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Abstract

The main purpose of this paper is to present some new results about

Clifford Algebras : exponential, real structures, Cartan algebras... As

they address different topics and the definitions in Clifford Algebras still

differ from one author to another, it seems simpler to give a full coverage

of Clifford Algebras, starting from their definition. So the paper can also

be a useful introduction to a subject which gains more and more interest

in different areas of Physics, Computing Science and Engineering.

1 OPERATIONS IN A CLIFFORD ALGEBRA

1.1 Definition of a Clifford Algebra

Definition 1 Let F be a vector space over the field K (of characteristic 6= 2)
endowed with a symmetric bilinear non degenerate form ρ (valued in the field
K). The Clifford algebra Cl(F, ρ) and the canonical map ı : F → Cl(F, ρ)
are defined by the following universal property : for any associative algebra A
over K (with internal product · and unit e) and K-linear map f : F → A such
that :

∀v, w ∈ F : f (v) · f (w) + f (w) · f (v) = 2ρ (v, w) · e
there exists a unique algebra morphism : ϕ : Cl(F, g) → A such that f = ϕ◦ı




f
F → → → A
↓ ր
ı ր ϕ
↓ ր

Cl(F, g)




The Clifford algebra includes the scalar K, the vectors of F (so we identify
ı (u) with u ∈ F and ı (k) with k ∈ K) and all linear combinations of products
of vectors by ·. We will denote the form ρ (u, v) = 〈u, v〉 .

A definition is not a proof of existence, which is proven for any vector space
by defining a morphism with the algebra ΛF of antisymmetric tensors, using an
orthonormal basis.

Remarks :
i) A common definition is done with a quadratic form. As any quadratic

form gives a bilinear symmetric form by polarization, and a bilinear symmetric
form is necessary for most of the applications, we can easily jump over this step.
There is also the definition f (v) · f (w) + f (w) · f (v) + 2ρ (v, w) · e = 0 which
sums up to take the opposite for g.

ii) F can be a real or a complex vector space, but g must be symmetric : it
does not work with a Hermitian sesquilinear form. In the following K will be R

or C.
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For each topic we will provide examples related to the Clifford algebra
Cl (C, 4) , which corresponds to C4 with the canonical form 〈X,Y 〉 =

∑4
k=1 XkYk ⇔

〈εj , εk〉 = δjk

1.2 Algebra structure

1.2.1 Vector space structure

A Clifford algebra is a 2n dimensional vector space with n = dimF.
An orthonormal basis of F will be denoted (εj)

n

j=1 . Then :

εi · εj + εj · εi = 2ηij where ηij = 〈εi, εj〉 = 0,±1

or any permutation of the ordered set of indices
{i1, ..., in} : εσ(i1). · εσ(i2).. · εσ(ir) = ǫ (σ) εi1 · εi2 .. · εir
where ǫ (σ) = ±1 is the signature of the permutation σ.
The set of ordered products εj1 ·εj2 ...εjp of vectors (εj)

n

j=1 of an orthonormal

basis and the scalar 1 is a basis of Cl(F, g), which will be denoted (Fα)
2n

α=1 .
The scalar component of Z ∈ Cl(F, g) is denoted 〈Z〉 ∈ K

Example with Cl (C, 4) : It is convenient to use the basis :
Z = a+ v0ε0 + v1ε1 + v2ε2 + v3ε3 + w1ε0 · ε1 +w2ε0 · ε2 +w3ε0 · ε3 + r1ε3 ·

ε2 + r2ε1 · ε3 + r3ε2 · ε1
+x0ε1 · ε2 · ε3 + x1ε0 · ε3 · ε2 + x2ε0 · ε1 · ε3 + x3ε0 · ε2 · ε1 + bε0 · ε1 · ε2 · ε3
and to represent a vector by the notation :
Z = (a, v0, v, w, r, x0, x, b) in Cl (C, 4) with the 4 scalars a, v0, x0, b and the

4 vectors v, w, r, x ∈ C3.

1.2.2 Algebra structure

With the internal product · Cl(F, ρ) is a unital algebra on the field K, with
unity element the scalar 1 ∈ K

Because of the relation with the scalar product, a Clifford algebra has addi-
tional properties and the vectors of F play a special role.

A Clifford algebra is a graded algebra : the homogeneous elements of degree
r of Cl(F, ρ) are elements which can be written as product of r vectors of F .

The product of 2 vectors of a basis of the Clifford algebra has the form :
Fα · Fβ = ǫ (α, β)Fγ where Fγ is another vector of the basis, and ǫ (α, β) = ±1
depends on both α, β and their order (it is usually not antisymmetric). And the
product of 2 elements of Cl(F, ρ) reads :

Z = X · Y =
∑

α,β XαYβFα · Fβ =
∑

γ

(∑
α,β ǫ (α, β)XαYβ

)
Fγ

It can be expressed with 2n × 2n matrices acting on the components of the
elements :

[πL (X)] [Y ] = [X · Y ] =
∑

αβ [πL (X)]
α
β [Y ]

β
Fα

[πR (Y )] [X ] = [X · Y ] =
∑

αβ [πR (Y )]
α
β [X ]

β
Fα

The map πL : Cl(F, g) → L (K, 2n) is an algebra morphism :
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πL (X · Y ) = πL (X)πL (Y ) ;πL

(
X−1

)
= [πL (X)]

−1
;πL (1) = I2n

The map πR : Cl(F, g) → L (K, 2n) is an algebra antimorphism :

πR (Y ·X) = πR (X)πR (Y ) ;πR

(
X−1

)
= πR (X)

−1
;πR (1) = I2n

and : πL (X) ◦ πR (X) (Z) = πR (X) ◦ πL (X) (Z) = X · Z ·X
[(X · Y − Y ·X) · Z] = ([πL (X)]− [πR (Y )]) [Z] ⇔ [X,Y ] = [πL (X)] −

[πR (Y )]
In Clifford algebras some elements are invertible for the internal product.

The set GCl of invertible elements is a Lie group.

Example with Cl (C, 4) :
(a, v0, v, w, r, x0, x, b) · (a′, v′0, v′, w′, r′, x′

0, x
′, b′) = (A, V0, V,W,R,X0, X,B)

A = aa′ + v0v
′
0 + vtv′ − wtw′ − rtr′ − x′

0x0 − xtx′ + bb′

V0 = av′0 + v0a
′ − vtw′ + wtv′ − rtx′ − xtr′ + x0b

′ − bx′
0

V = av′ + a′v + v0w
′ − v′0w + x′

0r + x0r
′ + b′x − bx′ + j (v) r′ + j (r) v′ −

j (w) x′ + j (x)w′

W = aw′ + a′w + v0v
′ − v′0v + b′r + br′ + x′

0x − x0x
′ − j (v) x′ + j (w) r′ +

j (r)w′ + j (x) v′

R = ar′ + a′r − x′
0v − x0v

′ + b′w + bw′ + v′0x + v0x
′ − j (v) v′ + j (w)w′ +

j (r) r′ + j (x) x′

X0 = ax′
0 + a′x0 + v0b

′ − bv′0 − vtr′ − rtv′ + wtx′ − xtw′

X = ax′ + a′x + b′v − bv′ − x′
0w + x0w

′ + v0r
′ + v′0r + j (v)w′ − j (w) v′ +

j (r) x′ + j (x) r′

B = ab′ + a′b+ v0x
′
0 − v′0x0 + vtx′ − xtv′ − wtr′ − rtw′

with the operator j : C3 → L (C, 3) : j (z) =




0 −z3 z2
z3 0 −z1
−z2 z1 0





which has many algebraic properties and is very convenient in computations.
In particular :

j (x) y = −j (y)x
[j (x)]

t
= [j (−x)]

j (x) j (y) = yxt − ytx

1.3 Involutions

1.3.1 Graded involution

The graded involution ı : Cl(F, ρ) → Cl(F, ρ) is the extension to the Clifford
algebra of the operation on F : εj → −εj, so that the homogeneous elements
of rank even do not change sign, and the homogeneous elements of rank odd
change sign. The graded involution is an algebra automorphism

ı (X · Y ) = ı (X) · ı (Y )
ı2 = Id
The graded involution splits Cl(F, ρ) : Cl(F, ρ) = Cl0 ⊕ Cl1 where Cl0 =

{Z : ı (Z) = Z} is a Clifford subalgebra and Cl1 = {Z : ı (Z) = −Z} is a vector
subspace. Any element of the algebra has a unique decomposition :

Z = Z0 + Z1, Z0 ∈ Cl0, Z1 ∈ Cl1.
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Example with Cl (C, 4) :
ı (a, v0, v, w, r, x0, x, b) = (a,−v0,−v, w, r,−x0,−x, b)
Cl0 = {(a, 0, 0, w, r, 0, 0, b)}
Cl1 = {(0, v0, v, 0, 0, x0, x, 0)}

1.3.2 Transposition

Transposition, denoted Zt is the operation which reverses the order of the prod-

uct : Zt = Xp ·Xp−1... ·X1 = (−1)
1
2p(p−1)

X1 ·X2... ·Xp.
It is not an automorphism :
(Zt)

t
= Z

(X · Y )
t
= Y t ·Xt

Transposition acts by a diagonal matrix DT on the components :
[Zt] = [DT ] [Z] , from which one deduces a relation between the matrices

πL, πR : [πR (Y )] = [DT ] [πL (Y t)] [DT ]
Proof. (X · Y )

t
= Y t ·Xt = (πL (X) (Y ))

t
= πR (Xt) (Y t) ⇔

[DT ] [πL (X)] [Y ] = [πR (Xt)] [DT ] [Y ]
[DT ] [πL (X)] = [πR (Xt)] [DT ]

Transposition splits Cl(F, ρ) : Cl(F, ρ) = ClS⊕ClA where ClS =
{
Z : (Z)t = Z

}

and ClA =
{
Z : (Z)

t
= −Z

}
are vector subspaces.

