## **Note on Mathematical Inequality**

(Saikat sarkar), undergraduate student of visva-bharati university.

If anyone has any comment, feel free to ask me any question. My mail id is saikatsarkar098@gmail.com.

**Abstract:** This is very fundamental concept of mathematical inequality .I have focused in some preliminary concept of mathematical inequality. Here I am dealing with real number and their properties.

**The property of trichotomy:** Any two real number a, b must be satisfy one and only one of the following relations—

- (i) a is equal to b (a = b),
- (ii) a is greater than b (a > b),
- (iii) a is less than b (a < b).

The last two relations are inequality relations.

**Properties:** If a, b, c be real numbers, then

- (i) a > b and  $b > c \Rightarrow a > c$ ,
- (ii)  $a > b \Rightarrow a + c > b + c$ ,
- (iii) a > b and  $c > 0 \Rightarrow ac > bc$ ,
- (iv) a > b and  $c < 0 \Rightarrow ac < bc$ ,
- (v) a > b and  $c = 0 \Rightarrow ac = bc$ ,

**Corollary:** (i)  $a \ge b$  and  $b \ge c \Rightarrow a \ge c$ ,

- (ii)  $a \ge b$  and  $b > c \Rightarrow a > c$ ,
- (iii)  $a \ge b \Rightarrow a + c \ge b + c$ ,
- (iv)  $a \ge b$  and  $c > 0 \implies ac \ge bc$ ,
- (v)  $a \ge b$  and  $c < 0 \implies ac \le bc$ .

**Theorem:** If  $a_1, a_2, \cdots, a_n$ ;  $b_1, b_2, \cdots, b_n$  be all real number such that  $a_i > b_i$  for  $i = 1, 2, \cdots, n$ , then

$$a_1 + a_2 + \dots + a_n > b_1 + b_2 + \dots + b_n.$$
  
proof.  $(a_1 + a_2 + \dots + a_n) - (b_1 + b_2 + \dots + b_n)$ 

$$= (a_1 - b_1) + (a_2 - b_2) + \cdots + (a_3 - b_3) > 0, since \ a_i - b_i > 0 \text{ for } i = 1, 2, \cdots n.$$

Therefore  $a_1 + a_2 + \cdots + a_n > b_1 + b_2 + \cdots + b_n$ .

**Theorem:** If  $a_1, a_2, \dots, a_n$ ;  $b_1, b_2, \dots, b_n$  be all positive real number such that  $a_i > b_i$  for  $i = 1, 2, \dots, n$ , then  $a_1 a_2 \dots a_n > b_1 b_2 \dots b_n$ .

*proof.*  $a_1a_2 - b_1b_2 = a_1(a_2 - b_2) + b_2(a_1 - b_1) > 0$ , since each term is positive.

Therefore  $a_1a_2 > b_1b_2$ . Thus  $a_1 > b_1$  and  $a_2 > b_2$   $\Rightarrow a_1a_2 > b_1b_2$ .

Similarly,  $a_1a_2 > b_1b_2$  and  $a_3 > b_3 \Rightarrow a_1a_2a_3 > b_1b_2b_3$ . successive application give  $a_1a_2 \cdots a_n > b_1b_2 \cdots b_n$ .

**Means:** Let x be a real number. The most basic inequalities are

$$x^{2} \ge 0, \quad \cdots (1)$$
  
 $\sum_{i=1}^{n} x_{i}^{2} \ge 0. \quad \cdots (2)$ 

We have equality only if x=0 in (1) or  $x_i=0$  for all i in (2). one strategy for proving inequalities is to transform them into the form (1) or (2). This is usually a long road. So we derive some consequences equivalent to (1). With x=a-b, a>0, b>0, We get the following equivalent inequalities:

$$a^2 + b^2 \ge 2ab \Leftrightarrow 2(a^2 + b^2) \ge (a + b)^2 \Leftrightarrow \frac{a}{b} + \frac{b}{a} \ge 2 \Leftrightarrow \frac{a + b}{2} \le \sqrt{\frac{a^2 + b^2}{2}}.$$

Replacing a, b by  $\sqrt{a}, \sqrt{b}$ , we get  $a + b \ge 2\sqrt{ab} \Leftrightarrow \frac{a+b}{2} \ge 2\sqrt{ab} \Leftrightarrow \sqrt{ab} \ge \frac{2ab}{a+b}$ .

In particular, we have the inequality chain

$$\min(a,b) \le \frac{2ab}{a+b} \le \sqrt{ab} \le \frac{a+b}{2} \le \sqrt{\frac{a^2+b^2}{2}} \le \max(a,b)$$

This is the *harmonic – geometric – arithmetic – quadratic mean inequality*.

