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Abstract

Some old material of 2011 is revised in the light of the better 2016
construction.

1 Introduction

In 2011, I wrote a book about an operational approach to quantum the-
ory with local vacua delineating a Fock-Hilbert bundle ® e mHz over the
space-time manifold M. However, the approach was troublesome and
muddled with two “fundamental errors” of mine, not due to a lack of
mathematical precision, but being the consequence of a poor understand-
ing of what curved spacetime really signifies. This error found a natural
solution in a 2016 book written on general covariant quantum theory from
the point of view of the Feynman series. This paper, conceived at the 2018
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Marcel Grossmann conference, rectifies the latter two “mistakes”.

Concretely, we assumed H, to be constructed by means of a cyclic quasi-
free vacuum state |0), and multiparticle states showing Bose or Fermi
statistics constructed in the Fock way. The dynamical object was a uni-
tary bi-field U(z,y) mapping H, — H. and obeying a Schroedinger like
differential equation

d ,
ﬁU(t, s) =iHU(t,s)

but then with the times ¢, s replaced by x,y. The two errors in the book
originated from the mathematical implementation of this idea I conceived;
first of all U(t, s) = U(t)U'(s) and moreover the only covariant first order
differential operator homogeneous in the spacetime coordinates is given
by the covariant Dirac operator D. The first condition is equivalent to a
“cohomology” condition

Uz,y)U(y,2)U(z,z) =1

which turns out to hold in Minkowski or any maximally symmetric space-
time only and reflects the absence of local gravitational degrees of freedom.
Consequently, the only solution I was able to find of my field equations
was free quantum field theory on Minkowski in a way I shall explain later.
The Dirac operator gives all sorts of trouble meaning we have to replace
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the complex numbers by an appropriate Clifford algebra of signature (1, 3)
or (3,1). This gives rise to negative probabilities and huge problems with
the spectral theorem even for finite dimensional Clifford bi-modules. The
approach was clearly dead as it stood which I realised in 2012.

2 Taking bi-fields seriously.

As pointed out in 2016, the idea of a Hilbert bundle is adequate, but the
correct differential equation for U(y,x) needs to run over geodesics con-
necting x with y in a fully reparametrization invariant way. The obvious
candidate is given by

d

U 0(8),2) = #(s)" PaU (7(s), @)

where 7(s) is the unique geodesic connecting x with y and P, equals the
free momentum generator, given by the expression

d*k
P = 7%]6@“;]}0]‘@’9%0]‘

particles j, internal degrees o

at the point z with respect to the dragged vierbein in = along the geodesic.
The coincidence limit is fixed by U(z, z) = 1; this suggests one to enlarge
the notation to U(y, z; eqa(y), es(z)) as well as a unitary action T'(A, e»(2))

of the orthochronous Lorentz group A € O1(1,3) on U(z,z;¢'5(2), ea(x))
by means of conjugation TUT'. All this has been explained in the 2011
book; in order for T'(A(s), ea(y(z)) to shift through - we need a Lorentz
covariant derivative and, henceforth, an antihermitian connection L, (z, ey(2))
such that

(% + 7“(5)%(’7(8)»AZ(S)@b(W(S)))) T(A(s), e6(v())U (V(5), 5 e6((5)), €a (@) T (A(s), e(7(5)))

—T(A(s), e5(7()))U ((5), 25 €(7(5)), €a (@) T" (A(s), en(v(5)))5" (5) Luu (7 (5), Aa(s)es ((s))) =

T(A(s), es(+(s))) [(di () L (), ebms)))) U(1(5), 21 en(1(5))s ea(@)] T (A, en(3(5)))

—T(A, eo(7()))U (7(5), @5 €6(7(5)), €a(@))5" () Lu(v(5), en (7()))T" (A(5), €6 (7(s)))-
In case we dispose of multiple geodesics connecting x with y, we just mul-

tiply the corresponding unitary operators in the same vierbein at y, the

order of which does not matter given that all P, commute and because the

action of the Lorentz group acts by boosting the momenta. Therefore, we

can just sum up the momenta which can accomodate for topology change

of Minkowski into a flat spacelike cylinder giving rise to the correct field

picture.

There is however a small caveat here in case multiple geodesics connect
x and y in the sense that the gauge field might acquire a nontrivial sig-
nificance due to multivaluedness of e, (y), where the latter is the dragged
vielbein from x to y. Hence, it is better to replace the argument y by a
tangent vector V in T M, and take the = perspective where exp,(v) = y.
In that case, we set L, (sv, A%(s)ep(exp, (sv))) to zero in case

D
en(exp, (sv)) = 0



for s = 0...1. In other words, the vielbein in the warped point in that
direction must be the dragged one; this makes both formalisms entirely
equivalent what the free theory is concerned. Notice that by construction,
U(y,z) = U'(z,y) due to the minus sign caused by flipping 4*(s). Given
that the connection L, (v, ey(exp, (v))) is a new object defined on

TMz(v) x VMg(exp, (v))

where VM (exp, (v)) is the nonlinear space of g vierbeins over M, which
is equivalent to the group manifold O"(1,3) regarded as a homogeneous
space with a hyperbolic Cartan metric of signature (3,3); it might be
opportune to make it more dynamical and invent a new type of non abelian
Yang-Mills theory over TM,. This author tried this also in 2011 but
failed to recognize the bundle perspective as well was stuck with Clifford
modules for replacements of Hilbert spaces. The easiest thing is to see L,
as Lo ; exp, (v) (v, e5(exp, (v))) where e, varies independently and refers to
y = exp, (v) and subsequently write out a Yang-Mills equation of the kind

(DoLo,; exp o (v 0 exp, (0))))

where d is the Hodge operator on flat tangent space. Life could be more
exciting as to pick out the zero solution in parallel transport gauge and
we leave this new piece of physics for further examination of the bored
ones.

. = (81)[k — L[k) Ll] = (dL)kl—(L/\L)kl =0

So far, we have determined only our quantum connection; now, we develop
bi-fields which are nothing but the warps of coincidence fields meaning

P(y, ) : I1 Uly = exp,(v), z; (exp, (v))ea (@), a(2)) | (2, 2)

VET Mg :exp, (v)=y

I1 Uly = exp,(v), z; (exp, (v))«€a (@), €a())

vET My :exp, (v)=y

Here,

d’k _
@(x, ZE) = Z /Rg TO(UJJ. vV koa};jﬂj -|-Ua-]. vV koak’j70'j)
J

particles j with internal quantum numbers o

where v, ; is an internal field vector associated to the internal particle de-
grees of freedom. They are needed to obtain different physical behaviour,

dk—ok is the on shell relativistic measure in Fourier space on Minkowski and

finally, \/Hak,j,aj is relativistic normalization of the creation annihilation
algebra. I leave it as an elementary excercise to find out principles de-
termining v, ;. So ®(z,x) is the proper democratic relativistic expression
taking into all matter degrees of freedom in the universe.

3 Interaction theory.

So far, we have delineated the free theory from an operational bi-field
formalism which reduces in Minkowski to a single field formalism due to
the remarkable “cohomology” property

Uz, y)U(y, 2)U(z,z) =1



where we have dropped the vielbeins and assumed dragging allalong which
is logical given that dragging is trivial and hence consistent along closed
paths due to the vanishing of the Riemann tensor. The trick now is to
work directly into an interaction picture and forget about a closed bi-field
equation. That is, we write down spacetime interaction densities of the
kind

A / Va0 (y,2)0(y, 2)0(y, p)B(y, q).
M

This is an obvious excercise leading to a completely equivalent formalism
as in the 2016 book.