Example with Cl (C, 4) :
(a, v0, v, w, r, x0, x, b)

t = (a, v0, v,−w,−r,−x0,−x, b)
The symmetric elements are ClS = (a, v0, v, 0, 0, 0, 0, b) , and the antisym-

metric ClA = (0, 0, 0, w, r, x0, x, 0)

1.3.3 Chirality

The ordered product of all the vectors of a basis of F : F2n = ε1 · ε2...εn, does
not depend on the choice of the basis and has specific properties :

(F2n)
2
= (−1)

n(n−1)
2 det [η] , (F2n)

t
= (−1)

n(n−1)
2 F2n

If n is odd Z commutes with all the other elements.
A volume element is an element ω 6= ±1 such that ω · ω = 1. On complex

Clifford algebras there is always a volume element : ω = ε1 · ε2...εn or ω =
iε1 · ε2...εn. If n is even it decomposes the Clifford algebra in a right and left
part Cl (F, g) = ClR ⊕ ClL :

ClR =
{
Z = 1

2 (Z + ω · Z)
}
= {Z : ω · Z = Z}

ClL =
{
Z = 1

2 (Z − ω · Z)
}
= {Z : ω · Z = −Z}

ClR is a sub Clifford algebra and an ideal : ∀Z ∈ ClR;Z
′ ∈ Cl : Z ·Z ′ ∈ ClR

Z ∈ ClR, ClL are never invertible : ω · g = ǫg ⇔ ω · g · g−1 = ǫ = ω

Example with Cl (C, 4) :
ω = ε0 · ε1 · ε2 · ε3, ω2 = 1, ωt = ω
ClR = {Z : (a, v0, v, w, w,−v0,−v, a)} ;ClL = {Z : (a, v0, v, w,−w, v0, v,−a)}
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1.3.4 Subalgebras of Quaternionic type

Using the 2 involutions one can decompose any Clifford algebra in subspaces of
quaternionic type (Shirokov) :

[Cls] = ⊕k=s(mod4)

{
ı (Z) = (−1)s Z; (Z)t = (−1)

1
2 s(s−1) Z

}
, s = 0..4

The decomposition does not depend on the choice of the basis.

Example with Cl (C, 4) :
Cl0 : s = 0 : ı (Z) = Z; (Z)

t
= Z;⇔ Z = (a, 0, 0, 0, 0, 0, 0, b)

Cl1 : s = 1 : ı (Z) = −Z; (Z)t = Z ⇔ Z = (0, v0, v, 0, 0, 0, 0, 0)
Cl2 : s = 2 : ı (Z) = Z; (Z)

t
= −Z ⇔ Z = (0, 0, 0, w, r, 0, 0, 0)

Cl3 : s = 3 : ı (Z) = −Z; (Z)
t
= −Z ⇔ Z = (0, 0, 0, 0, 0, x0, x, 0)

1.4 Scalar product

There is a scalar product on the Clifford algebra, defined by extension from
homogeneous elements :

〈X1 ·X2...Xp, Y1 · Y2...Yq〉 = δpq 〈X1, Y1〉 ... 〈Xp, Yp〉
such that the basis (Fα)

2n

α=1 is orthonormal :

〈
εi1 · εi2 ...εip , εj1 · εj2 ...εjq

〉
= δpq 〈εi1 , εj1〉 ...

〈
εip , εjp

〉

In an orthonormal basis :

〈Z,Z ′〉 = [Z]
t
[η] [Z ′]

where [η] is a diagonal real 2n × 2n matrix : 〈Fα, Fβ〉 = [η]
α
β

For homogeneous elements : 〈Z · Z ′, Z · Z ′〉 = 〈Z,Z〉 〈Z ′, Z ′〉
Transpose and the graded involution preserve the scalar product :

〈
Xt, Y t

〉
= 〈X,Y 〉 ; 〈ı (X) , ı (Y )〉 = 〈X,Y 〉

The vector subspaces in the quaternionic decomposition are orthogonal.
The scalar component of the product Z · Z ′ is related to the scalar product

〈Z,Z ′〉 :

〈X,Y 〉 =
〈
Xt · Y

〉
(1)

As a consequence :
∀X,Y, Z : 〈X · Y, Z〉 = 〈Y,Xt · Z〉 , 〈Y ·X,Z〉 = 〈Y, Z ·Xt〉
A homogeneous element Z is invertible iff its scalar product 〈Z,Z〉 6= 0. Its

inverse is then : Z−1 = 1
〈Z,Z〉Z

t

Example with Cl (C, 4) :
〈Z,Z ′〉 = aa′ + v0v

′
0 + vtv′ + wtw′ + rtr′ + x0x

′
0 + xtx+ bb′
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1.4.1 Transpose of the matrices [πL] , [πR]

From these results we have a useful relation between the matrix [πL (X)] and
its transpose :

[
πL

(
Xt

)]
= [η] [πL (X)]

t
[η]

Proof. [X · Y ] =
∑

αβ [πL (X)]
α
β [Y ]

β
Fα ⇒ [X · Fβ ] =

∑
α [πL (X)]

α
β Fα ⇒

〈X · Fβ , Fα〉 = [η]
α
α [πL (X)]

α
β =

〈
X,Fα · F t

β

〉
= [DT ]

β
β 〈X,Fα · Fβ〉

using 〈Y ·X,Z〉 = 〈Y, Z ·Xt〉 , F t
β = [DT ]

β
β Fβ

[πL (X)]
α
β = [η]

α
α [DT ]

β
β 〈X,Fα · Fβ〉

[πL (X)]
β
α = [η]

β
β [DT ]

α
α 〈X,Fβ · Fα〉

Fα · Fβ = ǫ (α, β)Fγ with a unique γ and ǫ (α, β) = ±1

(Fα · Fβ)
t = F t

β ·F t
α = ǫ (α, β)F t

γ = [DT ]
β
β [DT ]

α
α Fβ ·Fα = [DT ]

γ
γ ǫ (α, β)Fγ =

[DT ]
γ
γ Fα · Fβ

Fβ ·Fα = [DT ]
β
β [DT ]

α
α [DT ]

γ
γ Fα·Fβ = ǫ (β, α)Fγ = [DT ]

β
β [DT ]

α
α [DT ]

γ
γ ǫ (α, β)Fγ

ǫ (β, α) = [DT ]
β
β [DT ]

α
α [DT ]

γ
γ ǫ (α, β)

[πL (X)]
β
α = [η]

β
β [DT ]

α
α [DT ]

β
β [DT ]

α
α [DT ]

γ
γ 〈X,Fα · Fβ〉

= [η]
β
β [DT ]

α
α [DT ]

β
β [DT ]

α
α [DT ]

γ
γ [η]

α
α [DT ]

β
β [πL (X)]

α
β

= [η]
α
α [η]

β
β [DT ]

γ
γ [πL (X)]

α
β

[πL (Xt)]
α

β = [η]αα [DT ]
β
β 〈Xt, Fα · Fβ〉

= [η]αα [DT ]
β
β

〈
X, (Fα · Fβ)

t
〉
= [η]αα [DT ]

β
β

〈
X, [DT ]

γ
γ Fα · Fβ

〉

using 〈Xt, Y t〉 = 〈X,Y 〉
[πL (Xt)]

α

β = [η]
α
α [DT ]

β
β [DT ]

γ
γ 〈X,Fα · Fβ〉 = [DT ]

γ
γ [πL (X)]

α
β = [η]

α
α [η]

β
β [πL (X)]

β
α

that we can write : [πL (Xt)] = [η] [πL (X)]
t
[η]

and from there :

[πR (X)]
t
= [η]

[
πR

(
Xt

)]
[η]

Proof. [πR (X)] = [DT ] [πL (Xt)] [DT ]

[πR (X)]
t
= [DT ] [πL (Xt)]

t
[DT ] = [DT ] [η] [πL (X)] [η] [DT ] = [η] [DT ] [πL (X)] [DT ] [η] =

[η]
[
πR

(
X i

)]
[η]

Example with Cl (C, 4) :
[πL (Zt)] = [πL (Z)]

t
; [πR (Zt)] = [πR (Z)]

t

[πR (Z)] = [DT ] [πL (Zt)] [DT ]
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1.5 Exponential

1.5.1 Definition

On a Clifford algebra one can always define a norm, and it is a finite dimensional
Banach vector space.