**Example:** If  $a_i > 0$  for  $i = 1, \dots, n$  and  $a_1 a_2 \cdots a_n = 1$ , then  $(1 + a_1)(1 + a_2) \cdots (1 + a_n) \ge 2^n$ 

**Solution:** we know that  $\frac{(1+a_1)}{2} \ge \sqrt{a_1}, \frac{(1+a_2)}{2} \ge \sqrt{a_2}, \cdots, \frac{(1+a_n)}{2} \ge \sqrt{a_n}$ .

Multiplying all the inequalities we get,

$$\begin{split} &\frac{(1+a_1)}{2} \cdot \frac{(1+a_2)}{2} \cdots \frac{(1+a_n)}{2} \geq \sqrt{a_1 a_2 a_3 \cdots a_n} \; . \\ \Rightarrow &\frac{(1+a_1)}{2} \cdot \frac{(1+a_2)}{2} \cdots \frac{(1+a_n)}{2} \geq 1 \; \Rightarrow (1+a_1) \cdot (1+a_2) \cdots (1+a_n) \geq 2^n. \end{split}$$

Generally, for n positive number  $a_i$ , we have the following inequalities:

$$\min(a_i) \le \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} \le \sqrt[n]{a_1 a_2 \cdots a_n} \le \frac{a_1 + a_2 + \dots + a_n}{n} \le \sqrt{\frac{a_1 + a_2 + \dots + a_n}{n}} \le \max(a_i).$$

The equality sign is valid only if  $a_1 = \cdots = a_n$ .

## **FXFRCISE**

- 1. For positive a, b and c, prove that  $\frac{a}{b} + \frac{b}{c} + \frac{c}{a} \ge 3$
- 2. If  $a_1, a_2, \dots, a_n$  are positive real numbers prove that  $(a_1 + a_2 + \dots + a_n) \left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}\right) \ge n^2$ .
- 3. If a > 0, b > 0 and c > 0, prove that  $\frac{a+b}{c} + \frac{b+c}{a} + \frac{c+a}{b} \ge 6$ .
- 4. If a, b, c are positive, prove that  $(a + b + c)(ab + bc + ca) \ge 9abc$ .

**Cauchy-Schwarz Inequality:** Let  $a_1, a_2, \cdots a_n$  and  $b_1, b_2, \cdots b_n$  be two sets of real numbers. Then

$$(\sum_{i=1}^{n} a_i b_i)^2 \ge (\sum_{i=1}^{n} a_i^2) (\sum_{i=1}^{n} b_i^2).$$

And equality holds iff

$$\frac{a_1}{b_1} = \frac{a_2}{b_2} = \cdots \frac{a_n}{b_n}.$$

*proof*: Let us put  $A = \sum_{i=1}^n a_i^2$ ,  $B = \sum_{i=1}^n b_i^2$ ,  $C = \sum_{i=1}^n a_i b_i$ .

We have to prove  $C^2 \leq AB$ . If B=0 then  $b_i=0$  for all  $i=1,2,\cdots,n$ . Hence C=0. Therefore it is sufficient to consider the case  $B\neq 0$ . This implies that B>0. We now have  $0\leq \sum_{i=1}^n (Ba_i-Cb_i)^2$ 

$$= B^2 \sum_{i=1}^n a_i^2 -$$

 $2BC\sum_{i=1}^{n} a_i b_i + C^2 \sum_{i=1}^{n} b_i^2$ .

$$=B(AB-C^2).$$

Since B>0, we get  $AB-\mathcal{C}^2\geq 0$ . Which is the required inequality. Moreover, equality holds iff

$$\sum_{i=1}^{n} (Ba_i - Cb_i)^2 = 0.$$

This is equivalent to  $\frac{a_i}{b_i} = \frac{c}{R}$  ,  $i = 1, 2, \dots, n$ .

**Example:** If  $a_1, a_2, \dots, a_n$  are real numbers such that  $a_1 + a_2 + \dots + a_n = 1$ , prove that

$$a_1^2 + a_2^2 + \dots + a_n^2 \ge \frac{1}{n}$$
.

**Solution:** we have,  $(1+1+\cdots n\ times)(a_1^2+a_2^2+\cdots +a_n^2) \geq (a_1\cdot 1+a_2\cdot 1+a_3\cdot 1+\cdots +a_n\cdot 1)^2$ .

$$\Rightarrow n \cdot (a_1^2 + a_2^2 + a_3^2 + \dots + a_n^2) \ge 1$$

$$\Rightarrow (a_1^2 + a_2^2 + \dots + a_n^2) \ge \frac{1}{n}$$

## REFERENCE

- 1. Problem-solving strategies-Arthur Engel.
- 2. Classical Algebra-S.K.MAPA