At this point, we have not looked into the effects that these perturbations have
on the convergence of x?h.
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