The exponential of the matrix πL (T ) is well defined, as well as

expT =

∞∑

p=0

1

p!
T p

then : πL (expT ) = expπL (T )

1.5.2 Properties

The map T → expT is smooth, with derivative d
dT

expT |T=u = expu considered
as a linear map from u to expu, that is :[

d
dT

expT |T=u

]
= [πL (expu)]

det [πL (expu)] = expTr (πL (u))
Tr (πL (u)) =

∑
α [πL (u)]αα = 2n 〈T 〉

det [πL (expu)] = exp 2n 〈T 〉 6= 0
thus, according to the constant rank theorem exp is a local diffeomorphism

on the Clifford algebra.
The map : Z (τ) = exp (τT ) defines a one parameter group with infinitesimal

generator T : Z (τ + τ ′) = Z (τ) · Z (τ ′) and Z (τ)
−1

= Z (−τ) .

The inverse map (exp)−1 , similar to a logarithm, has for derivative

[πL (expu)]
−1

=
[
πL

(
(expu)

−1
)]

= [πL (exp (−u))] .

From the definition :
exp (T )t = (expT )t ; ı (expT ) = exp (ı (T ))
Not all elements of a Clifford algebra can be written as an exponential. Ex

: Z ∈ ClR = {Z : ω · Z = Z} : ∀n > 0 : Zn ∈ ClR but 1 /∈ ClR so there is an
exponential but expZ /∈ ClR.

1.5.3 Special values of the exponential

In a complex or real Clifford algebra, if T.T = λ 6= 0 ∈ C :
expT =

∑∞
p=0

1
p!T

p =
∑∞

p=0
1

(2p)!T
2p + T ·∑∞

p=0
1

(2p+1)!T
2p

=
∑∞

p=0
1

(2p)!λ
p + T ·

∑∞
p=0

1
(2p+1)!λ

p

Let us denote λ = µ2 with any square root µ of λ
expT =

∑∞
p=0

1
(2p)!µ

2p + T · 1
µ

∑∞
p=0

1
(2p+1)!λ

2p+1 = coshµ+ 1
µ
(sinhµ)T

T.T ∈ C ⇒ expT = coshµ+
1

µ
(sinhµ)T ;µ2 = T · T

If Z.Z = 0 then expT = 1 + T
coshµ, 1

µ
(sinhµ) are always real.

If λ ∈ R :
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λ > 0 : expT = cosh
√
λ+ 1√

λ

(
sinh

√
λ
)
T

λ < 0 : expT = cos
√
−λ+ 1√

−λ

(
sin

√
−λ

)
T

and (expT )−1 = exp (−T ) = coshµ+ 1
µ
(sinhµ)T

Example with Cl (C, 4) :
Tr = (0, 0, 0, 0, R, 0, 0, 0) , R ∈ C3 : Tr · Tr = −RtR
expTr = coshµr +

sinhµr

µr
(Tr) with µ2

r = −RtR = Tr · Tr

Tw = (0, 0, 0,W, 0, 0, 0, 0) ,W ∈ C3 : Tw · Tw = −W tW
expTw = coshµw + sinhµw

µw
(Tw) with µ2

w = −W tW = Tw · Tw

Tx = (0, 0, 0, 0, 0, X0, X, 0) , X0 ∈ R, X ∈ C
3 : Tx · Tx = −X2

0 −XtX
expTx = coshµx + sinhµx

µx
Tx

Tv = (0, V0, V, 0, 0, 0, 0, B) , V0, V, B ∈ C : Tv · Tv = V 2
0 + V tV +B2

expTv = coshµv +
(

sinhµv

µv

)
Tv

2 MORPHISMS

2.1 Morphisms of Clifford algebras

Definition 2 A Clifford algebra morphism between the Clifford algebras Cl(F1, ρ1), Cl (F2, ρ2)
on the same field K is a map

Φ : Cl (F1, ρ1) → Cl (F2, ρ2)
which is an algebra morphism :
∀X,Y ∈ Cl(F1, ρ1), ∀k, k′ ∈ K : Φ (kX + k′Y ) = kΦ (X) + k′Φ(Y ),
Φ (1) = 1,Φ (X · Y ) = Φ (X) · Φ (Y )
and preserves the scalar product :
∀X,Y ∈ Cl(F1, ρ1) : 〈Φ (X) ,Φ (Y )〉Cl(F2,ρ2)

= 〈X,Y 〉Cl(F1,ρ1)

Theorem 3 Let (F1, ρ1) , (F2, ρ2) be 2 vector spaces over the same field, en-
dowed with bilinear symmetric forms. Then any linear map ϕ ∈ L(F1;F2)
which preserves the scalar product can be extended to a morphism Φ over the
Clifford algebras such that the diagram commutes :

(F1, g1)
ı1→ Cl (F1, g1)

↓ ↓
↓ ϕ ↓ Φ
↓ ↓
(F2, g2)

ı2→ Cl (F2, g2)

Proof. It suffices to define Φ : Cl(F1, g1) → Cl (F2, g2) as follows :
∀k, k′ ∈ K, ∀u, v ∈ F1 :
Φ (k) = k,Φ (u) = ϕ (u) ,Φ (ku+ k′v) = kϕ (u) + k′ϕ (v) ,
Φ (u · v) = ϕ (u) · ϕ (v)
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and as a consequence :
Φ (u · v + v · u) = ϕ (u)·ϕ (v)+ϕ (v)·ϕ (u) = 2ρ2 (ϕ (u) , ϕ (v)) = 2ρ1 (u, v) =

Φ (2ρ1 (u, v))

An isomorphism of Clifford algebras is a morphism which is also a bijective
map. Then F1, F2 must have the same dimension.

An automorphism of Clifford algebra is a Clifford isomorphism on the same
Clifford algebra.

Theorem 4 A Clifford isomorphism of Clifford algebras between the Clifford
algebras Cl(F1, ρ1), Cl (F2, ρ2) maps F1 to F2

Proof. Let (εj)
n

j=1 be an orthonormal basis of F1 and fj = Φ(εj) . Define the

algebra A generated by the vectors fj and the map f : F1 → A :: f (u) = Φ (u) .
Then ∀v, w ∈ F1 : f (v) · f (w) + f (w) · f (v) = 2ρ2 (v, w) and by the universal
property of Clifford algebra there is a unique map ϕ : Cl(F1, ρ1) → A such that
f = ϕ ◦ ı with ı : F1 → Cl(F1, ρ1). As an algebra A ≡ Cl (F2, ρ2) and Φ = ϕ is
unique. But, from the previous theorem, any map ϕ : F1 → F2 which preserves
the scalar product can be extended to a Clifford algebra morphism, and it maps
F1 to F2 so does Φ.

As a consequence the only automorphisms on a Clifford algebra are the
changes of orthonormal basis : they must map F on itself and preserve the
scalar product.

2.2 The Category of Clifford algebras

The product of Clifford algebras morphisms is a Clifford algebra morphism, so
Clifford algebras on a field K and their morphisms define a category ClK .

Vector spaces (F, ρ) on the same field K endowed with a symmetric bilinear
form ρ, and linear maps ϕ which preserve this form, define a category, denoted
VB

TCl : VB 7→ ClK is a functor from the category of vector spaces over K
endowed with a symmetric bilinear form, to the category of Clifford algebras
over K.

TCl : VB 7→ ClK associates to each object (F, ρ) of VB its Clifford algebra
Cl(F, g) :

TCl : (F, g) 7→ Cl (F, ρ) associates to each morphism of vector spaces a mor-
phism of Clifford algebras :

TCl :ϕ ∈ homVB
((F1, ρ1) , (F2, ρ2)) 7→ Φ ∈ homClK

((F1, ρ1) , (F2, ρ2))
By picking an orthonormal basis in each Clifford algebra one deduces :
All Clifford algebras Cl(F, ρ) where F is a complex n dimensional vector

space are isomorphic. The common structure is denoted Cl (C, n) .
All Clifford algebras Cl(F, ρ) where F is a real n dimensional vector space

and ρ have the same signature, are isomorphic. The common structure is de-
noted Cl (R, p, q) , for the signature (+p,−q).

9



The algebras Cl(R, p, q) and Cl(R, q, p) are not isomorphic if p 6= q . For
any n, p, q ≥ 0 we have the algebras isomorphisms :

Cl (R, p, q) ≃ Cl0 (R, p+ 1, q) ≃ Cl0 (R, q, p+ 1)
Cl0 (R, p, q) ≃ Cl0 (R, q, p)
Cl(R, 0, p) ≃ Cl(R, p, 0)
Cl0 (C, n) ≃ Cl(C, n− 1)
with Cl0 defined with the graded involution.

2.3 Adjoint map

2.3.1 Definition

The adjoint map :

Ad : GCl → GL (Cl;Cl) :: AdgZ = g · Z · g−1

defines a linear action of the group GCl of invertible elements on Cl (F, ρ) :

Adg·g′ = Adg ◦Adg′ ;Ad1 = Id

and is such that :

Adg (X · Y ) = AdgX · AdgY
In any basis Fα of the Clifford algebra :
[Adg] (Fα) = [Adg]

(
εj1 · .... · εjq

)
= [Adg ] (εj1) · ... · [Adg]

(
εjq

)

so the map Adg is fully defined by its value for the vectors εj of F , that is
by its value on F . Moreover Adg1 = 1.

This is a projective map, in the meaning : ∀k 6= 0 ∈ K : Adkg = Adg
(Cl (F, ρ) , Ad) is a representation of the group GCl. So for any group G of

a Clifford algebra, by restriction (Cl (F, ρ) , Ad) is a representation of G on the
Clifford algebra.

Its matrix in an orthonormal basis is :
[Adg] [Z] = [πL (g)]

(
Z · g−1

)
= [πL (g)]

[
πR

(
g−1

)]
[Z] =

[
πR

(
g−1

)]
[πL (g)] [Z]

from which :
[Adg]

t =
[
πR

(
g−1

)]t
[πL (g)]t = [η]

[
πR

((
g−1

)t)]
[η] [η] [πL (gt)] [η]

= [η]
[
πR

((
g−1

)t)]
[πL (gt)] [η] = [η] [Adgt ] [η]

[Adg]
t = [η] [Adgt ] [η]

2.3.2 Orthogonal group

In a Clifford algebra the adjoint map preserves the scalar product if :
〈AdgX,AdgY 〉 = 〈X,Y 〉
〈AdgX,AdgY 〉 = [AdgX ]t [η] [AdgY ] = [X ]t [η] [Y ]
that is if :
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[Adg]
t
[η] [Adg] = [η] ⇔ [η] [Adgt ] [η] [η] = [η]

[
Adg−1

]

⇔ [Adgt ] =
[
Adg−1

]
⇔ gt · g ∈ K

The set of elements of Cl (F, ρ) such that gt · g ∈ K is a group G.
Then the adjoint map is an automorphism. It maps F to F , its restriction

to F has for matrix an orthogonal matrix belonging to O (n), and it defines
uniquely the matrix of the adjoint map on Cl (F, ρ) . We have a morphism :
O (n) → G.

Conversely, because Adkg ≡ Adg any kg, k ∈ K, g ∈ G gives the same matrix
of O (n) .

The orthogonal group of a Clifford algebra is the group :

O (Cl) =
{
g ∈ Cl (F, ρ) : gt · g = 1

}

The Lie algebra of the orthogonal group is given by :
T1O (Cl) = {T : T t + T = 0}
Then the group G of elements of Cl (F, ρ) such that Adg preserves the scalar

product is K ×O (Cl) .
The equation gt · g = 1 provides, by computing the product, necessary

relations between the components of g.
Similarly for G. The group G is a submanifold of Cl (F, ρ) , not necessarily

connected (with K = R it has 2 connected components for k > 0 and k < 0) and
each of its connected component is the covering group of one of the connected
component of the orthogonal group O (n) .

Example with Cl (C, 4) :
T1O (Cl) = {(0, 0, 0,W,R,X0, X, 0)}

2.3.3 Reflection

In any n dimensional real vector space (F, ρ) endowed with a non degenerate
scalar product (not necessarily definite positive) a reflection of vector u, 〈u, u〉 6=
0 is the map : R (u) v = v−2 〈u,v〉

〈u,u〉u. Its unique eigen vector is u with eigen value

−1 and detR(u) = (−1)
n
. It preserves the scalar product and, conversely, any

orthogonal map can be written as the product of at most n reflections.
In a real Clifford algebra based on a vector space F of dimension n the

reflection of vector u ∈ F, 〈u, u〉 6= 0 can be written, using
u · v + v · u = 2 〈u, v〉 , u−1 = 1

〈u,u〉u :

R (u) v = v−2 〈u,v〉
〈u,u〉u = v− (u · v + v · u) ·u−1 = −Aduv ⇔ Aduv = −R (u) v

The matrix of the restriction of Adu to F has for determinant : det [Adu]F =
(−1)

n
det [R (u)] = 1. The map Adu can be extended to the Clifford algebra, it

preserves the scalar product on Cl (F, ρ), thus it is orthogonal and defines an
automorphism. More generally Adu1...up

defines an automorphism.
Conversely a Clifford algebra automorphism ϑ must preserve both the scalar

product and be globally invariant on F . Its restriction to F is expressed as
the product of p ≤ n reflections, that is [Adg]F = (−1)

p
[R (u1)] ... [R (up)] =

11



[
Adu1...up

]
. As the mapAdg is fully defined by its value on F , any automorphism

on a Clifford algebra can be expressed as Adg where g is the product of at most
n vectors of F . And because :

gt · g = 〈u1, u1〉 ... 〈up, up〉
Adkg = Adg
up to the product by a scalar g ∈ O (Cl) .
det [Adg ]F = 1 so the matrix of the restriction of Adu to F belongs to

SO (n) . It defines uniquely [Adg] on the Clifford algebra.
The sets G of vectors of Cl (F, ρ) which can be written as the product of p

vectors of F is a group only if :
- p = 1 : the vectors are multiple of a fixed vector
- p is even
For p odd, they never constitute a group as can be checked with the graded

involution :
ı (g) = ı (u1 · ... · u2p+1) = (−1)

2p+1
(u1 · ... · u2p+1) = −g

ı (g · g′) = ı (g) · ı (g′) = g · g′

3 COMPLEX AND REAL CLIFFORD ALGE-

BRAS

3.1 Complex and real structures in vector spaces

3.1.1 From complex to real

A real structure on a complex vector space E is a map σ : E → E which is
antilinear and an involution :

∀z ∈ C : σ (zV ) = (z)σ (V ) , σ2 = Id
A vector V is decomposed in a real and an imaginary part :
ReV = 1

2 (V + σ (V ))
ImV = 1

2i (V − σ (V ))
E splits in 2 vector subspaces ReE = {σ (V ) = V } , ImE = {σ (V ) = −V } :

E = ReE ⊕ i ImE which are real isomorphic and ReE is said to be a real form
of E.

The complex conjugate of any vector is CC (ReV + i ImV ) = ReV − i ImV
One can always define a real structure on a complex vector space E. If it is

n dimensional the simplest way is to define σ from the components in a fixed
basis (εj)

n

j=1 and a set of indices J ⊂ (1, 2, ...n)

∀z ∈ C, j ∈ J : σ (zεj) = (z)εj
∀z ∈ C, j ∈ Jc : σ (zεj) = −(z)εj
σ defines a real structure :
∀V ∈ E : V =

∑n
j=1 vjεj → σ (V ) =

∑
j∈J (vj)εj −

∑
j∈Jc (vj)εj

σ (kV ) =
∑

j∈J (kvj)εj −
∑

j∈Jc (kvj)εj = (k)σ (V )

σ2 (V ) =
∑

j∈J σ
(
(vj)εj

)
−∑

j∈Jc σ
(
(vj)εj

)
= V
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ReE = {V : σ (V ) = V } =
{
V =

∑
j∈J vjεj +

∑
j∈Jc ivjεj , (vj)

n

j=1 ∈ R

}

ImE = {V : σ (V ) = −V } =
{
V =

∑
j∈J ivjεj +

∑
j∈Jc vjεj, (vj)

n

j=1 ∈ R

}

The basis of ReF is {εj, j ∈ J, iεj, j ∈ Jc} , the basis of ImF is
{iεj, j ∈ J, εj , j ∈ Jc} , they are both n real dimensional, and in this oper-

ation the components of a real vector can be complex or pure imaginary. The
usual way is to take J = (1, 2, ...n) .

With 4 real linear maps on the real part of E one can define a real linear
map

F : E → E :
F (ReV + i ImV ) = P1 (ReV ) + P2 (ImV ) + i (Q1 (ReV ) +Q2 (ImV )) .
It is complex linear if it meets the Cauchy conditions : P2 = −Q1, P1 = Q2

The complex conjugate of a complex map ϕ ∈ L (E;E) is the map
CC (ϕ) ∈ L (E;E) :: CC (ϕ)CC (V ) = CC (ϕ (CC (V )))
If CC (ϕ) = ϕ it is said to be real and maps real vectors to real vectors,

imaginary vectors to imaginary vectors If CC (ϕ) = −ϕ then it inverses the
structures.

If ρ is a bilinear symmetric form on E, the map : ρ̃ (u, v) = ρ (CC (u) , v) is
Hermitian.

3.1.2 From real to complex

There are 2 ways to define a complex vector space from a real vector space E.
i) By complexification : the complexified is the complex vector space C⊗E

defined by the map : f : E × E → C⊗ E :: f (x, y) = x+ iy
dimC C⊗ E = dimR E
ii) By a complex structure : E stays the same, if there is a map J ∈ L (E;E)

such that J2 = −Id. Then the product by i is defined as : iV = J (V ) and the
complex conjugate CC (iV ) = −J (V ) . This is always possible iff dimE is even
or infinite countable.

3.2 Real and complex structure on Clifford algebras

If (F, ρ) is a real vector space, the Clifford algebra Cl (C⊗ F, ρ) of its complex-
ified is the complexified C⊗ Cl (F, g) . Cl (F, g) is a real form of C⊗ Cl (F, ρ) .
This is a complex Clifford algebra, but the symmetric form is not the usual one
: the signature stays the same. All complex Clifford algebras are isomorphic,
but the signature of the bilinear symmetric form can be different. Conversely
such an isomorphism is a convenient way to define a real structure on a complex
Clifford algebra as we will see now.

3.2.1 Morphisms C : Cl (R, p, q) → Cl (C, p+ q)

Let F = Rn with a bilinear symmetric form of signature (p, q) and orthonormal
basis (ej)

n

j=1 with ρ (ej, ej) = −1 for j ∈ Jc.
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Let FC = Cn with orthonormal basis (εj)
n

j=1 with the bilinear symmetric

form ρc (εj , εk) = δjk and Cl (FC , ρc) its Clifford algebra with product · and
orthonormal basis Fj1...jr = εj1 · ... · εjr .

Let σ be the real structure defined on the complex vector space FC by :
∀z ∈ C, j ∈ J : σ (zεj) = (z)εj
∀z ∈ C, j ∈ Jc : σ (zεj) = −(z)εj
FC is a 2n real vector space with real form FR = ReFC which has for basis

{εj , j ∈ J, iεj, j ∈ Jc} , and ImFC with basis {iεj , j ∈ J, εj, j ∈ Jc} .
On ReFC we define the bilinear symmetric form :

ρ1

(∑
j∈J Vjεj +

∑
j∈Jc Vkiεk,

∑
j∈J V ′

j εj +
∑

j∈Jc V ′
kiεk

)

=
∑

j∈J VjV
′
j −∑

j∈Jc VkV
′
k

On ImFC we define the bilinear symmetric form :

ρ2

(∑
j∈J Vj iεj +

∑
j∈Jc Vkεk,

∑
j∈J V ′

j iεj +
∑

j∈Jc V ′
kεk

)

=
∑

j∈J VjV
′
j −∑

j∈Jc VkV
′
k

ρ1, ρ2 are symmetric, real valued, and have the same signature (+p,−q).
The real Clifford algebras Cl (ReFC , ρ1) , Cl (ImFC , ρ2) , are isomorphic be-

cause the signature of the form is the same, and are isomorphic to Cl (F, ρ) .
As a vector space the Clifford algebra Cl (FC , ρ) is the sum of the real

algebras :
Cl (FC , ρ) = Cl (ReFC , ρ1)⊕ iCl (ImFC , ρ2)
so that Cl (ReFC , ρ1) , and by extensionCl (F, ρ) , are a real form of Cl (FC , ρ) .
In the real and imaginary parts of Cl (C, n) the components of a vector

Z ∈ Cl (C, n) , expressed in the usual orthonormal basis of Cl (C, n) , can be
real or pure imaginary.

The isomorphism C : Cl (F, ρ) → Cl (ReFC , ρ1) is defined through the bases
C : F → ReFC :: C (ej) = εj for j ∈ J ;C (ej) = iεj for j ∈ Jc

It defines an isomorphism of vector spaces which preserves the symmetric
form. It can be extended to an isomorphism between the Clifford algebras as
seen above.

So we have a real Clifford algebra morphism C : Cl (Rn, p, q) → Cl (C, n)
such that its image C (Cl (Rn, p, q)) is ReCl (C, n) which is a real Clifford al-
gebra. And similarly we can define C′ : F → ImFC :: C′ (ej) = iεj for
j ∈ J ;C (ej) = εj for j ∈ Jc which can be extended to a Clifford algebra
morphism C′ : Cl (Rn, p, q) → Cl (C, n) such that its image C (Cl (Rn, p, q)) is
ImCl (C, n) which is a real Clifford algebra.

Example with Cl (C, 4) :
C : Cl (3, 1) → Cl (C, 4) :: C ([a, v0, v, w, r, x0, x, b]) = (a, iv0, v, iw, r, x0, ix, ib)
Re (a, v0, v, w, r, x0, x, b) = (Re a, i Im v0,Re v, i Imw,Re r,Rex0, i Imx, i Im b)
Im (a, v0, v, w, r, x0, x, b) = (Im a,−iRe v0, Im v,−iRew, Im r, Imx0,−iRex,−iRe b)

3.2.2 Complex conjugation

The map C : Cl (Rn, p, q) → Cl (C, n) has many interesting properties :
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∀α, β ∈ R : C (αZ + βZ ′) = αC (Z) + βC (Z ′)
C (Z · Z ′) = C (Z) · C (Z ′)

C (Z)
t
= C (Zt)

〈C (Z) , C (Z ′)〉Cl(C,n) = 〈Z,Z ′〉Cl(Rn,p,q)

In the orthonormal bases the map C is represented by a diagonal matrix
with entries equal to ±i and [C]

2
= [η] where [η] is a diagonal matrix with

entries equal to ±1, such that [C] = [η] [C] .
For any Z ∈ Cl (C, n) there are Z1, Z2 ∈ Cl (Rn, p, q) such that
Z = C (Z1) + iC (Z2) ⇔ [Z] = [C] [Z1] + i [C] [Z2]
⇒ [Z] = [C] [Z1]− i[C] [Z2] = [η] [C] [Z1] + i [η] [C] [Z2]
The real and imaginary part of a vector Z ∈ Cl (C, n) are then defined by :

ReZ =
1

2

(
[Z] + [η] [Z]

)
; ImZ =

1

2i

(
[Z]− [η] [Z]

)

Complex conjugation is then defined on Cl (C, n) by :

CC (ReZ + i ImZ) = ReZ − i ImZ

With the components in the orthonormal basis : [CC (Z)] = [η] [Z]
The operation is antilinear, an involution and it commutes with transposition

and the principal involution. Moreover :
CC (Z · Z ′) = CC (Z) · CC (Z ′)
The adjoint of Z ∈ Cl (C, n) is Z∗ = CC (Zt)

The complex conjugate of the map :
πL (X) : Cl (C, n) → Cl (C, n) :: πL (X) (Z) = X · Z
is :
CC (πL (X) (CC (Z))) = CC (πL (X)CC (Z)) = CC (X) · CC (Z)
that is CC (πL (X)) = πL (CC (X)) and similarlyCC (πR (X)) = πR (CC (X))
With Adg, g ∈ Cl (C, n) :
CC (Adg) (Z) = CC (AdgCC (Z)) = CC

(
g · CC (Z) · g−1

)

= CC (g) · Z · CC
(
g−1

)
= AdCC(g)Z

CC (Adg) = AdCC(g)

Amap ϕ ∈ L (Cl (C, n) ;Cl (C, n)) is real if CC (ϕ) = ϕ : it maps real vectors
to real vectors and imaginary vectors to imaginary vectors. If CC (ϕ) = −ϕ then
it inverses the structures. πL (X) , πR (X) are real if X is real.

The map Adg is real if g ∈ ReCl (C, n) or g ∈ ImCl (C, n) because Ad−g ≡
Adg.

The vectors of the basis (εj)
n

j=1 of Cl (C, n) belong to ReCl (C, n) if j ∈ J,

or to ImCl (C, n) if j ∈ Jc.
The vectors Fj1...jr = εj1 · ... · εjr of an orthonormal basis of Cl (C, n) belong

to ReCl (C, n) or ImCl (C, n) according to :
CC (Fj1...jr) = ±Fj1...jr = CC (εj1) · ... · CC (εjr) .

15



Example with Cl (C, 4) :

CC (a, v0, v, w, r, x0, x, b) =
(
(a),−(v0), (v),−(w), (r), (x0),−(x),−(b)

)

3.2.3 Hermitian scalar product

The Hermitian scalar product on Cl (C, n) is defined by :

〈X,Y 〉H = 〈CC (X) , Y 〉Cl(C,n)

〈X,Y 〉H = [CC (X)]
t
[Y ] = [X ]

t
[η] [Y ]

The usual basis (Fα)
2n

α=0 of Cl (C, n) is orthonormal for the Hermitian prod-
uct with a signature, depending on (p, q) , given by the value of ηαβ in the matrix
[η]

〈X,Y 〉H = 〈ReX − i ImX,ReY + i ImY 〉Cl(C,n)

= 〈ReX,ReY 〉Cl(C,n) + 〈ImX, ImY 〉Cl(C,n)

−i 〈ImX,ReY 〉Cl(C,n) + i 〈ReX, ImY 〉Cl(C,n)

The components of the vectors ReX,ReY, ImX, ImY can be real or complex
and on the real and imaginary parts of the Clifford algebra the signature is (p, q) .

Some of the usual identities are generalized :
∀u, v ∈ F = Span (εj)

n

j=1 : 2 〈u, v〉H = u∗ · v + v · u∗

Proof. 2 〈u, v〉H = 2 〈CC (u) , v〉Cl(C,n) = CC (u) · v + v · CC (u) = CC (ut) ·
v + v · CC (ut) = u∗ · v + v · u∗

〈X1 ·X2...Xp, Y1 · Y2...Yq〉H = δpq 〈X1, Y1〉H ... 〈Xp, Yp〉H
Proof. 〈X1 ·X2...Xp, Y1 · Y2...Yq〉H = 〈CC (X1) · CC (X2) ...CC (Xp) , Y1 · Y2...Yq〉Cl(C,n)

= δpq 〈CC (X1) , Y1〉Cl(C,n) ... 〈CC (Xp) , Yp〉Cl(C,n) = δpq 〈X1, Y1〉H ... 〈Xp, Yp〉H

The Hermitian product is preserved by the graded involution and by trans-
pose. It is preserved by a map ϕ if :

〈X,Y 〉H = 〈ϕ (X) , ϕ (Y )〉H = 〈CC (ϕ (X)) , ϕ (Y )〉Cl(C,n)

= 〈CCϕ (CC (X)) , ϕ (Y )〉Cl(C,n) = [CC (X)]t [CCϕ]t [ϕ] [Y ] = [CC (X)]t [Y ]

That is if : [CCϕ]
t
[ϕ] = I

With ϕ = Adg if [CC (Adg)]
t [Adg] =

[
AdCC(g)

]t
[Adg] =

[
AdCC(gt)

]
[Adg] =[

AdCC(gt)·g
]
= I ⇔ CC (gt) · g ∈ C ⇔ g∗ · g ∈ C

The unitary group of Cl (C, n) is then defined as

U (Cl (C, n)) =
{
g ∈ Cl (C, n) : CC

(
gt
)
· g = 1

}

It depends on the complex conjugation, and there is a group for each signa-
ture.
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Example with Cl (C, 4) :
With C : Cl (R, 3, 1) → Cl (C, 4)
〈(a, v0, v, w, r, x0, x, b) , (a

′, v′0, v
′, w′, r′, x′

0, x
′, b′)〉R

= (a)a′ − (v0)v
′
0 + (v)

t
v′ − (w)

t
w′ + (r)

t
r′ + (x0)x

′
0 − (x)

t
x′ − (b)b′

3.2.4 Reflections

We have an extension of the theorem on reflections.
On a n dimensional complex vector space F , endowed with a bilinear sym-

metric form and a real structure, one can define a Hermitian product. A linear
map which preserves the Hermitian product is represented by a unitary matrix,
with the appropriate signature. Such a map is also an orthogonal map on the
2n dimensional real vector space. Indeed U (n, p, q) ⊂ O (2n, p, q) ∩ GL (C, n) .
Then it can be expressed as the product of at most 2n real reflections.

On Cl (C, p+ q) a real reflection is a map :

R (u) : ReCl (C, p+ q) → ReCl (C, p+ q) :: R(u)z = z − 2
〈u,z〉Cl(C,p+q)

〈u,u〉
F

u

where u, z are vectors of the real part of Span (εi)
n
i=1

Writing u = C (u1) , z = C (z1) :

R (u) z = C (z1)−2
〈C(u1),C(z1)〉Cl(C,p+q)

〈C(u1),C(u1)〉Cl(C,p+q)
C (u1) = C (z1)−2

〈u1,z1〉Cl(R;p,q)

〈u1,u1〉Cl(R,p,q)
C (u1)

= C
(
z1 − 2

〈u1,z1〉Cl(R;p,q)

〈u1,u1〉Cl(R,p,q)
u1

)
= C (R (u1) z1)

and :
R (u1) z1 = −Adu1z1
R (u) z = −C (Adu1z1) = −AdC(u1)C (z1)
As Adig ≡ Adg the vectors u can belong to Re (Cn) or iRe (Cn) .
Then Adu1...up

preserves the Hermitian product :〈
Adu1...up

Z,Adu1...up
Z ′〉

H
=

〈
Adu1...up

CC (Z) , Adu1...up
Z ′〉

Cl(C,p+q)

= 〈CC (Z) , Z ′〉Cl(C,p+q) = 〈Z,Z ′〉H
Any map on F can be extended over the Clifford algebra by
[Adg] (Fα) = [Adg]

(
εj1 · .... · εjq

)
= [Adg ] (εj1) · ... · [Adg]

(
εjq

)

So any map on Cl (C, n) which preserves both the Hermitian product and
the vector space F is necessarily of the form Adu1...up

where uj are at most 2n
vectors of Re (Cl (C, n)) or Im (Cl (C, n)) .

4 LIE ALGEBRAS AND LIE GROUPS

4.1 Lie algebra

As any algebra a Clifford algebra is a Lie algebra with the bracket

[Z,Z ′] = Z · Z ′ − Z ′ · Z
The principal involution ı preserves the bracket : ı ([Z,Z ′]) = [ı (Z) , ı (Z ′)]
Transposition gives the opposite value : [Zt, Z ′t] = − [Z,Z ′]t
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The map ad (Z) : Cl → Cl :: ad (Z) (Z ′) = [Z,Z ′] is linear and represented
in matrix by [ad (Z)] = πL (Z)− πR (Z)

[ad (Z)]t = [πL (Z)]t − [πR (Z)]t = [η] [πL (Zt)] [η]− [η]
[
πR

(
Zi

)]
[η]

[ad (Z)]
t
= [η]

[
ad

(
Zt

)]
[η]

The radical is the center ZCl, composed of the scalars if n is even, of the
scalars and the multiple of the element F2n = ε1 ·ε2...εn if n is odd. The quotient
Cl/ZCl is then a semi-simple Lie algebra.

Example with Cl (C, 4) :
[(a, v0, v, w, r, x0, x, b) , (a

′, v′0, v
′, w′, r′, x′

0, x
′, b′)] = (A, V0, V,W,R,X0, X,B)

A = 0
1
2V0 = −vtw′ + wtv′ + x0b

′ − bx′
0

1
2V = v0w

′ − v′0w + b′x− bx′ + j (v) r′ + j (r) v′
1
2W = v0v

′ − v′0v + x′
0x− x0x

′ + j (w) r′ + j (r)w′
1
2R = −j (v) v′ + j (w)w′ + j (r) r′ + j (x) x′
1
2X0 = v0b

′ − bv′0 + wtx′ − xtw′
1
2X = b′v − bv′ − x′

0w + x0w
′ + j (r)x′ + j (x) r′

1
2B = v0x

′
0 − v′0x0 + vtx′ − xtv′

4.2 Killing form

The Killing form is the bilinear map

B (Z,Z ′) = Tr (ad (Z) ◦ ad (Z ′))

It is preserved by all automorphisms on the Lie algebra.
Moreover :

B (X, [Y, Z]) = B ([X,Y ] , Z)

The Killing form is degenerate : it is null on the radical, and non degenerate
on Cl (F, ρ) /rad.

Example with Cl (C, 4) :
B (Z,Z ′) = 32 (v0v

′
0 + vtv′ − wtw′ − rtr′ − x0x

′
0 − xtx′ + bb′) = 32 (〈Zt, Z ′〉 − aa′)

4.3 Lie subalgebras

Any vector subspace of a Clifford algebra which is closed for the bracket is a
Lie subalgebra. There are many subalgebras (see Shirokov for a partial list).
Among them :

the homogeneous elements of order k are such that [Clk, Clk] ⊂ Cl2 so that
the homogeneous elements of order 2 constitute a Lie subalgebra.

the Lie subalgebra Cl0 = {Z ∈ Cl (F, ρ) : ı (Z) = Z}
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the Lie subalgebra T1O (Cl) =
{
Z ∈ Cl (F, ρ) : (Z)t = −Z

}
which is the Lie

algebra of the orthogonal group.
On a complex Clifford algebra, endowed with a real structure, we can have

a real Lie subalgebra. With the morphisms C : Cl (R, p, q) → Cl (C, p+ q) , if
L ⊂ Cl (R, p, q) is a Lie algebra, then C (L) is a real Lie algebra in Cl (C, p+ q) .

T1U (C, p+ q) =
{
Z ∈ Cl (C, p+ q) : CC (Z)

t
= −Z

}
is the Lie algebra of the

unitary group and is a real form of T1O (Cl (C, n)) .

Examples with Cl (C, 4) :
Are Lie subalgebras :
Cl2(C, 4) : {(0, 0, 0,W,R, 0, 0, 0)}
Cl0(C, 4) = {(A, 0, 0,W,R, 0, 0, B)}
ClA(C, 4) = {(0, 0, 0,W,R,X0, X, 0)}
ClR(C, 4) = {(A, V0, V,W,W,−V0,−V,A)}
{(A, 0, V, 0, R,X0, 0, 0)}
{(A, 0, V, ǫV,R,X0,−V, ǫX0)} with ǫ = ±1

4.3.1 Cartan algebra

In any semi-simple complex Lie algebra L there is a Cartan algebra H which
has the properties :

i) it is abelian : ∀h, h′ ∈ H : [h, h′] = 0
ii) there is a set {Yj} of vectors of L such that
∀h ∈ H : ad (h)Yj = αj (h)Yj where αj is a linear form on L
iii) L = H ⊕ Span (Yj)
Cl (C, n) /ZCl is semi-simple and has a Cartan algebra, which can be found

through a representation (see below).

Example with Cl (C, 4) :
The Cartan algebra is 4 dimensional :
T1Γ = {A+W1ε0 · ε1 +R1ε3 · ε2 +Bε0 · ε1 · ε2 · ε3, A,W1, R1, B ∈ C}
We have a similar result by selecting the components W2, R2 or W3, R3.
There are 12 vectors
Y1 (ǫ11, ǫ12) = i (ε0)+ǫ11 (ε1)+iǫ12 (ε1 · ε2 · ε3)+ǫ11ǫ12 (ε0 · ε3 · ε2) , ǫij = ±1
Y2 (ǫ21, ǫ22) = i (ε2)+ǫ21 (ε3)+iǫ22 (ε0 · ε1 · ε3)+ǫ21ǫ22 (ε0 · ε2 · ε1) , ǫij = ±1
Y3 (ǫ31, ǫ32) = i (ε0 · ε2)+ǫ31 (ε0 · ε3)+iǫ32 (ε1 · ε3)+ǫ31ǫ32 (ε2 · ε1) , ǫij = ±1
ad (h) (Y1 (ǫ11, ǫ12)) = − (iW1ǫ11 +Bǫ12)Y1 (ǫ11, ǫ12)
ad (h) (Y2 (ǫ21, ǫ22)) = (−Bǫ22 + iR1ǫ21)Y2 (ǫ21, ǫ22)
ad (h) (Y3 (ǫ31, ǫ32)) = i (R1ǫ31 +W1ǫ31ǫ32)Y3 (ǫ31, ǫ32)

4.4 Lie groups

Any subset of a Clifford algebra, closed for the product, is a Lie group, subgroup
of the group GCl of its invertible elements.

The orthonormal group O (Cl) is a Lie group.
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On a complex Clifford algebra, endowed with a real structure, we can have
a real Lie group. With the morphisms C : Cl (R, p, q) → Cl (C, p+ q) if G ⊂
Cl (R, p, q) is a Lie group, then C (G) is a real Lie group in Cl (C, p+ q) . The
unitary group U (Cl) is a real Lie group, real form of the orthogonal group.

4.4.1 Lie algebra of a Lie group on a Clifford algebra

A Clifford algebra is the Lie algebra of the group GCl of its invertible elements.
The Lie algebra denoted T1G of a group G is defined as the set of its left

invariant vector fields. The tangent vector space to a group belongs to the
Clifford algebra. Let Z : [0,∞] → G :: Z (τ) be a path in G, its tangent vector
is T (θ) = dZ

dτ
|τ=θ ∈ Cl (F, ρ) . It is left invariant if :

T (τ) = L′
Z1 (T (0)) = Z (τ) · T (0) which gives the differential equation :

dZ
dτ

= Z (τ) · T (0) , Z (0) = T (0)
The left invariant vector fields of G are then characterized by the differential

equation : dZ
dτ

= Z (τ) ·T ;Z (τ) = 1 which holds whatever the element T ∈ T1G.
The differential equation reads in coordinates :[
dZ
dτ

]
= [Z · T ] = [πR (T )] [Z (τ)] ;Z (0) = 1

with a fixed matrix [πR (T )] so the solution is given by the exponential of a
matrix :

[Z] = [exp [πR (T )]] [1] = [1 · expT ] = [expT ]

Z : [0,∞] → G :: Z (τ) = exp τT ⇔ dZ

dτ
= Z (τ) · T

Which gives the rule to compute the Lie algebra of a group defined by a
relation on its elements. For instance gt · g = 1 : take g = Z (τ) and by

differentiation :
(
dZ
dτ

)t ·Z (τ)+(Z (τ))
t ·
(
dZ
dτ

)
= 0 and at Z (0) = 1 : T t+T = 0.

The exponential on a Lie algebra has well known general properties in par-
ticular :

∀T ∈ Cl (F, ρ) :
exp (ad (T )) = AdexpT
d
dτ

(Adexp τTX) = Adexp τT [T,X ]
from where we have :
g · expT · g−1 = Adg expT = exp (AdgT )

4.4.2 Compact Lie groups

A Lie group is compact if it is compact as a manifold, then its Lie algebra is
compact. The simplest criterion for a real group is that, if its Killing form is
definite negative, then it is compact.

From the definition : B (Z,Z ′) = Tr (ad (Z) ◦ ad (Z ′))

B (Z,Z) = Tr (ad (Z) ◦ ad (Z)) =
∑n2

i,j=1 [ad (Z)]ij [ad (Z)]ji

=
∑n2

i,j=1 [ad (Z)]ij

(
[ad (Z)]t

)i

j

[ad (Z)]
t
= [η] [ad (Zt)] [η]

For the orthogonal group : Zt + Z = 0 ⇒ [ad (Z)]
t
= − [ad (Z)] .
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On Cl (R, n, 0) , Cl (R, 0, n) the orthogonal group O (Cl) is compact.
On Cl (C, n) with a morphism C, the unitary group U (Cl) is a real Lie

group CC (Zt) + Z = 0.
CC (ad (Z)) = CC (πL (Z))− CC (πR (Z)) = ad (CC (Z))
[ad (Z)]

t
= [ad (Zt)] = − [ad (CC (Z))]

If J = (1, 2, ..n) , that is for the morphism Cl (R, n) → Cl (C, n) with p =

n, q = 0, then [ad (CC (Z))] = [ad (Z)] andB (Z,Z) = −∑n2

i,j=1 [ad (Z)]
i

j [ad (Z)]
i
j

is definite negative, and the unitary group is compact. Then the Cartan algebra
is a maximal torus.

4.4.3 Computing a Lie group from its Lie algebra

If L is a Lie subalgebra of a group G then the map : exp : L → G :: g = expT
is well defined, but not onto : some elements of the group cannot be written
this way (usually they can be written ± expT ). The exponential is onto if the
group is compact.

A Lie group is a manifold, and a group G in a Clifford algebra is a manifold
embedded in a vector space, it has a chart :

ϕ : Cl (F, ρ) → G :: ϕ (x1, .., xα) = g
where xα are coordinates in the basis of Cl (F, ρ) .
When the Lie algebra of a group can be written : T1G = T1H ⊕E where H

is the Lie algebra of a subgroupH and E a vector subspace, and the exponential
is onto H , there is a chart :

ϕ : H × E → G :: g = h · expT
which is convenient when T · T is a scalar. The chart is differentiable, but

usually we do not have g · g′ = h · h′ · expT · expT ′.

4.4.4 Spin group

The Spin group Spin (F, ρ) of Cl(F, ρ) is the subset of Cl(F, ρ) whose elements
can be written as the product g = u1 · ... · u2p of an even number of vectors of
F of norm 〈uk, uk〉 = 1.

As a consequence : 〈g, g〉 = 1, gt · g = 1 and Spin (F, ρ) ⊂ O (Cl) .
The scalars ±1 belong to the Spin group. The identity is +1. Spin (F, ρ) is

a connected Lie group.
The Lie algebra is T1Spin (F, ρ) = {T t + T = 0} as the orthogonal group.

Because (ε1 · ε2... · εp)t = (−1)
1
2p(p−1)

ε1 · ε2... · εp the components of order odd
must be null.

The map : Ad : Spin (F, ρ) → L (Cl(F, ρ);Cl(F, ρ)) is an action and defines
a group of automorphisms.

The adjoint map Adg preserves the scalar product and maps F to F . The
matrix of [Adg] on F belongs to SO (n) , it defines uniquely [Adg ] on Cl(F, ρ)
and there is a subjective group morphism Spin (F, ρ) → SO (n) . But +g and
−g gives the same matrix, and Spin (F, ρ) is the double cover of SO (n) .
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Example with Cl (C, 4) :
The group Spin (C, 4) is a 6 dimensional complex semi-simple Lie group with

Lie algebra :
T1Spin (C, 4) =

{
T = (0, 0, 0,W,R, 0, 0, 0) ,W,R ∈ C3

}

T1Spin (C, 3) =
{
Tr = (0, 0, 0, 0, R, 0, 0, 0) , R ∈ C3

}
is the Lie algebra of the

Lie group Spin (C, 3)
Tr · Tr = −RtR and the elements of the group read :
expTr = coshµr +

sinhµr

µr
(Tr) with µ2

r = −RtR = Tr · Tr

The vector space
{
Tw = (0, 0, 0,W, 0, 0, 0, 0) ,W ∈ C

3
}
is not a Lie algebra.

Tw ·Tw = −W tW and expTw = coshµw+ sinhµw

µw
(Tw) with µ2

w = −W tW =
Tw · Tw

The elements of the group Spin (C, 4) read :
g = expTw · expTr with Tw · Tr = (0, 0, 0, j (W )R, 0, 0, 0,−W tR)
or g = (a, 0, 0, w, r, 0, 0, b)
with
a = coshµw coshµr

w = sinhµw

µw

(
coshµr − sinhµr

µr
j (R)

)
W

r = coshµw
sinhµr

µr
R

b = − sinhµw

µw

sinhµr

µr
(W tR)

and :
wtr = −ab
a2 + b2 + wtw + rtr = 1
g−1 = (a, 0, 0,−w,−r, 0, 0, b)

5 REPRESENTATION OF CLIFFORD ALGE-

BRAS

5.1 Definitions

An algebraic representation of a Clifford algebra Cl(F, ρ) over a field K is the
couple (A, γ) of a unital algebra (A, ◦) on the fieldK and a map : γ : Cl (F, ρ) →
A which is an algebra morphism :

∀X,Y ∈ Cl(F, ρ), k, k′ ∈ K :
γ (kX + k′Y ) = kγ(X) + k′γ(Y ),
γ (X · Y ) = γ(X) ◦ γ(Y ), γ (1) = IA
A geometric representation of a Clifford algebra Cl(F, ρ) over a field K is a

couple (V, ϑ) of a vector space V on the field K and a map : ϑ : Cl (F, ρ) →
GL (V ;V ) which is an algebra morphism :

∀X,Y ∈ Cl(F, ρ), k, k′ ∈ K :
ϑ (kX + k′Y ) = kϑ(X) + k′ϑ(Y ),
ϑ (X · Y ) = ϑ(X) ◦ ϑ(Y ), ϑ (1) = IdV
If (A, γ) is a representation of Cl (C, n) then γ ◦ C is a real representation

of Cl (R, p, q) .
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5.1.1 The generators of a representation

The generators of an algebraic representation (A, γ) of the Clifford algebra
Cl(F, g) are : (γi)

n
i=0 : γi = γ (εj) , j = 1..n, γ0 = γ (1) where (εj)

n

j=1 is an
orthonormal basis of F . They meet necessarily the relation :

∀j, k = 1...n : γjγk + γkγj = 2 〈εj, εk〉F γ0

Conversely a set of generators, which are invertible and γ0 = 1A defines
uniquely an algebraic representation.

5.1.2 Equivalence of representations

Two algebraic representations (A1, ϑ1) , (A2, ϑ2) of a Clifford algebra Cl(F, ρ)
are said to be equivalent if there are :

i) a bijective algebra morphism φ : A1 → A2

ii) an automorphism τ : Cl (F, ρ) → Cl (F, ρ)
such that : φ ◦ ϑ1 = ϑ2 ◦ τ

τ
Cl(F, g) → Cl(F, g)

ϑ1 ↓ ↓ ϑ2

A1 → A2

φ

The automorphisms on a Clifford algebra correspond to a change of orthonor-
mal basis on F . On the same algebra A, all the equivalent representations are
defined by conjugation with a fixed invertible element U : Ã = U ◦A ◦ U−1.

If (V, ϑ) is a geometric representation of Cl (F, ρ) then (V ∗, ϑ∗) with V ∗ the
dual of V and ϑ∗ the transpose of ϑ, is another representation, which usually is
not equivalent.

If Cl(F, ρ) is a complex Clifford algebra, with real structure C, A a complex
algebra endowed with a real structure σ, then to any algebraic representation
(A, γ) is associated the contragredient representation : (A, γ̃) with γ̃ = σ ◦γ ◦C
which, usually, is not equivalent.

5.1.3 Representation on the exterior algebra

A Clifford algebra Cl(F, ρ) has a geometric representation on the algebra ΛF ∗

of linear forms on F.
Consider the maps with u ∈ F :
λ (u) : ΛrF

∗ → Λr+1F
∗ :: λ (u)µ = u ∧ µ

iu : ΛrF
∗ → Λr−1F

∗ :: iu (µ) = µ (u)

The map : ΛF ∗ → ΛF ∗ :: ϑ̃ (u) = λ (u)− iu is such that :

ϑ̃ (u) ◦ ϑ̃ (v) + ϑ̃ (v) ◦ ϑ̃ (u) = 2ρ (u, v) Id

thus there is a map : ϑ : Cl(F, g) → ΛF ∗ such that : ϑ · ı = ϑ̃ and (ΛF ∗, ϑ)
is a geometric representation of Cl(F, ρ). It is reducible.
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5.2 Representations on algebras of matrices

5.2.1 Complex Clifford algebras

The unique faithful, irreducible, algebraic representation of the complex Clifford
algebra Cl(C, n) is over an algebra L (C,m) of matrices of complex numbers.

The algebra L (C,m) depends on n :
If n = 2p : m = 2p : the square matrices 2p × 2p (we get the dimension 22p

as vector space)
If n = 2p+ 1 : 4p× 4p complex matrices of the form :

[M ] =

[
[A]2p×2p 0

0 [B]2p×2p

]

4p×4p

(the vector space has the dimension 22p+1).
The representation is faithful : there is a bijective correspondence between

elements of the Clifford algebra and matrices.
There is always a representation such that the generators are Hermitian,

then they are also unitary (see Shirokov).

Representation of Cl (C, 4)
The representations are built around the Dirac’s matrices :

σ0 =

[
1 0
0 1

]
;σ1 =

[
0 1
1 0

]
;σ2 =

[
0 −i
i 0

]
;σ3 =

[
1 0
0 −1

]

which are such that : σj = σ∗
j ;σjσk + σkσj = δjkI2

A convenient representation is with :

γ4 =

[
0 −iσ0

iσ0 0

]
; j = 1, 2, 3 : γj =

[
0 σj

σj 0

]

The generators have the property that : j = 1...4 : γj = (γj)
∗
= (γj)

−1

5.2.2 Real Clifford algebras

The unique faithful irreducible algebraic representation of the Clifford algebra
Cl(R, p, q) is over an algebra of matrices. The matrices algebras are over a field
K ′ (C,R) or the division ring H of quaternions with the following rules :




(p− q)mod 8 Matrices (p− q)mod 8 Matrices
0 R (2m) 0 R (2m)
1 R (2m)⊕ R (2m) −1 C (2m)
2 R (2m) −2 H

(
2m−1

)

3 C (2m) −3 H
(
2m−1

)
⊕H

(
2m−1

)

4 H
(
2m−1

)
−4 H

(
2m−1

)

5 H
(
2m−1

)
⊕H

(
2m−1

)
−5 C (2m)

6 H
(
2m−1

)
−6 R (2m)

7 C (2m) −7 R (2m)⊕ R (2m)
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The division ring of quaternions can be built as Cl0 (R, 0, 3)
When the Clifford algebra is real and represented by a set of real 2m × 2m

matrices there is a geometric representation on R2m. The vectors of R2m in such
a representation are the Majorana spinors.

5.2.3 Equivalence between the adjoint representation on the Clifford

algebra and the representation of the Clifford Algebra

To keep it simple let us consider Cl (C, 2n) with its representation (L (C, 2n) , γ) .
Let (T1G,Ad) be a representation of a group G ⊂ Cl (C, 2n) on the Clifford

algebra itself with the adjoint map..The Lie algebra T1G ⊂ Cl (C, 2n)
Let us consider the action : Θ : G → L (L (C, 2n) ;L (C, 2n)) :: Θ (g) (M) =

[γ (g)] [M ] [γ (g)]
−1

It has the properties :
Θ (g · g′) (M) = [γ (g · g′)] [M ] [γ (g · g′)]−1

= Θ(g) ◦Θ(g′) (M)
∀ [M ] ∈ L (C, 2n) , ∃Z ∈ L (C, 2n) : [M ] = [γ (Z)]

Θ (g) (γ (Z)) = [γ (g)] [γ (Z)] [γ (g)]
−1

=
[
γ
(
g · Z · g−1

)]
= [γ (AdgZ)] ⇔

Θ(g) ◦ γ = γ ◦Adg ⇔ Θ(g) = γ ◦Adg ◦ γ−1

We have the commuting diagram :

Cl (C, 2n) Adg Cl (C, 2n)
Z → → → Adg (Z)
↓ ↓
γ γ
↓ ↓

γ (Z) → → → Θ(g) (γ (Z))
L (C, 2n) Θ (g) L (C, 2n)

The representation (Cl (C, 2n) , Ad) of G is equivalent to the representation
(L (C, 2n) ,Θ) of G by Θ (g) = γ ◦ Adg ◦ γ−1 and the morphism is an isomor-
phism because γ is bijective. The action Θ is just the adjoint action on matrices
and the representation (L (C, 2n) ,Θ) of G is a subrepresentation of the adjoint
representation (L (C, 2n) ,Θ) of GL (C, 2n) , as (Cl (C, 2n) , Ad) is a subrepre-
sentation of the group GCl (C, 2n) of invertible elements of Cl (C, 2n) .

The 2n matrices γ (Fα) are linearly independent because Fα are independent,
thus they constitute a basis of L (C, 2n) . In this basis the matrix of Θ (g) is the
same as Adg in the orthonormal basis of Cl (C, 2n) :

Θ (g) (M) = Θ (g) (
∑

α κα [γ (Fα)]) =
∑

α κα [γ (g)] [γ (Fα)] [γ (g)]
−1

=
∑

α κα [γ (Adg (Fα))] =
∑

α κα
[
γ
(∑

β [Adg]
β

α
Fβ

)]
=

∑
α,β [Adg]

β

α
καγ (Fβ)

Whenever the group G is defined by a condition on the matrix Adg the same
condition applies on the representation (L (C, 2n) ,Θ) .

The map γ depends on a choice of generators but it is faithful. To each
2n × 2n matrix representing [Θ (g)] corresponds a unique matrix Adg and thus
a unique g, up to the product by a constant.
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(L (C, 2n) ,Θ) is the adjoint representation of GL (C, 2n) on its Lie algebra.
Similarly (Cl (C, n) , Ad) is the adjoint representation of GCl on its Lie alge-
bra. The two representations are equivalent, as well as their derivative : the
representation (L (C, 2n) , ad) of L (C, 2n) and (Cl (C, n) , ad) of Cl (C, n) . The
root spaces decomposition of the representation (sl (C, 2n) , ad) is based on the
Cartan algebra of diagonal matrices, then the Cartan algebra of Cl (C, 2n) is
given by the 2n − 1 elements Fα of the basis which are represented by diagonal
matrices.

These results can be extended at any complex Clifford algebra.
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